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Abstract

We consider the estimation of return values in the presence of uncertain extreme value model parameters, using
maximum likelihood and other estimation schemes. Estimators for return value, which yield identical values when
parameter uncertainty is ignored, give different values when uncertainty is taken into account. Given uncertain shape
ξ and scale parameters of a generalised Pareto (GP) distribution, four sample estimators q for the N -year return
value q0, popular in the engineering community, are considered. These are: q1, the quantile of the distribution of the
annual maximum event with non-exceedance probability 1 − 1/N , estimated using mean model parameters; q2, the
mean of different quantile estimates of the annual maximum event with non-exceedance probability 1 − 1/N ; q3, the
quantile of the predictive distribution of the annual maximum event with non-exceedance probability 1 − 1/N ; and
q4, the quantile of the predictive distribution of the N -year maximum event with non-exceedance probability exp[−1].
Using theoretical arguments, and simulation of samples of GP-distributed peaks over threshold (with ξ ∈ [−0.4, 0.1])
and different GP parameter estimation schemes, we show that the rank order of estimators q and true value q0 can
be predicted, and that differences between estimators q and q0 can be large. Judgements concerning the relative
performance of estimators depend on the choice of utility function adopted to assess them. We consider bias in return
value, bias in exceedance probability and bias in log exceedance probability. None of the four estimators performs well
with respect to all three utilities under maximum likelihood estimation, but the posterior mean q2 is probably the best
overall. The estimation scheme of Zhang (2010) provides low bias for q1.
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1. Introduction

Current engineering guidelines (e.g. ISO19901-1 2015, NORSOK N-003 2017, DNVGL-RP-C205 2017) require that
extreme ocean environments are characterised marginally and conditionally in terms of return values, often with respect
to covariates such as direction. Sometimes the metocean engineer’s task is to identify combinations of return values
for dominant variables in combination with associated values for other variables to represent extreme conditions for a
given environment; these can also be summarised in terms of environmental design contours.
Recent years have seen marked improvements in quality and availability of field measurements, better numerical

models for storm environments, and computationally feasible approaches to statistical inference. These allow for
realistic quantification of uncertainty in estimation of the tails of distributions of quantities such as significant wave
height. Specifically, we can quantify the uncertainty with which the parameters of the distribution of peaks over high
threshold, or of block maxima, are estimated from a sample of data. Since return values are defined as functions of
tail parameters, we can then quantify the effect of parameter uncertainty on estimates for return values.
When the uncertainty in model parameters is ignored (e.g. when points estimates are used), return values can be

estimated using a number of different approaches popular in the ocean engineering literature, yielding identical results.
For example, the N -year return value is typically defined as the quantile of the distribution of the annual maximum of
a random quantity with non-exceedance probability 1−1/N . However, some authors use a definition of return value in
terms of the quantile of the distribution of the N -year maximum with non-exceedance probability exp[−1]. For large
N and given model parameters, these two definitions yield effectively identical results as discussed below. However,
once parameter uncertainty is incorporated, different approaches (including the two just mentioned) to return value
estimation yield different results. These differences are of fundamental concern to the practising ocean engineer, and
have been noted at least anecdotally for some time.
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Estimation of the N -year return value often relies on an extreme value model fitted to a sample of data, from
which an estimate for the distribution of the annual maximum event is made. The characteristics of fitted model
parameter estimates depend on (a) the nature of the sample (e.g. block maxima or peaks over threshold, sample
size; complications due to lack of independence of observations, covariates, etc.) and (b) the choice of estimation
strategy (e.g. generalised extreme value (GEV) distribution for block maxima or generalised Pareto (GP) distribution
for threshold exceedances; estimation method including e.g. maximum likelihood or probability weighted moments;
accommodations for dependence and covariates, etc.). The characteristics of the fitted parameter estimates in turn
influence those of the estimated N -year return value.
Peaks over threshold analysis is often preferred over direct analysis of annual maxima since in typical applications

there are multiple occurrences of threshold exceedences per annum. This might be the case for analysis of storm peak
significant wave height from extra-tropical storms and typical threshold levels. In this sense, the peaks over threshold
analysis can be more efficient since the same period of observation provides more observations for model building and
tail. Madsen et al. (1997) provides expressions for the asymptotic variance of return value estimates from GEV and
GP estimation. They conclude that for all practical purposes, GP provides the most efficient return value estimator
in the case of maximum likelihood estimation. Dombry and Ferreira (2019) further show that peaks over threshold
is preferable under maximum likelihood estimation in terms of (a) lower asymptotic bias and (b) lower asymptotic
mean square error of the GP shape parameter estimate; however, the block maximum (GEV) approach is preferred in
terms of asymptotic variance. Similar findings are given by Ferreira and de Haan (2015) when parameter estimation
is performed using the method of probability weighted moments.
From a Bayesian perspective, an optimal value (such as return value) for some random quantity can only be provided

with respect to an appropriate loss or utility structure. Christensen and Huffman (1985), building on the work of Geisser
(1971), discuss Bayesian point estimation when no loss function is specified, and argue in favour of the posterior mean
estimator (analogous to q2 in the notation of the abstract). Smith (2003) discusses issues related to incorporation
of parameter uncertainty in estimates for return values. Serinaldi (2015) emphasises that the preferred approach to
estimate environmental risk subject to uncertainty should involve direct estimation of probabilities of exceedance, or
of structural failure over a given design life, incorporating all sources of epistemic and aleatory uncertainty in play.
Fawcett and Green (2018) assess the performance of (posterior) predictive return levels relative to their estimative
counterparts, such as the mean and mode of the posterior distribution of return value. They conclude that, for the
cases considered in a simulation study, the predictive return value (analogous to q3 in the notation of abstract) yields
estimates of exceedance probabilities with much higher precision than the corresponding exceedance probabilities
obtained from estimative summaries.
Design standards such as DNVGL-RP-C205 (2017) also support the estimation of return values using so-called ‘all

sea state’ or ‘global’ models. In this situation, the full distribution of e.g. sea-state significant wave height is estimated
from a sample of (typically dependent) values of sea-state significant wave height using some parametric form e.g.
related to a Weibull distribution (see Haselsteiner and Thoben 2020). This approach is not addressed in the current
work, which focusses on return value estimation using peaks over threshold analysis.
The purpose of this article is to describe some of the more common estimators of return values used in ocean

engineering, and to consider how uncertainties in parameters of extreme value models influence estimation of the bias
of (a) return value, (b) probability of exceedance and (c) logarithm of the exceedance probability associated with a
return value.
The article is arranged as follows. In Section 2 we provide an outline of different definitions of the N -year return

value used by ocean engineers. For a given application, when parameter uncertainty is ignored, all these approaches
yield the same estimate of return value. In Section 3, we extend the definition of return value to incorporate parameter
uncertainty, suggesting six different estimators; Section 4 presents the corresponding estimators for samples of peaks
over threshold following a GP distribution. Section 5 then illustrates the characteristics of the different estimators in
a simulation study, assuming that maximum likelihood is used to estimate GP parameters. Section 6 provides simple
theoretical arguments to help understand why estimators from Section 4 yield different values. Section 7 provides
discussion and recommendations.

