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Abstract

Careful modelling of non-stationarity is critical to reliable specification of marine and coastal design
criteria. We present a spline based methodology to incorporate spatial, directional, temporal and other
covariate effects in extreme value models for environmental variables such as storm severity. For storm

peak significant wave height events, the approach uses quantile regression to estimate a suitable extremal
threshold, a Poisson process model for the rate of occurrence of threshold exceedances, and a generalised

Pareto model for size of threshold exceedances. Multidimensional covariate effects are incorporated at
each stage using penalised (tensor products of) B-splines to give smooth model parameter variation as a

function of multiple covariates. Optimal smoothing penalties are selected using cross-validation, and
model uncertainty is quantified using a bootstrap re-sampling procedure. The method is applied to

estimate return values for large spatial neighbourhoods of locations, incorporating spatial and directional
effects. Extensions to joint modelling of multivariate extremes, incorporating extremal spatial

dependence (using max-stable processes) or more general extremal dependence (using the conditional
extremes approach) are outlined.

Keywords: offshore design; extreme; return value; covariate; B-spline; storm severity;

1. Introduction

Availability of comprehensive met-ocean data allows the effect of heterogeneity (or non-stationarity) of
extremes with respect to direction, season and location to be accommodated in estimation of design criteria.
Jonathan and Ewans (2013) review statistical modelling of extremes for marine design.

Capturing covariate effects in extreme sea states is important when developing design criteria. In previous
work (e.g Jonathan and Ewans (2007a), Ewans and Jonathan (2008)) it has been shown that omnidirec-
tional design criteria derived from a model that adequately incorporates directional covariate effects can be
materially different from a model which ignores those effects(e.g. Jonathan et al. 2008). Directional return
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values derived from a directional model can be heavier tailed than that derived from a direction-independent
approach, indicating that large values of extreme events are more likely than we might anticipate were we
to base our beliefs on estimates which ignore directionality. Similar effects have been demonstrated for
seasonal covariates (e.g.Anderson et al. 2001, Jonathan et al. 2008).

There is a large body of statistical literature regarding modelling of covariate effects in extreme value
analysis; for example, Davison and Smith (1990) or Robinson and Tawn (1997). The case for adopting an
extreme value model incorporating covariate effects is clear, unless it can be demonstrated statistically that
a model ignoring covariate effects is no less appropriate. Chavez-Demoulin and Davison (2005) and Coles
(2001) provide straight-forward descriptions of a non-homogeneous Poisson model in which occurrence
rates and extremal properties are modelled as functions of covariates. Scotto and Guedes-Soares (2000)
describe modelling using non-linear thresholds. A Bayesian approach is adopted Coles and Powell (1996)
using data from multiple locations, and by Scotto and Guedes-Soares (2007). Spatial models for extremes
(Coles and Casson (1998); Casson and Coles (1999)) have also been used, as have models (Coles and
Tawn (1996, 2005)) for estimation of predictive distributions, which incorporate uncertainties in model
parameters. Ledford and Tawn (1997) and Heffernan and Tawn (2004) discuss the modelling of dependent
joint extremes. Chavez-Demoulin and Davison (2005) also describe the application of a block bootstrap
approach to estimate parameter uncertainty and the precision of extreme quantile estimates, applicable
when dependent data from neighbouring locations are used. Jonathan and Ewans (2007b) use block
bootstrapping to evaluate uncertainties associated with extremes in storm peak significant wave heights
in the Gulf of Mexico. Guedes-Soares and Scotto (2001) discuss the estimation of quantile uncertainty.
Eastoe (2007) and Eastoe and Tawn (2009) illustrate an approach to removing covariate effects from a
sample of extremes prior to model estimation.

One of the first examinations of spatial characteristics of extreme wave heights was reported by Haring
and Heideman (1978) for the Gulf of Mexico. They performed extremal analysis of the ODGP hurricane
hindcast data base (Ward et al. (1978)) at a number of continental shelf locations from Mexico to Florida,
and concluded that there was no practical difference between the sites, but they did observe a gradual
reduction in extreme wave heights with decreasing water depth. Chouinard et al. (1997) took the op-
portunity to re-examine the spatial behaviour of extremes in the Gulf of Mexico, when the GUMSHOE
hindcast data base became available. Jonathan and Ewans (2011b) used thin-plate splines to model the
spatial characteristics of events in the Gulf of Mexico. Extending the thin-plate spline formulism to include
other (possibly periodic) covariates is difficult; instead, the sample is typically pre-processed to remove the
influence of all covariates other than the (2-D) spatial, prior to model estimation using thin-plate splines.
Models estimated in this way suffer from the fact that interactions between the various modelling steps
(and the parameters estimated therein) cannot be easily quantified.

