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Introduction Motivation

Katrina

August 2015 (NOAA geostationary orbiting environmental satellite)
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Introduction Motivation

Hurricane tracks

Summer 2005 (NASA, US National Hurricane Center)

Jonathan Extreme ocean environments November 2019 4 / 77



Introduction Motivation

Portugese coast

24m wave height, November 2017 (The Guardian)
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Introduction Motivation

Draupner

Laser readings, 1 January 1995. Wave 25.6m, crest 18.5m (Equinor)
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Introduction Motivation

Roker Pier

Sunderland, every winter! (Daily Express)
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Introduction Motivation

Ship damage

Norwegian Dream, Atlantic, 2007 (gcaptain.com) Wilstar, Agulhas current (Oceanography 18 2005)
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Introduction Motivation

Structural damage

Ike, Gulf of Mexico, 2008 (Joe Richard) North Sea, Winter 2015-16 (The Inertia)
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Introduction Motivation

Motivation

◦ Rational and consistent design and assessment of marine
structures

◦ Reduce bias and uncertainty in estimation of structural integrity
◦ Quantify uncertainty as well as possible

◦ Non-stationary marginal, conditional, spatial and temporal
extremes

◦ Multiple locations, multiple variables, time-series
◦ Multidimensional covariates

◦ Improved understanding and communication of risk

◦ Incorporation within established engineering design practices
◦ Knock-on effects of improved inference

The ocean environment is an amazing thing to study ... especially if
you like to combine beautiful physics, measurement and statistical
modelling!
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Introduction Fundamentals

Fundamentals

◦ Environmental extremes vary smoothly with multidimensional
covariates

◦ Model parameters are non-stationary

◦ Environmental extremes exhibit spatial and temporal dependence

◦ Characterise these appropriately

◦ Uncertainty quantification for whole inference

◦ Data acquisition (simulator or measurement)
◦ Data pre-processing (storm peak identification)
◦ Hyper-parameters (extreme value threshold)
◦ Model form (marginal measurement scale effect, spatial extremal

dependence)

◦ Statistical and computational efficiency

◦ Slick algorithms
◦ Parallel computation
◦ Bayesian inference
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Introduction Storm model

Storm model

HS ≈ 4× standard deviation of ocean surface time-series at a location corresponding to a time period (typically three hours)
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Introduction Storm model

A typical sample

Typical data for South China Sea location. Sea state (grey) and storm peak (black) HS on season and direction
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Introduction Outline

Outline

Covariate effects in:

◦ Marginal extremes

◦ Simple introductory example (directional model)

◦ H
sp
S with 2D, 3D and 4D covariates

◦ Conditional extremes

◦ Associated values of (e.g.) surge given extreme H
sp
S

◦ Temporal extremes

◦ Conditional directional evolution of time-series of HS

◦ Spatial extremes

◦ Conditional spatial extremes of H
sp
S

◦ Directional dependence in max-stable process parameters for H
sp
S

North Sea example as “connecting theme”; other examples to
embellish
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Introduction Outline

Outline: North Sea application

H
sp
S from gridded NEXTRA winter storm hindcast for North Sea locations; directional variability in storm severity; transects of

locations with different orientations; central location for directional model
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Marginal extremes 1D

Simple gamma-GP model
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Marginal extremes 1D

Simple gamma-GP model

◦ Sample of peaks over threshold y, with covariates θ

◦ θ is 1D in motivating example : directional
◦ θ is nD later : e.g. 4D spatio-directional-seasonal

◦ Below threshold ψ

◦ y follows truncated gamma with shapeα, scale 1/β
◦ Hessian for gamma better behaved than Weibull

◦ Above ψ

◦ y follows generalised Pareto with shape ξ , scale σ

◦ ξ , σ ,α, β, ψ all functions of θ

◦ ψ for pre-specified threshold probability τ

◦ Generalise later to estimation of τ

◦ Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al. [2011]

◦ Randell et al. [2016]
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Marginal extremes 1D

Simple gamma-GP model

◦ Density is f (y|ξ ,σ ,α,β,ψ, τ)

=

{

τ × fTG(y|α,β,ψ) for y ≤ ψ

(1 − τ)× fGP(y|ξ ,σ ,ψ) for y > ψ

◦ Likelihood is L(ξ ,σ ,α,β,ψ, τ |{yi}
n
i=1)

= ∏
i:yi≤ψ

fTG(yi|α,β,ψ) ∏
i:yi>ψ

fGP(yi|ξ ,σ ,ψ)

× τnB(1 − τ)(1−nB) where nB = ∑
i:yi≤ψ

1.