2. Return value estimators in the absence of tail parameter uncertainty

Suppose that a random variable A represents the maximum value of some physical quantity X (such as storm peak
significant wave height) per annum. The N -year return value q of X is then conventionally defined by the equation

FA(q) = Pr(A ≤ q) = 1−
1

N
(1)
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where FA is the cumulative distribution function of the annual maximum A. We might also say that q is the quantile
of the distribution of A with non-exceedance probability 1− 1/N and write

q = QA(1− 1/N) (2)

where QA is the inverse of FA, i.e. QA = F−1
A . To estimate q, we need knowledge of FA. We might estimate FA using

extreme value analysis on a sample of independent observations of A. For ocean engineering applications however, it is
typically more efficient to estimate the distribution FX|X>ψ of threshold exceedances of X above some high threshold
ψ using a sample of independent observations of X, and use this in turn to estimate FA as outlined in the Appendix
and discussed in Section 3.
Applying the expression in Equation 1 to a time period of N years, we can also write

FAN
(q) = FNA (q) =

(
1−

1

N

)N

where AN is the N -year maximum event, FAN
its cumulative distribution function, and QAN

its quantile function.
Motivated by the fact that (1 − 1/N)N converges to exp[−1] with increasing N (with percentage error of ≈ 1% for
N = 50 and ≈ 0.1% for N = 500), we can write

FAN
(q′) = exp[−1], or (3)

q′ = QAN
(exp[−1]) (4)

and solve for q′, the quantile of the distribution of the N -year maximum with non-exceedance probability exp[−1]. In
the absence of uncertainty, it is clear that with increasing N the estimators q and q′ of return value from Equations 1
and 3 are asymptotically equivalent by definition.
The discussion above illustrates how return values might be estimated from the distribution of the annual maximum

(Equation 1) or the N -year maximum (Equation 3), when we are certain (or have perfect knowledge) about the tail of
the distribution of annual maxima. In reality, this is never the case, because we estimate the tail and its parameters
from a sample of data. It is natural therefore to seek to understand how this epistemic uncertainty affects estimation
for return values, in particular to consider if systematic bias occurs.

3. Return value estimators accommodating uncertain tail parameters

We now assume that the distribution of annual maximum A is known conditional on uncertain extreme value model
parameters Z, so that (given Z) we can use any of the approaches in Section 2 to estimate return values. We seek
to propagate uncertainty about Z through to estimates of return values. There are a number of plausible ways to
achieve this based on extensions of Equations 1 and 3. These different estimators perform differently given uncertain
knowledge of model parameters.
The basic mathematical tools used to incorporate uncertainty are now explained, for some random variable Y (e.g.
A or AN ) whose distribution is known conditional on random variables Z (e.g. uncertain model parameters). If
the conditional cumulative distribution function FY |Z and the joint density fZ of Z are known, the unconditional

predictive distribution F̃Y can be evaluated using

F̃Y (y) =

∫

ζ

FY |Z(y|ζ)fZ(ζ) dζ

where ζ ∈ DZ for range of integration DZ is understood throughout. When the joint density fZ is estimated using
Bayesian inference (as joint density fZ|D from sample D) the unconditional distribution is known as a posterior
predictive distribution for Y ; alternatively, fZ might be estimated using a bootstrapping scheme, or some other
procedure to generate empirical estimates of the relative probabilities of different values of Z from data. Analogously,
the expected value E[g(Z)] of deterministic function g of uncertain parameters Z given fZ is given by

E[g(Z)] =

∫

ζ

g(ζ)fZ(ζ) dζ.

We might consider g(Z) to be the N -year return value as estimated from Equation 1 or Equation 3, a function of
uncertain parameters. This motivates considering the following estimators for return values.
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3.1. Return value estimators using expected values of parameters: q1, q
′
1

The first estimator is motivated by the widespread approach of ignoring uncertainty in parameters Z for estimation
of return values. A suitable estimator in this case (see Equation 2) would be the return value estimated using the
expected values of parameters

q1 = QA|Z(1− 1/N |E[Z]) (5)

where E[Z] =
∫
ζ
ζfZ(ζ) dζ, and QA|Z(p|Z) is the conditional quantile function for the annual maximum evaluated

at non-exceedance probability p given model parameters Z. A related estimator q′1 is defined using the distribution of
the N -year maximum AN

q′1 = QAN |Z(exp[−1]|E[Z]).

By analogy with Equations 1 and 3, q′1 is asymptotically equivalent to q1 and will be considered no further.

3.2. Expected quantiles of distribution of A and AN : q2, q
′
2

The second estimator q2 is the expected quantile of distribution of A with non-exceedance probability 1− 1/N given
by

q2 = E[QA|Z(1− 1/N |Z])] =

∫

ζ

QA|Z(1− 1/N |ζ)fZ(ζ) dζ. (6)

Estimator q2 involves first solving for the quantile of the distribution of the annual maximum with non-exceedance
probability 1− 1/N for each a large number of parameter choices ζ, and then averaging. A related estimator q′2 is the
expected quantile of distribution of AN with non-exceedance probability exp[−1],

q′2 =

∫

ζ

QAN |Z(exp[−1]|ζ)fZ(ζ) dζ.

That is, q′2 involves first solving for the quantile of the distribution of the N -year maximum with non-exceedance
probability exp[−1] for a large number of parameter choices ζ, and then averaging. Since QAN |Z(exp[−1]|ζ) is asymp-
totically equivalent to QA|Z(1− 1/N |ζ), by construction estimator q′2 is asymptotically equivalent to q2. Hence, q′2 is
no longer considered.

3.3. Quantiles of predictive distributions of A and AN : q3, q4

The third estimator is the quantile of predictive distribution of A with non-exceedance probability 1− 1/N defined
by

q3 = Q̃A(1− 1/N) (7)

where Q̃A is the predictive quantile function for A, defined as the inverse of the predictive cumulative distribution
function F̃A given by

F̃A(x) =

∫

ζ

FA|Z(x|ζ)fZ(ζ) dζ.

Estimating q3 involves first estimating F̃A, then solving for its 1 − 1/N quantile. The related fourth estimator is the
quantile of predictive distribution of AN with non-exceedance probability exp[−1]

q4 = Q̃AN
(exp[−1]) (8)

where Q̃AN
is the predictive quantile function for AN , defined as the inverse of the predictive cumulative distribution

function F̃AN
given by

F̃AN
(x) =

∫

ζ

FAN |Z(x|ζ)fZ(ζ) dζ.

Estimating using q4 involves first estimating F̃AN
, then solving for its exp[−1] quantile.

In the absence of parameter uncertainty, q1, q2 and q3 are equal to q. Further q′1, q
′
2 and q4 are equal to q′, which

converges to q with increasing N , as discussed in Section 2. That is, when there is no uncertainty in the parameters
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Z, or when that uncertainty is ignored, all estimators will yield the same return value estimate. In the presence of
uncertainty, however, there is no reason to expect equality between estimates using the four estimators q1, q2, q3 and
q4 because they incorporate the effects of parameter uncertainty in different ways.
Numerous questions therefore arise: which estimator is most appropriate to use in metocean design? Is there a

universally best choice, or is the choice problem-specific? For typical samples of metocean data, how different are the
estimates obtained? How reasonable is it to calculate and quote return values using different estimators in the presence
of uncertainty? How should we quantify and communicate the characteristics of extreme environments for metocean
design, subject to uncertainty? How should good design decisions be made? Are there approaches to specification of
design conditions that are inherently better than return values?

4. Sample estimators for peaks over threshold

Suppose we observe samples of independent threshold exceedances which follow a GP distribution. We now define
four sample estimators for return value corresponding to those introduced in Section 3, based on sample estimates of
the GP shape and scale parameters.