Characterising the joint structure of extremes for different environmental variables is also important for im-
proved understanding of those environments. Yet many applications of multivariate extreme value analysis
adopt models that assume a particular form of extremal dependence between variables without justifica-
tion, or restrict attention to regions in which all variables are extreme. The conditional extremes model of
Heffernan and Tawn (2004) provides one approach avoiding these particular restrictions. Extremal depend-
ence characteristics of environmental variables also typically vary with covariates. Reliable descriptions
of extreme environments should also therefore characterise any non-stationarity. Jonathan et al. (2013)
extends the conditional extremes model of Heffernan and Tawn to include covariate effects, using Fourier
representations of model parameters for single periodic covariates.

The last decade has seen the emergence of useable statistical models for spatial extremes based on max-
stable processes, at least in academia. The application of max-stable processes is complicated due to un-
availability of the full multivariate density function. Padoan et al. (2010) develops inferentially practical,
likelihood-based methods for fitting max-stable processes derived from a composite likelihood approach.
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The procedure is sufficiently reliable and versatile to permit the simultaneous modelling of marginal and
dependence parameters in the spatial context at a moderate computational cost. Davison and Gholamrez-
aee (2012) describes an approach to flexible modelling for maxima observed at sites in a spatial domain,
based on fitting of max-stable processes derived from underlying Gaussian random process models. Gen-
eralised extreme value (GEV) margins as assumed throughout the spatial domain, and models incorporate
standard geo-statistical correlation functions. Estimation and fitting are performed through composite
likelihood inference applied to observations from pairs of sites. Davison et al. (2012) also provides a good
introduction and review. Erhardt and Smith (2011) uses approximate Bayesian computation to circumvent
the need for a joint likelihood function by instead relying on simulations from the (unavailable) likelihood
avoiding the need to construct composite likelihoods at higher computational cost.

In this work, we apply a marginal model for spatio-directional extremes to a sample of data for storm
severity on the north west continental shelf of Western Australia. The model (developed in Section 2)
adopts a penalised B-spline formulation to characterise smooth variation of extreme value parameters
spatially and directionally. The North West Shelf application is then presented in Section 3. In Section
4, we discuss model extension to incorporate appropriate spatial extremal dependence, and also outline a
non-stationary extension of the conditional extremes model of Heffernan and Tawn (2004)).

2. Model

The objective is to estimate design criteria for individual locations within a spatial neighbourhood, ac-
counting for spatial and storm directional variability of extremal characteristics.

Model components

Following the work of Jonathan and Ewans (2008) and Jonathan and Ewans (2011b), summarised in
Jonathan and Ewans (2013), we model storm peak significant wave height Hsp

S , namely the largest value of
significant wave height HS observed at each location during the period of a storm event. We assume that
each of ṅS independent storm peak events is observed at all of nL locations within the neighbourhood under
consideration. We therefore start with a total of ṅ = ṅS×nL observations of Hsp

S . We refer to these as the
sample {żi}ṅi=1 of ṅ storm peak significant wave heights observed at locations {ẋi, ẏi}ṅi=1 with dominant
wave directions {θ̇i}ṅi=1 (corresponding to the time of occurrence of Hsp

S , henceforth “storm directions”).
We then proceed using the peaks over threshold approach as follows.

Extreme value threshold: We first estimate a threshold function φ above which observations ż are assumed

to be extreme. The threshold varies smoothly as a function of covariates (φ
M
= φ(θ, x, y)) and is estimated

using quantile regression. As the result of thresholding, the same number of observations of smaller storm
peak events is eliminated from all locations by construction. The number of storms peak events remaining
per location reduces from ṅS to nS , so that the total number of observations (of threshold exceedances) for
extreme value modelling is n = nS × nL. We refer to these as the set of n threshold exceedances {zi}ni=1

observed at locations {xi, yi}ni=1 with storm peak directions {θi}ni=1.

Rate of threshold exceedance: We next estimate the rate of occurrence ρ of threshold exceedance using a

Poisson process model with Poisson rate ρ(
M
= ρ(θ, x, y)).

Size of threshold exceedance: We estimate the size of occurrence of threshold exceedance using a generalised
Pareto (henceforth GP) model. The GP shape and scale parameters ξ and σ are also assumed to vary
smoothly as functions of covariates.

This approach to extreme value modelling follows that of Chavez-Demoulin and Davison (2005) and is
equivalent to direct estimation of a non-homogeneous Poisson point process model (e.g., Dixon et al. 1998,
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Jonathan and Ewans (2013)).