Estimate all parameters as functions of θ
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Marginal extremes 1D

Rate of occurrence ρ

◦ Whole-sample rate of occurrence ρ modelled as Poisson process
given counts c of numbers of occurrences per covariate bin

◦ Chavez-Demoulin and Davison [2005]
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Marginal extremes 1D

P-splines

◦ Physical considerations suggestα,β,ρ,ξ ,σ ,ψ and τ vary
smoothly with covariates θ

◦ Values of η ∈ {α,β,ρ,ξ ,σ ,ψ, τ} on some index set of covariates
take the form η = Bβη

◦ For nD covariates, B takes the form of tensor product
Bθn ⊗ ... ⊗ Bθκ ⊗ ... ⊗ Bθ2

⊗ Bθ1

◦ Spline roughness with respect to each covariate dimension κ
given by quadratic form ληκβ

′
ηκPηκβηκ

◦ Pηκ is a function of stochastic roughness penalties δηκ

◦ Brezger and Lang [2006]

Jonathan Extreme ocean environments November 2019 20 / 77



Marginal extremes 1D

P-splines

Kronecker product
Periodic P-splines
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Marginal extremes 1D

Gibbs sampling on a page
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Marginal extremes 1D

Priors and conditional structure

Priors

density of βηκ ∝ exp

(

−
1

2
ληκβ

′
ηκPηκβηκ

)

ληκ ∼ gamma

( and τ ∼ beta, when τ estimated )

Conditional structure

f (τ |y, Ω \ τ) ∝ f (y|τ , Ω \ τ)× f (τ)

f (βη|y, Ω \βη) ∝ f (y|βη, Ω \βη)× f (βη|δη, λη)

f (λη|y, Ω \ λη) ∝ f (βη|δη, λη)× f (λη)

η ∈ Ω = {α,β,ρ,ξ ,σ ,ψ, τ}
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Marginal extremes 1D

Inference
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Marginal extremes 1D

Inference

◦ Elements of βη highly interdependent, correlated proposals
essential for good mixing

◦ “Stochastic analogues” of IRLS and back-fitting algorithms for
maximum likelihood optimisation used previously

◦ Estimation of different penalty coefficients for each covariate
dimension

◦ Gibbs sampling when full conditionals available

◦ Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable
proposal mechanisms, mMALA where possible

◦ Roberts and Stramer [2002], Girolami and Calderhead [2011],
Xifara et al. [2014]
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Marginal extremes 1D

Posterior parameter estimates

Fetch characteristics obvious; land shadow of Norway at 60◦
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Marginal extremes 1D

Posterior roughness penalty

Different scales so must be careful : rate is roughest, GP shape is smoothest

-3 -2 -1 0 1 2 3 4

log 10 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Smoothness Parameters: 6

;

,

-

9

8

Jonathan Extreme ocean environments November 2019 27 / 77



Marginal extremes 1D

Validation

Compare sample with simulated values on partitioned covariate domain
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Marginal extremes 1D

Return values

0.025, exp(−1), 0.5, 0.975 quantiles: omni (red), directional (black)
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Marginal extremes 2D

Extension to 2D

Directional-seasonal model; northern North Sea; τ estimated; land-shadow effect of Norway obvious; Randell et al. [2016]
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Marginal extremes 2D

Extension to 2D

Summary statistics for return value distributions; seasonal campaigns can be optimised (offshore maintenance)
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Marginal extremes 4D