4.1. Generalised Pareto data

Independent observations X of threshold exceedance are assumed to be GP-distributed with shape parameter ξ and
scale parameter σ

FX|X>ψ,Z(x|ζ) = 1−

(
1 +

ξ

σ
(x− ψ)

)−1/ξ

+

, ξ 6= 0 (9)

for x > ψ, ψ ∈ (−∞,∞), ξ ∈ (−∞,∞), σ ∈ (0,∞), ζ = (ξ, σ) and (y)+ = y for y > 0 and = 0 otherwise. When
ξ = 0, the conditional distribution takes the form 1− exp[−(x− ψ)/σ)]. In the absence of parameter uncertainty, the
Appendix shows that the value of the N -year return value q solving Equation 1 or 3 for large N is given by

q =
σ

ξ

(
N ξ

∗ − 1
)
+ ψ, ξ 6= 0 (10)

where N∗ is the expected number of threshold exceedances in N years, and q = σ log[N∗] + ψ when ξ = 0.
Equation 10 illustrates that the relationship between q and ξ is non-linear, and that the cases ξ < 0 and ξ ≥ 0 show

different behaviours with increasing N∗: for ξ < 0, a finite upper limit for q as N∗ → ∞ exists given by ψ + σ/(−ξ),
whereas for ξ ≥ 0 we see q → ∞ as N∗ → ∞. We might expect therefore that uncertain knowledge of ξ influences the
value of q differently for different ξ, and that the approach we choose to take to estimate ξ (and σ, ψ in general) and
incorporate parameter uncertainty will influence our estimate of q. Section 4.2 below defines four estimators q1, q2, q3
and q4 of return value subject to uncertainty in ξ and σ, motivated by Section 3. Section 5 then explores differences
between estimators q using numerical simulation. It is also possible to demonstrate some differences between return
value estimators theoretically, as discussed in Section 6.

4.2. Sample estimators of return values

We have a set Z = {ξi, σi}
m
i=1 of m independent estimates for the underlying (true known) parameters ξ0, σ0 of a GP

distribution FX|X>ψ,Z (see Equation 9), with fixed known extreme value threshold ψ corresponding to non-exceedance
probability τ . Without loss of generality, we assume that the pairs of elements of Z are ordered in terms of decreasing
ξ, so that ξ1 is the largest value of ξ. Z might be output of a Markov chain Monte Carlo inference from some sample, a
set of maximum likelihood parameter estimates from m different bootstrap resamples, or the judgements of m experts.
We use Z to construct return value estimators q1, q2, q3 and q4 as follows. First the Appendix provides expressions
for FA and FAN

(from Section 2) and solves Equation 2, for FX|X>ψ,Z taking GP form; it also defines the expected
number N∗ of threshold exceedances in N years, and the expected number λ of events per annum. Then, replacing
integration with respect to fZ(ζ)dζ with summation over the set Z, Equations 5 and 10 yield

q1 =

∑
i σi∑
i ξi

(
N

∑
i
ξi/m

∗ − 1
)
+ ψ (11)

where summation is for i = 1, 2, ...,m. That is, q1 is formed using the mean values of uncertain GP parameter estimates
in the standard equation for a return value. To estimate q2, Equations 6 and 10 yield

q2 =
1

m

∑

i

σi
ξi

(
N ξi

∗ − 1
)
+ ψ. (12)
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That is, q2 corresponds to the mean of m estimates, each corresponding to a different pair from Z. To define q3, we
write Equation 7 as

F̃A(x) =
1

m

∑

i

exp

[
−λ (1− τ)

(
1 +

ξi
σi

(x− ψ)

)−1/ξi
]

(13)

for F̃A; that is, we take the mean over m different estimates for the annual distribution (each corresponding to a
different pair from Z) to form F̃A(x) for each x. Then we set F̃A(q3) = 1− 1/N such that

1−
1

N
=

1

m

∑

i

exp

[
−λ (1− τ)

(
1 +

ξi
σi

(q3 − ψ)

)−1/ξi
]
. (14)

Finally, we estimate F̃AN
as mean of m different estimates for the distribution of the N -year maximum using GP

parameters taken from Z

F̃AN
(q4) =

1

m

∑

i

exp

[
−N∗

(
1 +

ξi
σi

(q4 − ψ)

)−1/ξi
]
.

Equation 8 then gives q4 as quantile of the resulting distribution with non-exceedance probability exp[−1]

exp[−1] =
1

m

∑

i

exp

[
−N∗

(
1 +

ξi
σi

(q4 − ψ)

)−1/ξi
]
. (15)

5. Differences between return value estimators explored by simulation and maximum likelihood esti-

mation

We use simulation to explore the characteristics of the four return value estimators q1, q2, q3 and q4. We assume that
observations of threshold exceedances follow a GP distribution with shape ξ0, scale σ0 = 1 and threshold ψ0 = 0 (and
threshold non-exceedance probability τ = 0) for sample sizes are n = 100, 1,000 and 10,000. We estimate return values
q using maximum likelihood estimates for ξ and σ from GP fits to m = 105 realisations of samples, for true ξ0 values
of -0.4, -0.35, ..., 0.1. This selection of values of ξ0 corresponds to those typically found in application to storm peak
significant wave height from different ocean basins; for example, in the northern North Sea, values of ξ ∈ [−0.4,−0.1]
have been reported (e.g. Elsinghorst et al. 1998, Ewans and Jonathan 2008, Randell et al. 2016); in the South China
Sea, values of ξ ∈ [−0.1,+0.1] (e.g. Randell et al. 2015); and in the Gulf of Mexico, ξ ∈ [−0.1,+0.05] (e.g. Raghupathi
et al. 2016).
Figure 1 gives scatter plots of the set Z = {ξi, σi} of maximum likelihood parameter estimates ξi, σi for the cases
ξ0 = −0.2 and ξ0 = 0.1. For larger sample sizes, the characteristics of the sample resemble those of the known Gaussian
asymptotic form (e.g. Hosking and Wallis 1987), with ξi and σi approximately unbiased, but negatively correlated.
For n = 100, the scatter plots appear non-Gaussian, with more occurrences of large negative values of ξi − ξ0 than of
large positive ones. We might anticipate that the properties of return value estimators q relative to q0 depend on the
characteristics of sample Z, and hence on the method of parameter estimation.

[Figure 1 about here.]

Differences between return value estimators and the known population return values are assessed as a function of ξ0
in Figures 2-5 below. For the purposes of return value calculations, we assume that the rate of occurrence λ = 100 per
annum. First we consider return period N = 100 years. Figure 2 illustrates the variation of true return value q0 as a
function of ξ0, for the three sample sizes under consideration, as a thick grey line. Differences in estimates q̂ for return
values q are greatest for sample size n = 100; for larger sample sizes the differences between return value estimators is
relatively small relative to the range of return values.

[Figure 2 about here.]

Figure 3 provides a better illustration of the differences between estimators q in terms of fractional bias

Fractional bias =
qj
q0

− 1 for j = 1, 2, 3, 4.
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Independent of sample size n, estimator q2 provides the smallest fractional bias. Recall, in the notation of Section 3,
that q2 takes the form E[QA|Z(1− 1/N |Z])]; that is, q2 is the average of m return value estimates, each corresponding
to a pair of maximum likelihood parameter estimates. Return value estimator q1 provides consistent underestimation
of return value. Recall that q1 is obtained by first estimating the mean of maximum likelihood parameters, then
plugging these into the return value equation; q1 takes the form QA|Z(1− 1/N |E[Z]) in the notation of Section 3. q1
can therefore be viewed as the return value estimated when we ignore variability in maximum likelihood parameter
estimates, and simply use the average values of ξ and σ for return value calculation. Return value estimator q4 provides
the largest negative bias, underestimating the return value. Referring to Section 3, q4 corresponds to the quantile of
the predictive distribution for the N -year maximum AN with non-exceedance probability exp[−1]. Return value
estimator q3 provides the largest positive bias, consistently overestimating the return value. Referring to Section 3, q3
corresponds to the quantile of the predictive distribution for the annual maximum A with non-exceedance probability
1− 1/N .
Figure 3 shows that the magnitude of fractional bias increases with ξ0 for all return value estimators except q2, and

for all sample sizes n, for the interval ξ0 ∈ [−0.4, 0.1] (but see theoretical results in Section 6 which show that q2 > q3
in the very unlikely case that ξ0 > 1). The figure also shows that, as n increases, fractional bias for all q reduces
suggesting that all four approaches provide consistent estimation. However, for finite sample sizes, the bias in q3 in
particular is very large, corresponding to around 20% for ξ0 ≈ −0.1. This is somewhat alarming given that q3 would be
the default choice of many with a statistical background, defined in terms of the predictive distribution for the annual
maximum. q2 clearly provides the least biased results, with fractional bias ≤ 5% for ξ0 ∈ [−0.4, 0.05), increasing for
largest ξ0.