Parameter estimation

Extreme value threshold: For quantile regression, we seek a smooth function φ of covariates corresponding
to non-exceedance probability τ of Hsp

S given any combination of θ, x, y. We choose to estimate φ by
minimising the quantile regression lack of fit criterion

`φ = {τ
n∑

i,ri≥0
|ri|+ (1− τ)

n∑
i,ri<0

|ri|}

for residuals ri = zi − φ(θi, xi, yi; τ). We regulate the smoothness of the quantile function by penalising
lack of fit for parameter roughness Rφ (with respect to all covariates), by minimising the revised penalised
criterion

`∗φ = `φ + λφRφ

where the value of roughness coefficient λφ is selected using cross-validation to provide good predictive
performance.

Rate of threshold exceedance: For Poisson modelling, we use penalised likelihood estimation. The rate ρ of
threshold exceedance is estimated by minimising the roughness-penalised (negative log) likelihood

`∗ρ = `ρ + λρRρ

where Rρ is parameter roughness with respect to all covariates, λρ is again evaluated using cross-validation.
The Poisson (negative log) likelihood is given by

`ρ = −
n∑
i=1

log ρ(θi, xi, yi) +

∫
ρ(θ, x, y)dθdxdy

which is approximated by

ˆ̀
ρ = −

m∑
j=1

cj log ρ(j∆) + ∆
m∑
j=1

ρ(j∆)

where {cj}mj=1 are counts of numbers of threshold exceedances per degree longitude, latitude and storm
direction, per annum on an index set of m (>> 1) bins on a regular lattice partitioning the covariate
domain into intervals of constant volume ∆.

Size of threshold exceedance: The generalised Pareto model of size of threshold exceedance is estimated in
a similar manner by minimising the roughness penalised (negative log) GP likelihood

`∗ξ,σ = `ξ,σ + λξRξ + λσRσ

where Rξ and Rσ are parameter roughnesses for GP shape and scale with respect to all covariates, and
roughness coefficients λξ and λσ are evaluated using cross-validation. The GP (negative log) likelihood is
given by

`ξ,σ =

n∑
i=1

log σi + (
1

ξi
+ 1) log(1 +

ξi
σi

(zi − φi))
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where φi = φ(θi, xi, yi), ξi = ξ(θi, xi, yi) and σi = σ(θi, xi, yi), and a similar expression is used when ξi = 0
(see Jonathan and Ewans 2013).

Penalised likelihood optimisation for both Poisson and generalised Pareto inference is performed using the
so-called back-fitting algorithm exploiting problem-specific structure, discussed in outline in the Appendix.

Return values

Simulation under the fitted model is used to estimate directional design values per location, optionally
incorporating the effects of storm directional dissipation. In outline, we simulate a large number R(≈ 1000)
of realisations, each realisation corresponding to a simulated set of storms for return period T of interest,
for all locations in the spatial domain. In each realisation, we simply store the maximum value observed
for directional sectors of interest per location. Over all R realisations, we accumulate R estimates of
directional and omnidirectional extremes per location, with which we can estimate distributional statistics
of the return value, including the median return value, the central 95% uncertainty band, or the full
cumulative distribution function of return value. In the current work, we report omnidirectional design
values, and design values for directional octants of equal size, centred on cardinal and inter-cardinal storm
directions (see Section 3), estimated from simulation. The simulation procedure is given in Algorithm 1
below.

input: φ, ρ, ξ and σ defined on index set of covariate combinations; ρ in units of number of
occurrences per location per 1-degree storm direction per annum; return period of interest,
T ; number of realisations, R, each corresponding to T years of events

output: per location: median and 95% uncertainty for return value omnidirectionally and for 8
directional sectors of equal size centred on cardinal and semi-cardinal directions

foreach fixed location (x,y) in turn
estimate the expected total (omnidirectional) number S(x, y) of threshold exceedances in return
period (using S(x, y) = T