Extension to 4D

Spatio-directional-seasonal model for location in South China Sea; median estimate after integration over season; clear spatial
and directional effects; Raghupathi et al. [2016] ML/CV/BS estimation
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Marginal extremes 4D

Extension to 4D

Median estimate after integration over direction; clear spatial and seasonal effects
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Marginal extremes 4D

Extension to 4D

Spatio-directional-seasonal model for location in South China Sea; median estimate after integration over season; clear spatial
and directional effects; Raghupathi et al. [2016] ML/CV/BS estimation

Relative Longitude
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Marginal extremes 4D

Extension to different covariate representations

Voronoi tessellation for northern North Sea. See http://www.lancs.ac.uk/ jonathan/ZnnEA1D19.pdf

Number of ξ cells

Number of σ cells

Posterior mean ξ

Posterior mean σ

Jonathan Extreme ocean environments November 2019 35 / 77



The big picture

An extreme environment
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The big picture

An extreme response
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The big picture

Motivating models for extremal dependence

Have (non-stationary) marginal model for dominant variable X
sp
0 at

storm peak. Need models for quantities conditional on X
sp
0

Conditional extremes

◦ Other “associated variables” at storm peak
e.g. T

sp
P | [H

sp
S > h,θ

sp
H ]

Markov extremal process

◦ Evolution of variable around storm peak in time
e.g {HS(t j),θH(t j)} j|[H

sp
S > h,θ

sp
H ]

Max-stable processes and spatial conditional extremes

◦ Dependence of variable in space
e.g. {H

sp
S j ,θ

sp
H j} j|[H

sp
S0 > h,θ

sp
H0]

Hierarchical models for multivariate time-series of waves, crests,
surge, tide, total water level, currents, winds. Characterise extreme
safety-critical responses
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The big picture

Motivating models for extremal dependence

◦ Associated peak period: T
sp
P | [H

sp
S > h,θ

sp
H ]

Jonathan et al. 2010, 2014

◦ Currents with depth: {uC j,θC j} j | [uC0 > u,θC0]
Jonathan et al. 2012

◦ HS given wind: [H
sp
S ,θ

sp
H ] | [u

sp
W > u,θ

sp
W ]

Towe et al. 2013

◦ Storm surge: Ssp | [H
sp
S > h,θ

sp
H ]

Ross et al. 2018

◦ Spatial HS (max-stable process): {H
sp
S j} j|[H

sp
S0 > x]

Ross et al. 2017

◦ Spatial HS (conditional extremes): {H
sp
S j} j|[H

sp
S0 > x]

Shooter et al. 2019

◦ Temporal HS: {HS(tk),θH(tk)} j|[H
sp
S > h,θ

sp
H ]

Tendijck et al. 2019
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The big picture

Conditional, spatial and temporal extremes
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Conditional extremes

Simple (non-stationary) conditional extremes model

On standard Laplace scale, extend with covariates θ

(X2|X1 = x,θ) = αx + xβ(µ +σZ) for x > ψτ

◦ ψτ is a high quantile of X1, for non-exceedance probability τ ,
above which the model fits well

◦ α ∈ [−1, 1], β ∈ (−∞, 1], σ ∈ [0, ∞)

◦ Z is a random variable with unknown distribution G, assumed
standard Gaussian for estimation

◦ η ∈ {α,β,µ,σ ,ψτ} all functions of θ, written as η = Bβη on index
set of covariate values, for suitable covariate basis B

◦ Heffernan and Tawn [2004] and derivatives

◦ Jonathan et al. [2013] for covariates

Jonathan Extreme ocean environments November 2019 41 / 77



Markov extremal models

Motivating time-series extremes

Model for storm trajectories {Xt}t∈I |X0 = x for x > ψτ . Time evolution for the 15 typical storms (a) HS in time, (b) θ in time.
Note change of notation: Xt is value of X at some location at time t
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Markov extremal models

Evolution of Xt

For a “post-peak” portion {Xt}t>0 of time-series following storm peak X0 , with covariate {Θt}t>0