[Figure 3 about here.]

Figure 4 assesses q1, q2, q3 and q4 in terms of the bias in their exceedance probabilities

Bias = Pr(A > qj)−
1

N
= 1− FA(qj)−

1

N
for j = 1, 2, 3, 4.

Estimator q3 based on the annual predictive distribution provides the overall best performance for the smallest sample
size n = 100, certainly for ξ0 ∈ [−0.4,−0.1]. Unsurprisingly given the evidence of Figure 3, q3 nevertheless underesti-
mates exceedance probability for all n. In fact, closer inspection of results shows that Pr(A > q3) = 0 for n = 100 and
ξ0 < −0.2, as discussed further in relation to Figure 5 below. That is, estimator q3 lies beyond the upper end point
of the distribution of the annual maximum A in these cases. Estimator q4 based on the predictive distribution for the
N -year maximum provides the worst performance, and large overestimation of exceedance probability. For n = 1, 000,
q2 provides best performance for ξ0 ≥ −0.3. For n = 10, 000, q3 provides best performance for ξ0 ≤ −0.3, and q2 for
ξ0 ≥ −0.2.

[Figure 4 about here.]

A third useful metric for comparison of return value estimators is bias in log exceedance probabilities

Bias = log10(Pr(A > qj))− log10(
1

N
) = log10(1− FA(qj)) + log10(N) for j = 1, 2, 3, 4.

This scale of comparison is useful since it is often more intuitive to assess errors in probabilities multiplicatively rather
than additively. Results for N = 100 years are shown in Figure 5. The predictive estimator q3 performs poorly for
sample size n = 100, with infinite bias in log exceedance probability for ξ0 < −0.2. For n = 10, 000, q3 performs better.
Overall, q2 provides best performance.

[Figure 5 about here.]

Figure 6 considers return value estimator behaviour for return period N = 1, 000 years. The general features of
Figure 6 and Figure 3 (for N = 100) are very similar: the magnitude of fractional bias for N = 1, 000 is greater than
for N = 100 since we are extrapolating farther. Figure 7 considers the corresponding result for N = 10, 000 years.
We infer that return period (within the range considered) has little effect on the relative performance of return value
estimators.

[Figure 6 about here.]

[Figure 7 about here.]
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Figure 8 shows the bias in estimated exceedance probability for the case N = 10, 000 years, for comparison with
the results in Figure 4 (for N = 100). q3 provides the least biased estimate of exceedance probability for sample
size n = 100. For larger n, Pr(A > q3) < 1/N for the interval of ξ0 considered. Conversely, all other estimators q
produce overestimates of the exceedance probability. For n ≥ 1, 000 and ξ0 ≥ −0.2 there is little to choose between
the estimators.

[Figure 8 about here.]

In terms of bias in log exceedance probability, Figure 9 once again illustrates the relatively poor performance of
the predictive estimator q3, which yields infinite bias in a large proportion of the cases considered for return period
N = 10, 000 years since the estimate for q3 is beyond the upper end point of the distribution of the annual maximum
A. Overall, q2 provides best performance.

[Figure 9 about here.]

Motivation for differences between return value estimators q and q0 is provided by Figure 10, which shows different
annual maximum and N -year maximum cumulative distribution functions, and differences of cumulative distribution
functions, for the case ξ0 = −0.2, sample size n = 1, 000 and return period N = 100 years.

[Figure 10 about here.]

Comparison of the true N -year distribution FAN
and its predictive estimate F̃AN

in the left hand panel suggests that
the latter is more spread; this is reasonable given evidence of parameter estimation variation in Figure 1. Consequently
we expect predictive distributions F̃A and F̃AN

to have more mass in their tails compared to the true distributions FA
and FAN

: this is shown to be the case in the top right hand panel. With increasing x, differences F̃A(x)− FA(x) and
F̃AN

(x) − FAN
(x) start at zero, are then positive and then negative and ultimately zero again in both cases, except

that the intervals corresponding to positive and negative differences is not the same. Clearly the locations of positive
and negative differences are determined by the characteristics of set Z. We are specifically interested in the value
of the difference at the (true) N -year return value, indicated by a vertical line in the top right panel. Here, F̃AN

overestimates the true distribution, and hence a return value estimator based on F̃AN
will be biased low (and therefore

q4 < q0). The opposite is true for F̃A (and therefore q3 > q0).
Referring to Equation 15, taking the N th root of each side, and applying the approximation exp[−1/N ] ≈ 1−1/N for

large N suggests that solving 1−1/N = F̃
1/N
AN

(q4) provides a good approximation to q4. The top right panel illustrates

that the difference F̃
1/N
AN

− F̃A is never negative; this suggests that in particular q3 ≥ q4. This ordering is clear from
inspection of the bottom right panel, where the 1− 1/N = 0.99 level is shown as a horizontal line.

6. Differences between return value estimators demonstrated theoretically

We show theoretically that, in certain situations, there are systematic differences between different point estimators
of return values. We first present a tabular summary of differences between return value estimators q1, q2, q3 and q4
and the true known value q0 given certain assumptions about the set Z = {ξi, σi} of GP parameter estimates, and the
true parameter values ξ0, σ0, with ψ0=0 assumed, and sufficiently large N∗. We then provide outline proofs of the
inequalities. These inequalities are not specific to maximum likelihood estimates for GP parameter estimates.

[Table 1 about here.]

Inequality I1 occurs since xN (x ≥ 0, N = 1, 2, ...) is a convex function. Jensen’s inequality states that for m weights
{ωi}

m
i=1 such that ωi ≥ 0 and Σiωi = 1, and a convex function ϕ(x) on some domain (such that ∂2ϕ/∂x2 ≥ 0), then

ϕ(Σiωixi) 6 Σiωiϕ(xi). Setting ϕ(x) = xN , ωi = 1/m and xi = exp[−λ(1 − τ)(1 + (ξi/σi)(x − ψ))−1/ξi ], Jensen’s
inequality gives

(
1

m

∑

i

exp[−λ(1− τ)(1 + (ξi/σi)(x− ψ))−1/ξi ]

)N
6

1

m

∑

i

exp[−Nλ(1− τ)(1 + (ξi/σi)(x− ψ))−1/ξi ] or

F̃NA (x) 6 F̃AN
(x)

for all x, referring to Equations 14 and 15. Therefore, with increasing x, F̃AN
(x) will rise to a value of exp[−1] (at q4)

before F̃NA (x) does (at q3). For large N , the latter is equivalent to F̃A(x) reaching a value of exp[−1/N ] ≈ (1− 1/N).
We deduce that q3 ≥ q4 for all choices of Z. Inspection of the top right panel of Figure 10 illustrates this behaviour
for specific conditions. Inspection of Figures 3, 5 and 6 shows that this inequality holds in our simulation study.
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Inequalities I2 and I3 occur when the maximum value ξ1 of ξ from Z is greater than the maximum of the true
underlying value ξ0, and zero. Recall we assume pairs of elements in Z to be ordered in terms of decreasing ξ, so that
ξ1 is the largest value of ξ in Z. ξ1 > max(ξ0, 0) is a relatively likely scenario in practice for a variable such as storm
peak HS . Fundamental physical understanding suggests a finite upper value to storm peak HS (and hence ξ < 0);
there is considerable empirical evidence to support this also. Nevertheless, for a Bayesian inference we might specify
a prior for ξ which includes 0 so as not to be too restrictive; estimates of ξ > 0 would therefore be expected. For
maximum likelihood inference with small samples, estimates for GP shape parameter exceeding zero are typical even
for storm peak HS . For other oceanographic variables such as wind speed, ξ > 0 is typically expected.
To motivate I2, Equations 12 and 10 give

q2
q0

=

1
m

∑
i(σi/ξi)

[
N ξi

∗ − 1
]