∫
ρ(θ, x, y)dθ);

foreach realisation of T years in turn
sample an actual number of threshold exceedances for return period (at random from a
Poisson distribution with mean S(x, y));
sample storm directions for threshold exceedances (from ρ(θ, x, y));
sample sizes for threshold exceedances (from the GP distribution with parameters ξ(θ, x, y),
σ(θ, x, y) and φ(θ, x, y) for the previously-sampled values of storm directions θ);
foreach directional sector in turn

accumulate maximum value observed, incorporating dissipation if required (see next
section on “Directional dissipation”);

end

end
store return value statistics for the location;

end

Algorithm 1: Procedure for estimation of return values by simulation

Directional dissipation

In this work, for extreme value analysis, we characterize a storm in terms of its storm peak significant
wave height, storm peak direction and location only. However, the full temporal evolution of a storm at
a location is more fully described as a time-series of values of significant wave height and corresponding
wave direction for consecutive sea states in the storm. In estimating a return value for arbitrary directional
sector S, it is critical to account for the effects of all storms on S, including (1) storms whose storm peak
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directions correspond to S, and (2) storms whose storm peak directions do not correspond to S, but whose
storm evolution includes sea states with wave directions in S. To achieve this, we use the concept of storm
dissipation, introduced by Jonathan and Ewans (2007a). The directional dissipation ζ(θ) of a storm, for
direction θ, is the value of significant wave height, expressed as a fraction of storm peak significant wave
height, for that θ. For a given directional sector S, therefore, the directional dissipation ζ(S) of a storm
is the largest impact of the storm in S, expressed as a fraction of the storm peak significant wave height.
Directional dissipation captures the effects on a directional sector of storms whose peaks lie outside the
sector. Incorporating directional dissipation increases return values in general, for all directional sectors
other that the omnidirectional (which already includes the effects of all storms).

Directional dissipation is estimated directly from the directional evolution of significant wave height (or
directional trajectory) per storm in the hindcast sample. During estimation of design values using sim-
ulation, each simulated storm peak significant wave height and storm direction is matched to a hindcast
directional trajectory with similar storm peak characteristics. The simulated storm peak event is then
assumed to exhibit the same directional dissipation as the matching hindcast storm event. The influence
of the simulated storm event on arbitrary directional sectors is thereby included in the simulation.

Parameter smoothness

Physical considerations suggest we should consider parameters φ, ρ, ξ and σ to be smooth functions of
covariates θ, x, y. For estimation, this can be achieved by expressing each parameter in terms of an
appropriate basis for the domain D of covariates, where D = Dθ × Dx × Dy. Dθ = [0, 360) is the
(marginal) domain of storm peak directions, and Dx, Dy are the domains of x- and y-values (e.g. longitudes
and latitudes) under consideration.

For each covariate (and marginal domain) in turn, we first calculate a B-splines basis matrix for an index
set (of size m << n) of covariate values; potentially we could calculate the basis matrix for each of the
n observations, but usually avoid this for computation efficiency. Specifically, for Dθ, we calculate basis
matrix Bθ (mθ×pθ) such that the value of any function at each of the mθ points in the index set for storm
direction can be expressed as Bθβθ for some vector βθ (pθ × 1) of basis coefficients. Note that periodic
marginal bases can be specified if appropriate (e.g. for Dθ).

Then we define a basis matrix for the three-dimensional spatio-directional domain D using Kronecker
products of marginal basis matrices. Thus

B = Bθ ⊗Bx ⊗By

provides a (m× p) basis matrix (where m = mθmxmy, and p = pθpxpy) for modelling each of φ, ρ, ξ and σ
on the corresponding “spatio-directional” index set (of size m). Any of φ, ρ, ξ and σ (η, say, for brevity)
can then be expressed in the form η = Bβ for some (p× 1) vector β of basis coefficients. Model estimation
therefore reduces to estimating appropriate sets of basis coefficients for each of φ, ρ, ξ and σ. The values
of pθ, px, py are functions of the number of spline knots for each marginal domain, and also depend on
whether spline bases are specified to be periodic (e.g Dθ) or not (e.g Dx and Dy).

The roughness R of any function can be easily evaluated on the index set (at which η = Bβ). Following the
approach of Eilers and Marx (e.g. Eilers and Marx 2010), writing the vector of differences of consecutive
values of β as ∆β, and vectors of second and higher order differences using ∆kβ = ∆(∆k−1β), k > 1, the
roughness R of β is given by

R = β′Pβ

where P = (∆k)′(∆k) for differences of order k. We use k = 1 throughout this work. With this choice of k,
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heavy roughness penalisation results in stationarity of parameters with respect to periodic and aperiodic
covariates.

For readers less familiar with spline modelling, we recommend the excellent motivation and summary of
Eilers and Marx (2010), which provides key references to the modelling literature, including Marx and Eilers
(1998), Ruppert et al. (2003), Currie et al. (2006) and Eilers et al. (2006). Green and Silverman (1994)
and Hastie et al. (2001) provide statistical motivations. de Boor (2001) provides technical background to
splines.