On standard Laplace scale, for x > ψτ

[Xt+1, Xt+2] |{Xt = x} = [α1,α2] x + x[β1 ,β2] [µ1 +σ1Z1,µ2 +σ2Z2]

◦ High threshold ψτ with non-exceedance probability τ

◦ Parametersα j ∈ [−1, 1], β j ∈ (−∞, 1], σ j ∈ (0, ∞), j = 1, 2

◦ [Z1, Z2] are dependent random variables, independent of Xt, with
unknown joint distribution function G1:2, assumed Gaussian for
fitting, then estimated using KDE

◦ {α j}, {β j}, {µ j} and {σ j} are taken to be constant

◦ Winter and Tawn [2016, 2017]
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Markov extremal models

Evolution of Θt

Given the directions Θt at time t relative to storm peak at t = 0, we model the rate of change of direction ∆t = Θ̇t

Non-stationary AR(k) form is

(∆t|Xt = x) ∼ N

(

k

∑
j=1

φ j∆t− j,σ
2(x)

)

with auto-regressive parameters {φ j}, and variance σ2(x) where

σ2(x) = λ1 exp(−λ2x) + λ3

and λ1, λ2, λ3 > 0.

◦ Tendijck et al. [2019]
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Markov extremal models

Illustrative validation: storm length

Directional comparison of logarithm of probability mass for storm lengths. The left hand panel shows the omni-directional
comparison, and the smaller plots show comparisons for 8 directional octants centred on cardinal and inter-cardinal directions.
Each panel shows original sample tail (black) and simulated tail (red) with 95% bootstrap uncertainty bands. Titles of smaller
panels give the fraction of storm peak occurrences per directional octant, first from original sample and then from simulation
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Conditional spatial extremes

Conditional spatial extremes
Gaussian process representation for a pair of remote locations conditional on a reference location. Extendible to arbitrary number
of locations

On Laplace scale

[Xc j, Xc j′ ]|{Xc0 = x} ∼ MVN
(

Mc j j′ , Cc j j′
)

, x > ψτ

Mc j j′ = [α(hc0 j),α(hc0 j′ )]xc0 + [µ(hc0 j),µ(hc0 j′ )]x
[β(hc0 j),β(hc0 j′ )]

c0

Cc j j′ =





X
β(hc0 j)

c0 0

0 X
β(hc0 j′ )

c0





[

σ(hc0 j) 0
0 σ(hc0 j′ )

]

[

1 ρ
hc j j′

ρ
hc j j′ 1

]

×

[

σ(hc0 j) 0
0 σ(hc0 j′ )

]T




X
β(hc0 j)

c0 0

0 X
β(hc0 j′ )

c0





T

◦ Parameter set {αk}, {βk}, {µk}, {σk},ρ with “gap” index k

◦ ρ is residual “gap” correlation parameter

◦ Wadsworth and Tawn [2018], Shooter et al. [2019]
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Conditional spatial extremes

Parameter estimates

NNS:N-S transect, free model: (a)α, (b) β, (c) µ and (d) σ with distance h; posterior means (disk) and 95% credible intervals
(solid triangles). ρ ≈ Gaussian, mean 0.73, 95% interval (0.68, 0.77). Suggests parametric possible
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Conditional spatial extremes

Conditional profiles

Credible intervals for (a) conditional mean and (b) conditional standard deviation of fitted dependence model with distance for
conditioning Laplace-scale value of 5. NNS:N-W (red), NNS:E-W (magenta), CNS:N-S (blue), CNS:E-W (cyan). c.f. MSP
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Max-stable processes

Max-stable processes

◦ Max-stable process (MSP) : a means of extending the GEV for
modelling maxima at one location, to multivariate extreme value
distributions for modelling of component-wise maxima observed
on a lattice

◦ On unit Fréchet scale, only choices of FZ exhibiting homogeneity
are valid for spatial extreme value modelling