(σ0/ξ0)
[
N ξ0

∗ − 1
]

for ξ 6= 0 and the analogous expression when ξ = 0. For ξ1 > max(ξ0, 0), we can see that

q2
q0

≈





m−1 [(σ1ξ0)/(σ0ξ1)]N
ξ1−ξ0
∗ , ξ0 > 0

m−1 [σ1/(σ0ξ1)]N
ξ1
∗ / logN∗, ξ0 = 0

m−1 [(−σ1ξ0)/(σ0ξ1)]N
ξ1
∗ , ξ0 < 0,

all of which diverge to infinity with increasing N∗. That is, q2 always overestimates the true return value for large N∗

when the largest value of ξ in Z exceeds the maximum of the true value ξ0, and 0. Inspection of Figures 3, 6 and 7
illustrates this for N = 1, 000 and N = 10, 000.
To demonstrate I3, we first approximate Equation 14 of Section 4.2 when q3 is large using the approximation

exp[x] ≈ 1 + x for small x, so that

1−
1

N
≈

1

m

∑

i

(
1− λ (1− τ)

(
1 +

ξi
σi

(q3 − ψ)

)−1/ξi
)

= 1−
1

m

∑

i

(
λ (1− τ)

(
1 +

ξi
σi

(q3 − ψ)

)−1/ξi
)

from which we obtain

1

N∗
≈

1

m

∑

i

(
1 +

ξi
σi

(q3 − ψ)

)−1/ξi

.

Substituting this expression for N∗ into Equation 12 gives

q2 =
1

m

m∑

i=1

σi
ξi








1

m

m∑

j=1

[
1 +

ξj
σj
q3

]−1/ξj





−ξi

− 1


 .

With ξ1 > max(ξ0, 0), the predictive distribution F̃A has an infinite upper end point, and hence q3 → ∞ as N∗ → ∞.
Hence we can expand the above expression to give

q2 =
1

m



σ1
ξ1
mξ1

[
1 +

ξ1
σ1
q3

]
1 +

m∑

j=2

[
1 +

ξj
σj
q3

]−1/ξj [
1 +

ξ1
σ1
q3

]1/ξ1



−ξ1

+
m∑

i=2

σi
ξi
mξi

[
1 +

ξ1
σ1
q3

]ξi/ξ1

1 +

m∑

j=2

[
1 +

ξj
σj
q3

]−1/ξj [
1 +

ξ1
σ1
q3

]1/ξ1



−ξi



−
1

m

m∑

i=1

σi
ξi

≈ mξ1−1q3 for large N∗.
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Hence as N∗ → ∞, q2, q3 → ∞ and q2/q3 → mξ1−1. For ξ1 < 1, highly likely for environmental variables like storm
peak HS , we conclude that q3 > q2. That is, q3 exceeds q2 for large N∗ when 1 > ξ1 > max(ξ0, 0). Combining
this result with that from paragraph above, we deduce that q3 > q2 > q0 for large N∗ when 1 > ξ1 > max(ξ0, 0).
Figures 3, 6 and 7 illustrate this ordering. For ξ1 = 1 and ξ1 > max(ξ0, 0), we observe that q2 and q3 are asymptotically
equivalent. For ξ1 > 1, we have q2 > q3 for large N∗ and ξ1 > max(ξ0, 0).
Unfortunately useful approximation of Equation 15 for large q4 and N∗, mimicking the approximation of Equation 14

for large q3 and large N here, is not possible, since the arguments of the exponent summands in Equation 15 do not
become small with increasing q4 and N∗.
We can also demonstrate orderings of return value estimators when ξ1 < max(ξ0, 0) to support the simulation study

results. Inequalities I4, I5 and I6 occur when ξ0 < 0, typically of relevance for extremes of storm peak HS . In this
situation, a true upper end point ψ + σ0/(−ξ0) exists. We can restrict discussion to ξ1 < 0, since the case ξ1 > 0 has
already been considered in I2 and I3. The relative ordering of q0, q1, q2 and q3 can be shown to be related to the
relative sizes of different estimates for ratios of σ/ξ from Z as outlined below, relative to q0.
To motivate I4, we see from Equation 11 that the maximum value for q1 (atN∗ = ∞) is ψ+(1/m

∑
i σi)/(1/m

∑
i(−ξi)).

Therefore, if (1/m
∑
i σi)/(1/m

∑
i(−ξi)) > σ0/(−ξ0), the maximum value of q1 will exceed the true upper end point

of the distribution FA; q1 must show positive bias in this case for sufficiently large N∗. More generally, the bias in
q1 for large N∗ is determined by the relative sizes of (1/m

∑
i σi)/(1/m

∑
i(−ξi)) and σ0/(−ξ0), and is not known

prior to analysis. For I5, a similar argument, using Equation 12, shows that if (1/m)
∑
i(σi/(−ξi)) > σ0/(−ξ0), the

maximum value of q2 will exceed the true upper end point of the distribution FA; q2 must show positive bias in
this case for sufficiently large N∗. More generally, the bias in q2 for large N∗ is determined by the relative sizes of
(1/m)

∑
i(σi/(−ξi)) and σ0/(−ξ0), and is not known prior to analysis. For I6, referring to Equation 13 for ξ0 < 0 and

ξ1 ∈ (ξ0, 0), suppose that the pair (ξk∗ , σk∗) provides the maximum value of σ/(−ξ) in Z. Then F̃A could have upper
end point ψ + σk∗/(−ξk∗) > ψ + σ0/(−ξ0). In this situation, q3 would exhibit positive bias for sufficiently large N∗.
More generally, the bias in q3 for large N∗ is determined by the relative sizes of σk∗/(−ξk∗) and σ0/(−ξ0), and is not
known prior to analysis.
For illustration, in the simulation study in Section 5, the values of

∑
i σi/

∑
i(−ξi),

∑
i(σi/(−ξi))/m and σk∗/(−ξk∗)

produce an increasing sequence for every choice of n and ξ0 considered, when ξ1 = maxk∈(1,2,...,m)(ξk) < 0; that is,
we expect q1 < q2 < q3. Further, for small ξ0 the value of σ0/(−ξ0) falls between the second and third terms in the
sequence, indicating q1 < q2 < q0 < q3 as observed in the simulation results. For large sample size n = 10, 000 (for
which ξ1 < 0) and ξ0 ≥ −0.15, the value of σ0/(−ξ0) falls between the first and second terms so that q1 < q0 < q2 < q3
for sufficiently large N . In fact, for simulations of the N = 108 year return value, we observe that the function q2 − q0
(of ξ0) crosses zero for n = 10, 000 at approximately ξ0 = −0.13.

7. Discussion and conclusions

This paper discusses the estimation of return values in the presence of uncertainty in extreme value model parameters.
We show that different estimators for return value, which yield identical estimates when parameter uncertainty is
ignored, yield different values when uncertainty is taken into account. Given uncertain shape and scale parameters Z
of a GP distribution, four sample estimators for the N -year return value are considered: q1 (= QA|Z(1− 1/N |E[Z]),
where QA|Z is the quantile of the annual maximum event A given parameters Z), q2 (= E(QA|Z(1 − 1/N |Z)), q3
(= Q̃A(1−1/N), where Q̃ is a predictive quantile) and q4 (= Q̃AN

(exp[−1])). We show by simulation and theory that,
for given circumstances, the order of estimators q and true value q0 can be predicted, and that differences between
estimators q and q0 can be very large. The ordering q4 ≤ q1 ≤ q2 ≤ q3 is observed in our simulation study, when Z

corresponds to maximum likelihood estimates for a sample of peaks over threshold of sizes n = 100, 1,000 and 10,000
for true parameters ξ0 ∈ [−0.4, 0.1] and σ0 = 1. The true value q0 lies between q1 and q3.
In general for maximum likelihood estimation and values of parameters typical for extreme value modelling of storm

peak significant wave height, estimator q2 yields lowest bias, and the predictive estimator q3 is obviously the worst
performer in terms of bias. In terms of exceedance probability Pr(A > q), q3 is in general a relatively good performer
for ξ0 < −0.2. In our simulations, this tends to be because q3 provides an estimate which is beyond the (known)
upper end point of the distribution of annual maximum A. For larger ξ0, q2 and q3 are competitive. In terms of log
exceedance probability, q3 performs spectacularly poorly for small sample size n; q2 is overall the best performer.