There are many possible parameterisations of covariate effects potentially suitable for applications such
as the current. For a single periodic covariate (e.g. direction), Fourier forms for model parameters might
be considered. Polynomial or Legendre polynomial functions in longitude and latitude might be useful
for spatially-varying parameters. However, we have adopted B-splines for two specific reasons. Firstly,
B-splines (in marked contrast to Fourier) have local support facilitating efficient and stable estimation
of spline coefficients. Secondly, spline models generally are easily and consistently extendible to describe
multidimensional covariates using Kronecker products of one-dimensional spline bases. There are many
competing spline models that may be considered (see, e.g., Lee and Durban 2011, Lee et al. 2013, Steph-
enson and Gilleland 2006 and VGAM software). A random field representation for covariate effects is a
particularly attractive alternative to the spline formulation due to the algorithmic similarities of the two
approaches.

Computational considerations

Quantile regression estimation is performed by direct minimisation of the criterion `∗φ from a good starting
solution using a linear programming approach (e.g. Koenker 2005 and Bollaerts 2009). A starting solution is
estimated by fitting a smoothing spline to estimates of the spatio-directional quantile with non-exceedance
probability τ at each of the m covariate combinations on the index set. Poisson and generalised Pareto
estimation is achieved using iterative back-fitting (e.g., Davison 2003). Good starting solutions are found
to be essential for GP minimisation in particular. These are obtained by estimating local GP models at
each of the m members of the index set (or combinations of neighbours thereof to increase sample size),
then fitting smoothing spline models for each of GP shape ξ and scale σ. Using algorithms developed
for generalised linear array models (Currie et al. 2006), direct computation of Kronecker products of the
form Bθ ⊗ Bx ⊗ By (and some other computationally-demanding operations) can be avoided, providing
large reductions in computer memory requirements and execution times. For larger problems, it is also
computationally advantageous to adopt an appropriate model cost-complexity criterion (such as AIC) as
an alternative to cross-validation, thereby avoiding the need for repeated model estimation. We refer to
Chavez-Demoulin (1999) and Chavez-Demoulin and Davison (2005) who note the need for orthogonality of
parameters when criteria such as AIC as used for multi-parameter models such as the generalised Pareto.

3. Application

Data and regional climatology

The application sample corresponds to storm peak significant wave height Hsp
S and dominant wave direction

(at Hsp
S ) for 6156 hindcast storm events at 1089 locations on a 33 x 33 regular grid over the north west

continental shelf of Western Australia for the period 1970-2007. Note that storm peak events Hsp
S per

location can be assumed to be independent in time, since they are isolated from time-series of temporally-
dependent significant wave height HS using a physically-motivated de-clustering procedure described by
Jonathan and Ewans (2011a).
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The regional climate is monsoonal, displaying two distinct seasons, “winter” from April to September
and “summer” from October to March, with very rapid transitions between these, generally in April and
September/October. The winter “dry” is the result of a steady air flow from the east (South East Trade
Winds) originating from the Australian mainland, propagating over the Timor Sea. The summer “wet” is
the result of the North West Monsoon, a steady, moist flow of air predominantly from the west to south
west (and to a lesser extent from the north west). Tropical cyclones occur during summer months and are
clearly the most important for extreme met-ocean criteria. Tropical cyclones originate from south of the
equator in the eastern Indian Ocean and Timor and Arafura Seas. The most severe cyclones often occur in
December and March-April, when sea surface temperatures are highest. In the region under consideration,
most storms are tropical lows or developing storms, but can be very severe nevertheless, as exemplified by
tropical cyclones Thelma (1998) and Neville (1992). Most storms passing through the region head in a
westerly or south westerly direction before turning southwards.

[Figure 1 about here.]

[Figure 2 about here.]

The prevailing wave climate comprises contributions from Indian Ocean swell, winter easterly swell, westerly
monsoonal swell, tropical cyclone swell, and locally generated wind-sea. Indian Ocean swell is a perennial
feature typically, propagating from the south-west through north-west. The largest sea states are wind
generated sea states associated with tropical cyclones. Figure 1 shows a scatter plot ofHsp

S against direction,
pooled over locations; Hsp

S is non-stationary with respect to storm direction. There are a large number of
small events from 260 − 310o, seen also in the rose plots of Figure 2; the rate of occurrence of large Hsp

S

is also non-stationary with respect to storm direction. Figure 3 shows the spatial distribution of storm
direction and storm peak significant wave height for the largest two storms in the hindcast. Both events are
seen to be spatially localised, and to show clockwise rotation of wind field as expected. Figure 4 shows the
directional evolution of significant wave height at the central location. At this location, the largest storm
events emanate from the eastern and south-eastern octants, corresponding to cyclones. However, by far the
largest number of events emanate from the western octant, associated with Indian Ocean Swell. Cyclone
events (e.g. eastern octant) tend to dissipate over a wide angular range, whereas swell is directionally more
restricted.