◦ Exponent measure VZ

FZ(z1, z2, ..., zp) = exp{−VZ(z1, z2, ..., zp)}

◦ Extremal coefficient θp

FZ(z, z, ..., z) = exp (−VZ(z, z, ..., z))

= exp
(

−z−1VZ(1, 1, ..., 1)
)

for homogeneity

= exp
(

−θp/z
)
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Max-stable processes

Exponent measures

◦ Smith : For two locations sk, sl in S , Vkl for Smith process given by

Vkl(zk, zl ; h(Σ)) =
1

zk
Φ(

m(h)

2
+

log(zl/zk)

m(h)
)+

1

zl
Φ(

m(h)

2
+

log(zk/zl)

m(h)
)

◦ h = sl − sk, m(h) is Mahalanobis distance (h′Σ−1h)1/2 between sk

and sl

◦ Σ is 2 × 2 covariance matrix (2-D space) to be estimated

◦ Vkl(1, 1; h(Σ)) = 2Φ(m(h)/2) by construction

◦ Schlather : similar likelihood, parameterised in terms of Σ only

◦ Brown-Resnick : identical likelihood, parameterised in terms of Σ
and scalar Hurst parameter H (estimated up front)
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Max-stable processes

Spatial : extremal coefficient θ̂(φ)

Estimated extremal coefficient θ̂(φ) for all transects with a given orientationφ, estimated using 1-D Smith (black), Schlather
(dark grey) and Brown-Resnick (light grey) processes. The first (second) row corresponds = marginal threshold with
non-exceedance probability 0.5 (0.8). The first (second) column = censoring threshold with non-exceedance probability 0.5 (0.8)

FZ1 ,Z2
(z, z) = exp[−θ/z], for θ ∈ [1, 2]
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Summary

Summary

Today

◦ Covariate effects in marginal, conditional, spatial and temporal
extremes of ocean storms

Also doing

◦ Bayesian uncertainty analysis (emulation and discrepancy)

◦ Alternative representations for covariate effects (e.g. tessellations)

Next

◦ More conditional spatial and (multivariate?) Markov extremal
models

◦ “Measured” data (satellite altimeter, asymptotic independence?)

◦ Conditional profiles of extreme individual waves

Eventually

◦ Efficient whole-basin inference with ≈ 4D covariates
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Summary
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Supporting material Marginal extremes inference: penalised B-splines

Penalised B-splines

◦ Wrapped bases for periodic
covariates (direction, season).

◦ Multidimensional bases
easily constructed using
tensor products, Eilers and
Marx [2010].

◦ GLAMs, Currie et al. [2006]
for efficient computation in
high dimensions.
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Supporting material Marginal extremes inference: gradient-based MCMC

Gradient-based MCMC

◦ HMC: Hamiltonian Monte Carlo: uses first derivatives of
parameters have momentum based on gradient. This approach
can be unstable so several leapfrog steps are taken instead of
single step.

◦ Riemann manifold HMC: uses second derivatives of parameters.
Here 2 leapfrog steps are needs so this is computationally
challenging

◦ MALA Metropolis adjusted Langevin algorithm: uses first
derivatives steps. Proposalα∗ ∼ N(µ, Σ) where

µ = α −
ǫ

2

∂

∂α
(L + Lprior)

Σ = ǫI

and then implement standard MH based on this proposal.
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Supporting material Marginal extremes inference: gradient-based MCMC

mMALA

◦ Given a current stateα a proposalα∗ is sampled from N(µ(α), Σ),
where

µ(α) = α −
ǫ

2
G−1(α)

∂

∂α
(L + Lprior)

Σ = ǫG−1(α)

and then MH is carried through as before. As in MALA we again
do not have symmetric proposals and so we must calculate the
full acceptance probability.