7.1. The role of parameter estimation scheme

Many approaches exist to fit a GP distribution to a sample of independent threshold exceedances, e.g. as reviewed by
Hosking and Wallis (1987); Madsen et al. (1997); Ashkar and Nwentsa Tatsambon (2007); de Zea Bermudez and Kotz
(2010a,b); Mackay et al. (2011). Maximum likelihood estimation is the most popular approach (de Zea Bermudez and
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Kotz 2010a), but the method of moments (MOM) and probability weighted moments (PWM) are also popular in the
environmental and engineering literature. The procedures of Zhang and Stephens (2009) and Zhang (2010), referred
to here as empirical Bayesian (EB), also also attractive due to their low parameter bias characteristics. The simulation
study of Section 5 assumes that maximum likelihood estimation is used for model parameter inference and construction
of set Z; the findings of the simulation study are therefore only directly relevant for this method of inference. Maximum
likelihood estimation is a natural choice from the statistical perspectives of consistency, asymptotic Gaussianity and
asymptotic efficiency (for ξ > −0.5, Davison and Smith 1990). However, other estimation schemes are known to
perform particularly well e.g. for small samples. For large samples, it is also known (Hosking and Wallis 1987) that
shape and scale parameters estimates for each of maximum likelihood, MOM and PWM inference are asymptotically
Gaussian-distributed with variance-covariance matrix which converges to zero with increasing sample size n, and that
shape and scale parameter estimates exhibit negative correlation. This suggests that the results of the maximum-
likelihood-based simulation study are generally indicative of the influence of model parameter uncertainty on return
value estimators for large sample size n.
Moreover, the theoretical arguments presented in Section 6 to explain the rank ordering of estimators q and truth
q0 for given conditions are applicable using parameter estimates Z from any estimation scheme of choice, including
maximum likelihood, MOM, PWM and other approaches such as the method of Zhang (2010).
The values of estimates for q1, q2, q3 and q4 are deterministic functions of the set Z of parameter estimates. Different

parameter estimation schemes provide different sets Z, as illustrated in Figure 11. Visual inspection of the figure
suggests that, for given sample size n, differences between sets Z are relatively small.

[Figure 11 about here.]

Nevertheless, for finite sample sizes n, it is interesting to estimate the relative characteristics of estimators q using this
set of relatively popular estimation schemes. Figure 12 shows estimates q̂1, q̂2, q̂3 and q̂4 for sample size n = 100 from
each of empirical Bayesian (EB), method of moments (MOM) and probability weighted moments (PWM) estimation
schemes. Details of the methods used are given by e.g. Mackay et al. (2011), and software is available from Jonathan
(2020).

[Figure 12 about here.]

The general characteristics of Figure 12 are similar to those of Figure 3 for maximum likelihood, in particular regarding
the ordering of estimators by bias. The EB estimation scheme of Zhang (2010) is designed to provide low bias in GP
parameter estimates, and hence provides estimates for q1 with lowest bias. However, the performance of the EB
scheme is qualitatively no better to that of the other estimation schemes for estimates of q2, q3 and q4. Results for
other sample sizes reflect those for n = 100, and are reported in Jonathan (2020), together with simulation code
for estimation of bias in return value, exceedance probability and log exceedance probability for any combination of
estimator and estimation scheme. For larger sample sizes, the EB again provides q1 estimates with low bias, and hence
relatively low bias with respect to (log-) exceedance probability also.
More generally, characteristics of posterior Bayesian estimates for GP shape and scale can of course be strongly

influenced by prior specification. Zhang (2007) proposes a likelihood moment estimator with high asymptotic efficiency.
Further, non-parametric approaches including the moment (M) estimator of Dekkers et al. (1989) are available.

7.2. Wave loading

The wave loading on a structure, or its response to wave loading, might typically vary as a monotonically increasing
function R of variable X. In this situation, we might be interested in quantities such as Pr(A∗ > s), where A∗ is
the annual maximum event for loading (or response) R(X), and s might represent structural strength (or critical
response). Following the arguments of Section 2, in the absence of uncertainty, the N -year structural strength q∗ for

R(X) (analogous to the N -year return value q for X in Equation 10) is given by q∗ = R(q) where q = σ
ξ

(
N ξ

∗ − 1
)
+ψ,

for ξ 6= 0 with the corresponding limiting expression when ξ = 0. Note that the ∗ superscript indicates a quantity
related to a load or response variable. Sample estimators q∗1 , q

∗
2 , q

∗
3 and q∗4 for q∗ are easily derived from those in

Section 4. Figure 13 shows fractional bias for estimators of the 100-year structural strength using the simulation
procedure described in Section 5, for the case R(x) = x2.

[Figure 13 about here.]

Comparing Figures 13 and Figure 3, gross bias characteristics of q and q∗ estimators are the same for this choice of R,
except that the extent of bias is greater for q∗ that for q. By definition, the exceedance probabilities associated with
q∗ (in the distribution of the annual maximum A∗ of R(X)) and q (in the distribution of the annual maximum A of

11



X) must be equal. Therefore Figures 4 and 5 provide the relevant assessment. The bias of estimators q relative to q0
will be influenced by the specification of R.
More generally, loading R given environmental variable X will not be a deterministic function. However, the condi-

tional distribution FR|X for a single loading event is usually accessible using numerical modelling, wave tank experi-
ments or Morison-type fluid loading approximations (e.g. Tromans and Vanderschuren 1995; Ross et al. 2019). The
conditional distribution FR|Z for load given uncertain extreme value parameters Z for X can be evaluated using

FR|Z(r|ζ) =

∫

x

FR|X(r|x)fX|Z(x|ζ) dx

for x ∈ DX for domain DX , where fX|Z is the conditional density of X given Z. Following the derivation FAN |Z in the
Appendix, the conditional cumulative distribution function FA∗

N
|Z of the maximum N -year loading given Z is then

FA∗

N
|Z(r|ζ) = exp

[
−Nλ

(
1− FR|Z(x|ζ)

)]
.

The probability of structural failure pF during a design life of N years given fixed structural strength s due to loading
R can then be estimated using the predictive distribution F̃A∗

N
given by

F̃A∗

N
(r) =

∫

ζ

FA∗

N
|Z(r|ζ)fZ(ζ) dζ

and setting pF = Pr(A∗
N > s) = 1− F̃A∗

N
(s). This derivation is analogous to that underlying return value estimator q4,

except that the value of N would typically be smaller, and pF would be considerably smaller than exp[−1]. However,
as the discussion around the characteristics of q4 and Figure 13 shows, this estimator will also typically suffer from
bias.