[Figure 3 about here.]

[Figure 4 about here.]

Spline parameterisation

We fit the spatio-directional spline model assuming an index set of 32 directional bins x 33 longitude bins
x 33 latitude bins. Cubic splines are used for each dimension, the directional spline basis being the only
periodic. Longitude and latitude domains are characterised by 15 evenly spaced knots, and the directional
domain by 32 evenly spaced knots. Therefore, a total of 32×18×18 spline parameters need to be estimated.

Roughness parameter estimation

Roughness parameter estimation is necessary for estimation of each of extreme value threshold, rate of
occurrence of threshold exceedance, shape and scale parameters of GP-distributed sizes of threshold ex-
ceedance. In each case, the roughness parameter is estimated using 10-fold cross-validation over a domain
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of plausible values of the roughness parameter, within which a clear minimum of the predicted lack of
fit criterion (for the withheld data) is observed. Observations of storm peak events are temporally in-
dependent but dependent spatially. Here we are concerned only with marginal extreme value analysis
per spatial location, and do not attempt to model extremal spatial dependence explicitly. As discussed in
Chavez-Demoulin (1999) and Chavez-Demoulin and Davison (2005), the effect of using spatially dependent
data to model marginal spatial extremes is small in terms of the estimated maximum likelihood paramet-
ers. However, parameter uncertainty is underestimated. As discussed in Wang and Wahba (1995) and
Chavez-Demoulin and Davison (2005), block bootstrapping schemes are recommended to estimate model
uncertainty in this situation. Sandwich estimators (see, e.g. Chandler and Bate (2007) and Northrop and
Jonathan (2011)) are also available.

Extreme value threshold

We estimate threshold φ, using spline quantile regression, above which observations ż of HS are assumed to
be extreme. A number of different quantile non-exceedance thresholds were examined; a 50% threshold was
adopted. The optimal threshold, estimated using 10-fold block cross-validation, was found to be effectively
constant with respect to location and direction. This is not surprising given the small sample size per
location, and the strong spatial dependence across locations. A constant threshold of 3.4m was therefore
adopted for subsequent analysis.

Rate of threshold exceedance

Next we estimate the rate of occurrence ρ of threshold exceedances using a Poisson process model with

rate ρ(
M
= ρ(θ, x, y)). Figure 5 shows a spatio-directional plot of estimated ρ. The left hand plot shows the

direction from which the estimate is largest per location. The 8 right-hand plots show estimates spatially
for the 8 cardinal and inter-cardinal directions. Rate ρ is seen to be relatively constant spatially, but
directionally ρ is higher for events from the west (250o-290o), consistent with inferences from Figures 1,
2 and 4. That is, the rate of occurrence of storm peak events is dominated by Indian Ocean Swell. Note
that the right-hand plots in Figures 5–7 show spatial variation for events from 8 specific semi-cardinal
directions (as opposed to directional octants). Contrast this with the right-hand plots in Figures 10 and
11, and the plots in Figure 4, which present estimates pertaining to directional octants (as opposed to
specific directions).

[Figure 5 about here.]

Size of threshold exceedance

Now we model the sizes of threshold exceedance using a GP model, again estimated using 10-fold block
cross-validation. Figure 6 shows a spatio-directional plot for GP shape parameter, ξ, seen to be largest in
general for events from the north - north east and south - south west. Figure 7 shows the corresponding plot
for GP scale, σ, seen to be higher in general for events with directions from the east - south east. Because
of the dependence between estimates of ξ and σ, care should be taken not to over-interpret these plots;
inspection of estimates for return values (below) is preferred. Generalised Pareto maximum likelihood
estimation with covariate-dependent parameters is computationally challenging. A back-fitting algorithm
(see Appendix) is used to minimise the negative log-likelihood as efficiently as possible. A good starting
solution also greatly aids efficient minimisation. The procedure used here to obtain a reasonable starting
solution is outlined in Section 2 (Computational considerations).

[Figure 6 about here.]

[Figure 7 about here.]
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Model validation

Model diagnostics are essential to demonstrate adequate model fit. Of primary concern is that the estimated
Hsp
S extreme value model generates directional distributions of Hsp

S consistent with observed data at all
spatial locations. To quantify this, we use the simulation procedure to generate 1000 realisations of
storm peak events for all locations, each realisation for the same period as the original data. We then
construct 95% uncertainty bands for cumulative distribution functions (cdfs) of Hsp

S , corresponding to
different partitions of the spatio-directional covariate domain. We can then confirm that the actual sample
lies within the 95% uncertainty band for each covariate partition. We illustrate this using two sets of
partitions in Figures 8 and 9. Figure 8 compares omnidirectional cdfs for 9 locations on a 3 × 3 grid of
locations across the domain, and indicates good agreement. Figure 9 compares directional octant return
values aggregated over the 9 locations defined in Figure 8. Again, agreement is good.