◦ it is also interesting to notice the similarities between IWLS and
mMALA. To see this compare

G(αξ)
−1 = (B′ ∂

2L

∂ξ2
B + λξP)−1

α̂t+1 = (B′ŴtB + λD′D)−1B′Ŵt ẑt
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Supporting material Simple conditional extremes

Simple (non-stationary) conditional extremes model

On standard Laplace scale, extend with covariates θ

(X2|X1 = x,θ) = αx + xβ(µ +σZ) for x > ψτ

◦ ψτ is a high quantile of X1, for non-exceedance probability τ ,
above which the model fits well

◦ α ∈ [−1, 1], β ∈ (−∞, 1], σ ∈ [0, ∞)

◦ Z is a random variable with unknown distribution G, assumed
standard Gaussian for estimation

◦ η ∈ {α,β,µ,σ ,ψτ} all functions of θ, written as η = Bβη on index
set of covariate values, for suitable covariate basis B

◦ Heffernan and Tawn [2004] and derivatives

◦ Jonathan et al. [2013] for covariates
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Supporting material Simple conditional extremes

Example: Surge |H
sp
S

100-year H
sp
S together with marginal and conditional surge characteristics. SrgMxm: no associated surge for NNS and CNS
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Supporting material Max-stable process models

Spatial extremes
Storm peak HS from gridded NEXTRA winter storm hindcast for North Sea locations; directional variability in storm severity;
“strips” of locations with different orientations; central location for directional model

Jonathan Extreme ocean environments November 2019 60 / 77



Supporting material Max-stable process models

Motivation

◦ Improved inference for the characteristics of extremes at one
location exploiting data from multiple locations in a spatial
neighbourhood

◦ Improved estimation of risk for spatially-distributed structures
(coastal defences, multiple installations) from spatially spread
storm events

◦ Can we estimate spatial extremes models usefully from typical
metocean hindcast data?

◦ Can we see evidence for covariate effects in extremal spatial
dependence for ocean storm severity?
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Supporting material Max-stable process models

Spatial dependence

◦ Locations j = 1, 2, ..., p, continuous random variables {X j}

◦ e.g. spatial distribution of H
sp
S

f (x1, x2, ..., xp) =
[

f (x1) f (x2)... f (xp)
]

C(x1, x2, ..., xp)

◦ { f (x j)} are marginal densities, C(x1, x2, ..., xp) is dependence
“copula”

◦ Interested in “the shape of an extreme storm”

f (x1, x2, ..., xp|Xk = xk > uk) for large uk

◦ We know how to estimate extremes marginally, but what about
extremal dependence?

◦ ⇒ Sensible models for C(x1, x2, ..., xp)
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Supporting material Max-stable process models

Inference procedures

◦ Sample of peaks {X j} from p locations, with covariates {θ}

◦ Simple marginal gamma-GP model

◦ Sample transformed (“whitened”) to standard Laplace or Fréchet
scale per location

◦ Inference

◦ Conditional spatial extremes
◦ Spatial extremes (“max-stable process”)

◦ Bayesian inference estimating joint distributions of parameters,
uncertainties

◦ Adaptive MCMC (Roberts and Rosenthal 2009) etc.
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Supporting material Max-stable process models

North Sea data

Standard scale observations of the spatial distribution of H
sp
S over the North Sea spatial grid for 8 typical events (a)-(h). The

spatial maximum for each event is given as a white disc, and the spatial minimum as a black disc (with white outline). The

white → yellow → red → black colour scheme indicates the spatial variation of relative magnitude of storm peak H
sp
S
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Supporting material Max-stable process models

North Sea data

Fréchet scale scatter plots of H
sp
S for different pairs of locations. Panel (a) for the central location and its nearest neighbour to the

West along the approximate West-East transect with angleφ = 4.6; panel (b) for the end locations of the same transect. Panel (c)
for the central location and its nearest neighbour to the North along the approximate North-South transect with angleφ = −72.2;
panel (d) for the end locations of the same transect. Higher dependence West-East (care with scale)

Jonathan Extreme ocean environments November 2019 65 / 77



Supporting material Max-stable process models

Extremes basics : marginal

◦ Block maxima Yk at location k have distribution FYk
which is

max-stable in the sense that Fn
Yk
(b′kn + a′kn yk) = FYk

(yk) for some

sequences {a′kn > 0} and {b′kn}

◦ Only possible limiting distribution for FYk
is generalised extreme

value (GEV)