7.3. Conclusions

Theoretical results in Section 6 demonstrate that a systematic ordering of return value estimates q occurs for any pa-
rameter estimation scheme, including maximum likelihood. Theoretical results supported by simulations in Sections 5
suggest that none of the estimators q performs well with respect to all three performance measures considered here for
maximum likelihood estimation; the predictive mean estimator q2 performs best overall.
The work of Zhang and Stephens (2009) and Zhang (2010) supported by simulation results in Section 7.1 suggests that

their empirical Bayesian estimation scheme provides low bias in GP parameter estimates and hence good performance
for estimation of q1. In relatively simple applications, where the effects of other sources of random and systematic
variability can be ignored, estimator q1 estimated using the method of Zhang (2010) offers lowest bias in return values
over all estimators and estimation schemes.
As sample size n increases, biases in the four return value estimators q reduce in magnitude. Given a sufficiently

large n, differences between estimators can be reduced to acceptable levels using any parameter estimation scheme; but
the required n might well be very large. Moreover, a typical environmental extreme value analysis requires modelling
of other sources of variation including extreme value threshold, rate of occurrence, potential extremal dependence
and the effects of covariates. Even with a large n, the effective sample size for GP parameter estimation given
specific covariate values might be < 100 in many applications. We might therefore anticipate large differences between
estimators q. From a statistical modelling perspective, maximum likelihood estimation provides a flexible framework
for incorporation of competing sources of variation; it also offers asymptotic efficiency.
From the perspective of predictive inference, estimators q3 and q4 might be considered preferable since they are

estimated from predictive distributions which incorporate modelling uncertainty explicitly. In this case, inequality I1
shows that q3 ≥ q4 always. Simulation suggests further that q3 ≥ q0 ≥ q4 always for the situations considered. An
estimator of the form αq3 + (1− α)q4 (for α ∈ [0, 1]) might provide a pragmatic compromise with better performance
than either q3 and q4. Preliminary evaluation of (q3 + q4)/2 using maximum likelihood estimation suggests this is a
promising candidate. In terms of bias, it is competitive with q2. The bias of its exceedance probability is similar to
that of q3 and generally better than that of q2. The bias of its log probability is lower in magnitude than that of q3,
but not as low as that of q2.
Summarising multivariate distributions for metocean variables in terms of return values has obvious advantages in

terms of conciseness of description of an extreme ocean environment, for communication between different parties
involved in offshore structural design. However, in reality, the accurate estimation of probability of structural failure
should be the clear focus of analysis. From a predictive perspective, the effects of all sources of modelling uncertainty
should be propagated carefully through the entire sequence of design calculations, expressed probabilistically, so that
(a) the estimation of failure probability reflects these uncertainties as fully and fairly as possible, and (b) resources
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can hence be devoted to reducing the largest sources of uncertainty on failure probability in a rational and systematic
manner. In this light, the use of summary statistics such as metocean return values at intermediate design stages in
place of full distributions of variables (when available) should be avoided.
Judgements regarding the performance of estimators depend on the choice of utility or loss function adopted to

assess it. It is likely that many discussions of return value estimates by environmental and engineering practitioners
occur with insufficient awareness of systematic differences between estimators and estimation schemes highlighted
by the current work, and of the importance of appropriate utilities to assess return value estimator characteristics
appropriately.
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Appendix : Estimating the distribution of annual maximum A, the N-year maximum AN and return

values

According to asymptotic statistical theory, under the assumption that the random variableX belongs to the maximum
domain of attraction of a non-degenerate distribution, the distribution of X exceeding threshold ψ converges (Pickands
1975) to the generalised Pareto (GP) distribution as the threshold increases. We therefore typically assume, for
sufficiently large threshold ψ that the conditional distribution function FX|X>ψ,Z for parameters Z follows GP form
as defined in Section 3. Usually, the value of threshold is set prior to estimation of ξ and σ from the sample of values
for X (e.g. by examining a mean residual life plot, Coles 2001), although this is not always the case (Scarrott and
MacDonald 2012). Various approaches to estimation of ξ and σ as used, including maximum likelihood, the method
of moments and probability weighted moments. We emphasise the conditioning of distributions with respect to Z

explicitly, since different approaches to incorporating the uncertainty in Z lead to the differences between return value
estimators discussed in this work.

FA|Z and FAN |Z

Given FX|X>ψ,Z , the distribution FA|Z of annual maxima can be derived using

FA|Z(x|ζ) = Pr(A ≤ x|ζ) =

∞∑

k=0

fC(k)F
k
X|Z(x|ζ)

where C is the number of occurrences of X per annum, with probability mass function fC and

FX|Z(x|ζ) = τ + (1− τ)FX|X>ψ,Z(x|ζ)

where τ = Pr(X < ψ). In practice, fC is unknown and must also be estimated from data. Density fC is often
described by a Poisson distribution such that fC(k) = exp[−λ]λk/k!, k = 0, 1, 2, ..., for annual rate λ > 0 to be
estimated. Assuming for simplicity that λ is known, the expression for FA|Z simplifies (e.g. Ross et al. 2017) to

FA|Z(x|ζ) = exp[−λ
(
1− FX|Z(x|ζ)

)
].

Applying the above expression to a time period of N years, we evaluate the distribution of the N -year maximum AN
to be

FAN |Z(x|ζ) = FNA|Z(x|ζ) = exp[−Nλ
(
1− FX|Z(x|ζ)

)
].

Writing F̄X|X>ψ,Z for the conditional tail distribution 1− FX|X>ψ,Z , the expressions for FA|Z and FAN |Z become

FA|Z(x|ζ) = exp[−λ (1− τ) F̄X|X>ψ,Z(x|ζ)] and

FAN |Z(x|ζ) = exp[−Nλ (1− τ) F̄X|X>ψ,Z(x|ζ)]

where for the GP distribution

F̄X|X>ψ,Z(x|ζ) =

(
1 +

ξ

σ
(x− ψ)

)−1/ξ

+

and = exp[−(x − ψ)/σ)] when ξ = 0. That is, the annual maximum A and N -year maximum AN follow generalised
extreme value distributions. An alternative approach to the derivation above (e.g. Smith 1987; Northrop et al. 2017)
starts by assuming that the number λ of events X per annum is given (i.e. estimated independently), but that the
number of events exceeding threshold ψ is random and follows a binomial distribution Bin(λ, (1 − τ)), which can
be approximated by Poiss(λ(1 − τ)) when λ is large and (1 − τ) is near zero. Then for FX|Z ≈ 1, F̄X|Z ≪ 1 and
log(1− F̄X|Z) ≈ −F̄X|Z . Hence FA|Z(x) can be approximated using

FA|Z(x|ζ) = FX|Z(x|ζ)
λ = exp

[
λ log

(
FX|Z(x|ζ)

)]
= exp

[
λ log

(
1− F̄X|Z(x|ζ)

)]

≈ exp [−λPr(X > x|X > ψ,Z = ζ)(1− τ)] when FX|Z ≈ 1

= exp[−λ (1− τ) F̄X|X>ψ,Z(x|ζ)]

as before.
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Return values

The expressions for FA|Z however derived and FAN |Z facilitate estimation of different return value estimators given
FX|X>ψ,Z (with parameters ξ and σ) for any return period N , as described in Section 4. For brevity, we write the
expected number N∗ of occurrences of threshold exceedances in N years as N∗ = Nλ (1− τ).
Given ξ and σ, the N -year return value q (conditional on Z = ζ) can be found by solving Equation 1

1− 1/N = exp[−λ (1− τ) F̄X|X>ψ,Z(q|ζ)] so that

log

[
1

1− 1/N

]
= λ (1− τ) F̄X|X>ψ,Z(q|ζ).

With log[1/(1− 1/N)] = 1/N + 1/(2N2) + 1/(3N3) + ... ≈ 1/N for large N , this yields

1

N∗
= F̄X|X>ψ,Z(q|ζ) =

(
1 +

ξ

σ
(q − ψ)

)−1/ξ

+

and hence, conditional on Z = ζ, the return value is given by q = σ
ξ

(
N ξ

∗ − 1
)
+ ψ as given in the main text. When

ξ = 0, the last two equations read 1/N∗ = exp[−(q − ψ)/σ] and q = σ log[N∗] + ψ.

Dependence

When observations of X exhibit dependence, the equations for FA|Z and FAN |Z can be adjusted by incorporating an
extremal index θ (e.g. Davison et al. 2012) such that

FA|Z(x) =

∞∑

k=0

fC(k)F
kθ
X|Z(x|ζ)

where θ must also be estimated. This approach might be advantageous when estimating e.g. FA|Z from dependent
sea-state HS instead of independent storm peak HS .