[Figure 8 about here.]

[Figure 9 about here.]

Return value estimation

The characteristics of 100-year return value were estimated by simulating 1000 realisations of 100-years
of storm events across the whole spatial neighbourhood (with or without directional dissipation effects).
Figure 10 shows median 100-year storm peak return values Hsp

S100 estimated by simulation under the fitted
model, ignoring directional dissipation. Both omnidirectional return values and return values corresponding
to directional sectors centred on the cardinal and inter-cardinal directions are given. Figure 11 shows
analogous median 100-year return values HS100 incorporating directional dissipation (which plays no role
in omnidirectional estimation). Generally, lower return values are seen in the south east corner nearest
land. The highest storm peak return values at most locations are generally from the east. Return values
are generally lower for storms from the south west. Omnidirectional return values are not influenced by
the incorporation of directional dissipation. However, return values for most directional sectors are larger
once directional dissipation is incorporated.

[Figure 10 about here.]

[Figure 11 about here.]

4. Discussion

In the paper, we introduce a marginal spatio-directional model for extreme storm peak significant wave
height, applied to estimation of spatio-directional design values for a neighbourhood of locations off the
North West Shelf of Australia. The model uses the peaks over threshold approach, incorporating estimation
of an extreme value threshold and the rate and sizes of threshold exceedance. Model parameters are smooth
spatio-directional functions. Block cross-validation is used to estimate appropriate parameter smoothness
in each case; model cost-complexity measures (e.g. AIC) are also available, but must be used with care in
the presence of dependence or non-orthogonal model parameterisations. Re-sampling techniques such as
bootstrapping can be used to estimate the uncertainty of model parameters and estimates of return values
and other structure variables. The model yields parameter estimates and design values consistent with
physical intuition and previous estimates. The main advantage of the approach is that marginal spatial
and directional variation of extreme value characteristics is incorporated in a rational, consistent, scalable
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and computationally-efficient manner eliminating the need for ad-hoc procedures such as site pooling. In
isolating storm peak events, we also estimate the directional dissipation (e.g. Jonathan and Ewans 2007a)
of storms across locations. This allows us also to estimate design criteria for arbitrary directional sectors
for a given location together with the omnidirectional estimate, in a consistent manner. For interested
parties, further specifics of the modelling procedure are available from the authors on request.

Estimates of median 100-year return values were also estimated by pooling all locations, assuming spatial in-
dependence of observations and ignoring all directional and spatial effects. Figure 12 shows omnidirectional
estimates, and estimates for storms from storm directions 90o-135o, as a function of the non-exceedance
probability of the constant extreme value threshold used. Omnidirectional estimates are low, but estimates
for the directional sector 90o-135o, from which most severe storms emanate, are broadly consistent with
the more severe covariate combinations in the spatio-directional model.

[Figure 12 about here.]

Spline representations are also useful in non-stationary conditional extremes modelling based on the ap-
proach of Heffernan and Tawn (2004). Jonathan et al. (2014) introduces a general-purpose approach, com-
mon to all inference steps in conditional extremes inference. Non-crossing quantile regression estimates
appropriate non-stationary marginal quantiles simultaneously (for a range of non-exceedance probabilities)
as functions of covariate; these are necessary as thresholds for extreme value modelling, and for standard-
isation of marginal distributions prior to application of the conditional extremes model. Marginal extreme
value and conditional extremes modelling is performed within a roughness-penalised likelihood framework,
with cross-validation to estimate suitable model parameter roughness. A bootstrap re-sampling procedure,
encompassing all inferences, quantifies uncertainties in, and dependence structure of, parameter estim-
ates and estimates of conditional extremes of one variate given large values of another. The approach is
validated using simulations from known joint distributions, the extremal dependence structures of which
change with covariate. The approach is illustrated in application to joint modelling of storm peak signi-
ficant wave height and associated storm peak period for extra-tropical storms at northern North Sea and
South Atlantic Ocean locations, with storm direction as covariate.