FYk
(yk) = exp[− exp{(yk − η)/τ}] for ξ = 0

= exp[−{1 +ξ(yk − η)/τ}
−1/ξ
+ ] otherwise

◦ For peaks over threshold, the equivalent asymptotic distribution
is the generalised Pareto distribution.
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Supporting material Max-stable process models

Extremes basics : spatial

◦ Similarly, FY for block maxima Y at p locations “max-stable” when
Fn

Y(b
′
1n + a′1n y1, b′2n + a′2n y2, ..., b′pn + a′pn yp) = FY(y1, y2, ..., yp)

◦ Transform to unit Fréchet Zk = {1 +ξ(Yk − η)/τ}
1/ξ ,

FZk
(zk) = exp(−1/zk), for zk > 0. Then

FZ(z1, z2, ..., zp) = FZ(nz1, nz2, ..., nzp)
n

◦ Only choices of FZ exhibiting this homogeneity correspond to
finite-dimensional distributions from max-stable processes
(MSPs), and are hence valid for spatial extreme value modelling
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Supporting material Max-stable process models

Spatial : basic theory

◦ Max-stable process (MSP) : a means of extending the GEV for
modelling maxima at one location, to multivariate extreme value
distributions for modelling of component-wise maxima observed
on a lattice

◦ On unit Fréchet scale, only choices of FZ exhibiting homogeneity
are valid for spatial extreme value modelling

◦ Terminology : exponent measure VZ

FZ(z1, z2, ..., zp) = exp{−VZ(z1, z2, ..., zp)}

◦ Terminology : extremal coefficient θp

FZ(z, z, ..., z) = exp (−VZ(z, z, ..., z))

= exp
(

−z−1VZ(1, 1, ..., 1)
)

from homogeneity

= exp
(

−θp/z
)
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Supporting material Max-stable process models

Spatial : VZ for Smith, Schlather and Brown-Resnick

◦ Smith : For two locations sk, sl in S , Vkl for Smith process given by

Vkl(zk, zl ; h(Σ)) =
1

zk
Φ(

m(h)

2
+

log(zl/zk)

m(h)
)+

1

zl
Φ(

m(h)

2
+

log(zk/zl)

m(h)
)

◦ h = sl − sk, m(h) is Mahalanobis distance (h′Σ−1h)1/2 between sk

and sl

◦ Σ is 2 × 2 covariance matrix (2-D space) to be estimated. Σ scalar
in 1-D

◦ Vkl(1, 1; h(Σ)) = 2Φ(m(h)/2) by construction

◦ Schlather : similar likelihood, parameterised in terms of Σ only

◦ Brown-Resnick : identical likelihood, parameterised in terms of Σ
and scalar Hurst parameter H (estimated up front)
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Supporting material Max-stable process models

Spatial : constructive representation

◦ MSP is maximum of multiple copies {Wi} (i ≥ 1) of random
function W

◦ Each Wi weighted using Poisson process {ρi} (i ≥ 1)

◦ The MSP Z(s) for s in spatial domain S is
Z(s) = µ−1 maxi{W+

i (s)/ρi}

◦ W+
i = max{Wi(s), 0}, µ = E(W+(s)) = 1 by construction

typically

◦ ρi = ǫi for (i = 1), ρi = ǫi + ρi−1 for (i > 1), and ǫi ∼ Exp(1)

◦ Different choices of W(s) give different MSPs

◦ Smith : Wi(s; si, Σ) =ϕ(s − si; Σ)/ fS(si), with si sampled from
density fS(si) on S , withϕ representing standard Gaussian
density

◦ Schlather, Brown-Resnick : Similar
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Supporting material Max-stable process models

Spatial : constructive representation
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Supporting material Max-stable process models