Covariates

Further, the equations above also assume that X does not exhibit systematic variation with covariates (such as storm
direction or season in the case of significant wave height). In the presence of a single covariate Φ, distributions above
are conditional on Φ, and parameters functions of Φ. The inference becomes non-stationary and computationally more
demanding, but we can still evaluate unconditional distributions e.g. FA|Z by marginalisation using

FA|Z(x|ζ) =

∫

φ

FA|Z,Φ(x|ζ, φ)fΦ(φ) dφ

where fΦ is the density of Φ which must itself also be estimated.
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Figure 1: Scatter plots of 105 maximum likelihood GP parameter estimates ξi and σi for the cases ξ0 = −0.2 (top) and ξ0 = 0.1 (bottom).
Columns from left to right correspond to sample sizes n of 100, 1,000 and 10,000.
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Figure 2: Return value estimates q̂1 (solid), q̂2 (dashed), q̂3 (dotted), q̂4 (dot-dashed) for a return period of 100 years, assuming 100 events
per annum drawn from a generalised Pareto distribution with shape ξ0, scale σ0 = 1 and threshold ψ0 = 0. Return values estimated using
maximum likelihood parameter estimates from 105 realisations of samples of size 100 (left), 1,000 (centre) and 10,000 (right). Thick grey
lines indicate true return value behaviour.
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Figure 3: Fractional bias for return value estimates q̂1 (solid), q̂2 (dashed), q̂3 (dotted), q̂4 (dot-dashed) for a return period of 100 years,
assuming 100 events per annum drawn from a GP distribution with shape ξ0, scale σ0 = 1 and threshold ψ0 = 0. Bias estimated using
maximum likelihood parameter estimates from 105 realisations of samples of size 100 (left), 1,000 (centre) and 10,000 (right). Unbiased
estimates would have fractional bias of zero.
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Figure 4: Bias in exceedance probabilities corresponding to return value estimates q̂1 (solid), q̂2 (dashed), q̂3 (dotted), q̂4 (dot-dashed) for
a return period of 100 years, assuming 100 events per annum drawn from a GP distribution with shape ξ0, scale σ0 = 1 and threshold
ψ0 = 0. Bias estimated using maximum likelihood parameter estimates from 105 realisations of samples of size 100 (left), 1,000 (centre)
and 10,000 (right).
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Figure 5: Bias in logarithm (base 10) of exceedance probabilities corresponding to return value estimates q̂1 (solid), q̂2 (dashed), q̂3 (dotted),
q̂4 (dot-dashed) for a return period of 100 years, assuming 100 events per annum drawn from a GP distribution with shape ξ0, scale σ0 = 1
and threshold ψ0 = 0. Bias estimated using maximum likelihood parameter estimates from 105 realisations of samples of size 100 (left),
1,000 (centre) and 10,000 (right). For ξ0 < −0.2, Pr(A > q̂3) is estimated to be zero.
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Figure 6: Fractional bias for return value estimates 5q̂1 (solid), q̂2 (dashed), q̂3 (dotted), q̂4 (dot-dashed) for a return period of 1,000 years,
assuming 100 events per annum drawn from a GP distribution with shape ξ0, scale σ0 = 1 and threshold ψ0 = 0. Bias estimated using
maximum likelihood parameter estimates from 105 realisations of samples of size 100 (left), 1,000 (centre) and 10,000 (right).
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Figure 7: Fractional bias for return value estimates q̂1 (solid), q̂2 (dashed), q̂3 (dotted), q̂4 (dot-dashed) for a return period of 10,000 years,
assuming 100 events per annum drawn from a GP distribution with shape ξ0, scale σ0 = 1 and threshold ψ0 = 0. Bias estimated using
maximum likelihood parameter estimates from 105 realisations of samples of size 100 (left), 1,000 (centre) and 10,000 (right).
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Figure 8: Bias in exceedance probabilities corresponding to return value estimates q̂1 (solid), q̂2 (dashed), q̂3 (dotted), q̂4 (dot-dashed) for
a return period of 10,000 years, assuming 100 events per annum drawn from a GP distribution with shape ξ0, scale σ0 = 1 and threshold
ψ0 = 0. Bias estimated using maximum likelihood parameter estimates from 105 realisations of samples of size 100 (left), 1,000 (centre)
and 10,000 (right).

26



Figure 9: Bias in logarithm (base 10) of exceedance probabilities corresponding to return value estimates q̂1 (solid), q̂2 (dashed), q̂3 (dotted),
q̂4 (dot-dashed) for a return period of 10,000 years, assuming 100 events per annum drawn from a GP distribution with shape ξ0, scale
σ0 = 1 and threshold ψ0 = 0. Bias estimated using maximum likelihood parameter estimates from 105 realisations of samples of size 100
(left), 1,000 (centre) and 10,000 (right).
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Figure 10: Motivation for differences between return value estimators for the case ξ0 = −0.2, sample size n = 1, 000 and return period
N = 100 years. The left hand panel shows the following cumulative distribution functions (cdfs): FA, the (true) distribution of the annual
maximum; FAN

, the (true) distribution of the N -year maximum; F̃A, the predictive distribution for the annual maximum; F̃AN
, the

predictive distribution for the N -year maximum; F̃
1/N
AN

, the Nth root of the predictive distribution for the N -year maximum. The top

right panel gives differences between cdfs, with the vertical line indicating the true N -year return value. The bottom right panel illustrates

annual maximum cdfs FA, F̃A together with F̃
1/N
AN

for non-exceedance probabilities near to 1 − 1/N ; the horizontal line is drawn at this

level.
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Figure 11: Scatter plots of sets Z consisting of 105 GP parameter estimates for different sample sizes and estimation schemes for the case
ξ0 = −0.2, σ = 1. Rows from top correspond to sample sizes n of 100, 1,000 and 10,000. Columns correspond to maximum likelihood
(ML), the empirical Bayesian method (EB) of Zhang (2010), the method of moments (MOM) and probability weighted moments (PWM).
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Figure 12: Fractional bias for return value estimates q̂1 (solid), q̂2 (dashed), q̂3 (dotted), q̂4 (dot-dashed) for a return period of 100 years,
assuming 100 events per annum drawn from a GP distribution with shape ξ0, scale σ0 = 1 and threshold ψ0 = 0. Parameter estimates
estimated from 105 realisations of samples of size 100 using empirical Bayesian (EB), method of moments (MOM) and probability weighted
moments (PWM) estimation schemes. Unbiased estimates would have fractional bias of zero. Corresponding results for maximum likelihood
estimation given in Figure 3.
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Figure 13: Fractional bias for N -year structural strength estimates q̂∗
1
(solid), q̂∗

2
(dashed), q̂∗

3
(dotted), q̂∗

4
(dot-dashed) for a return period

of 100 years, assuming 100 events per annum drawn from a GP distribution with shape ξ0, scale σ0 = 1 and threshold ψ0 = 0 and wave
loading function R(x) = x2. Bias estimated using maximum likelihood parameter estimates from 105 realisations of samples of size 100
(left), 1,000 (centre) and 10,000 (right). Unbiased estimates would have fractional bias of zero.
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Inequality Condition
I1 q3 ≥ q4 Always
I2 q2 > q0 ξ1 > max(ξ0, 0)
I3 q3 > q2 1 > ξ1 > max(ξ0, 0)
I4 q1 > q0 ξ0, ξ1 < 0,

∑
i σi/

∑
i(−ξi) > σ0/(−ξ0)

I5 q2 > q0 ξ0, ξ1 < 0, (1/m)
∑
i(σi/(−ξi)) > σ0/(−ξ0)

I6 q3 > q0 ξ0, ξ1 < 0,maxk∈(1,2,...,m)(σk/(−ξk)) > σ0/(−ξ0)

Table 1: Inequalities involving sample estimators for N -year return values, and conditions necessary for their validity. Note that the
condition N → ∞ applies to all these cases. Inequalities are not specific to maximum likelihood estimation of GP parameters.
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