Spatial : illustrations

Illustrative realisations of Smith (a,e), Schlather (b,f), and Brown-Resnick (c,d,g,h) processes for different parameter choices. The
first row corresponds to parameter settings (Σ11 , Σ22 , Σ12) = (300, 300, 0) for all processes, and the second row to (30,20,15). For
Brown-Resnick processes (c,g), Hurst parameter H = 0.95. For Brown-Resnick processes (d,h), H = 0.65. Each panel can be
considered to show a possible spatial realisation of storm peak HS , similar to those shown earlier
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Supporting material Max-stable process models

Spatial : estimation approximations

◦ Theory applies for (Fréchet scale) block maxima ZY, but we have
(Fréchet scale) peaks over threshold ZX. For zk, zl > u for large u,
approximate

Pr [ZXk ≤ zk, ZXl ≤ zl ] ≈ Pr [ZYk ≤ zk, ZYl ≤ zl ]

◦ Theory gives us models for pairs of locations. Cannot write down
full joint likelihood ℓ(Σ; {z j}). Approximate with composite
likelihood ℓC(Σ; {z j})

ℓ(Σ; {z j}) ≈ ℓC(Σ; {z j}) = ∑
{k,l}∈N

wkl log fkl(zk, zl ; h(Σ))

◦ Need fkl(zk, zl ; h(Σ)) for non-exceedances of u also, so make
censored likelihood approximation
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Supporting material Max-stable process models

Spatial : estimation

◦ Estimate joint distribution of Ω = [Σ11, Σ22, Σ12] (2-D space, or
Ω = Σ in 1-D)

◦ MCMC using Metropolis-Hastings
◦ Current state Ωr−1, marginal posterior fM(βM), original sample D

of storm peak HS.
◦ Draw a set of marginal parameters βMr from fM, independently

per location.
◦ Use βMr to transform D to standard Fréchet scale, independently

per location, obtaining sample DFr.
◦ Execute “adaptive” MCMC step from state Σr−1 with sample DFr

as input, obtain Σr.

◦ Adaptive MCMC candidates generated using
Ω

c
r = Ωr−1 + γǫ1 + (1 − γ)ǫ2

◦ γ ∈ [0, 1], ǫ1 ∼ N(0, δ2
1 I3/3), ǫ2 ∼ N(0, δ2

2 SΩr−1
/3)

◦ SΩr−1
estimate of variance of Ωr−1 using samples to trajectory to

date
◦ Roberts and Rosenthal [2009]
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Supporting material Max-stable process models

Spatial : σ̂(φ) for Smith

For all transects with a given orientationφ estimated using 1-D (box-whisker) and 2-D (black) Smith processes. φ is quantified as
the transect angle anticlockwise from a line of constant latitude. The first (second) row: marginal threshold non-exceedance
probability 0.5 (0.8). The first (second) column: censoring threshold non-exceedance probability 0.5 (0.8). For 1-D estimates with a
givenφ, box centres = median, box edges = 0.25 and 0.75 quantiles across all parallel transects; whisker edges = 0.025 and 0.975
quantiles. For 2-D estimates, the 0.025, 0.5 and 0.975 quantiles are shown as a function ofφ. Note that the colour coding of
box-whisker plots corresponds to that of transect orientation
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Supporting material Max-stable process models

Spatial : extremal coefficient θ̂(φ)

Estimated extremal coefficient θ̂(φ) for all transects with a given orientationφ, estimated using 1-D Smith (black), Schlather
(dark grey) and Brown-Resnick (light grey) processes. The first (second) row corresponds = marginal threshold with
non-exceedance probability 0.5 (0.8). The first (second) column = censoring threshold with non-exceedance probability 0.5 (0.8)
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Supporting material Max-stable process models

Spatial : spatial dependence parameter σ̂(φ, s) for individual transects

Smith process with marginal and censoring thresholds = non-exceedance probability of 0.8. (b)-(g): σ̂(φ, s) for fixed orientationφ
(given in the panel title) as a function of transect locator s. (a): transects with s = 1 for different orientationsφ. (b)-(g): abscissa
values for transect locators are scaled to physical perpendicular distances between parallel transects
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