The marginal model presented here can also be extended to incorporate multivariate spatial dependence,
using composite likelihood and censored likelihood methods, so that joint characteristics of extremes of
storm peak significant wave height across multiple locations can also be estimated and studied. At present,
however, spatial extremes methods suffer from a number of restrictions which may cause biased inferences.
Firstly, models are typically developed using block maxima rather than threshold exceedances, since spatial
extremes theory is motivated by consideration of component-wise maxima, with full likelihoods replaced
with approximations constructed as weighted sums of pairwise likelihoods. Censored composite likeli-
hood approaches permit more efficient analysis of threshold exceedances (e.g. Huser and Davison 2014).
Secondly, spatial extremes models only admit certain types of extremal dependence structure (e.g. Ledford
and Tawn (1997)), namely perfect independence or asymptotic dependence; they do not admit asymptotic
independence in particular. An extension to incorporate asymptotic independence has recently been pro-
posed by Wadsworth and Tawn (2012). The generalised Pareto process is another promising emerging
description for spatial extremes (Ferreira and de Haan 2014). In general, the extremal dependence struc-
ture of spatial extremes will itself be non-stationary; estimation of covariate effects in the dependence
model will therefore also be necessary, using the spline approach outlined above. For example, the depend-
ence structure of the simplest max-stable process for two spatial locations, known as the Smith process
(Smith 1990), is parameterised in terms of a bivariate Gaussian covariance matrix (e.g. Jonathan and
Ewans 2013), therefore requiring the estimation of three parameters (two variances and one covariance),
all of which in principle may vary spatio-directionally. Other more realistic max-stable processes typically
have larger numbers of dependence parameters (e.g., Davison et al. 2012). Spatial extremes methods are
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nevertheless potentially of great value in met-ocean design, since they provide a framework within which
extremal behaviour of complete ocean basins can be modelled, incorporating appropriate marginal and
dependence structure and avoiding the need for site pooling in particular. It might be possible that in
future, only one extreme modelling task would be necessary per hindcast. That model, for the whole ocean
basin, could then be interrogated routinely to estimate design values for one location, or joint design values
for an arbitrary number of arbitrary locations. The ocean engineer would then no longer in principle need
to perform further site-specific extreme value analysis.
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Appendix: Back-fitting for Poisson and generalised Pareto inference

A back-fitting algorithm (see, e.g., Davison (2003)) is used for optimisation of penalised (negative log)
likelihoods for both Poisson and generalised Pareto model inference. Here, we outline the algorithm used
for the generalised Pareto case, since it is somewhat more involved. Poisson inference proceeds along
similar lines.

On the index set of m combinations of values of spatio-directional covariates, we express the generalised
Pareto negative log sample likelihood ` in terms of asymptotically independent parameter pairs {ξi, νi}mi=1

(where νi = σi(1 + ξi), i = 1, 2, ...,m). B-spline parameterisations are ξ = Bβξ, ν = Bβν , for the m × 1
vectors ξ and ν, where B is an appropriate (spatio-directional) B-spline basis matrix, and βξ and βν are
p× 1 parameter vectors to be estimated. The penalised (negative log) sample likelihood `∗ is then

`∗ = `+ λβξβ
′
ξPβξ + λβνβ

′
νPβν

where P is a symmetric (first-order) difference penalty matrix on the B-spline coefficients, and λβξ and
λβν are roughness penalty coefficients estimated by cross-validation.

Back-fitting proceeds by applying a Newton-Raphson scheme to the partial derivatives of the penalised
likelihood with respect to each of the 2p parameters {βξj , βνj}pj=1, known as penalised likelihood scores.
For each element βξj , j = 1, 2, ..., p of the generalised Pareto shape parameter vector βξ, with out loss of
generality, a Taylor expansion of penalised likelihood score u∗βξj about point (βoξ , β

o
ν) yields

u∗βξj ≈ u
∗
βξj

∣∣∣∣
o

+

p∑
l=1

∂u∗βξj
∂βξl

∣∣∣∣
o

(βξl − βoξl) +

p∑
l=1

∂u∗βξj
∂βνl

∣∣∣∣
o

(βνl − βoνl) for j = 1, 2, ..., p

where |o indicates quantities evaluated at (βoξ , β
o
ν). Since the generalised Pareto parameters are asymptot-

ically independent, we ignore the third term on the right hand side as explained below, greatly simplifying
computation. If we set the left-hand-side to zero for each j (corresponding to minimum negative log like-
lihood), we can use the right-hand-side to iterate from starting solution (βoξ , β

o
ν) to the minimum. This is

the Newton-Raphson algorithm.
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Penalised likelihood scores are written in terms of the penalised B-spline representation

u∗βξj =
∂`∗

∂βξj

=
m∑
k=1

∂`

∂ξk

∂ξk
∂βξj

+
m∑
k=1

∂`

∂νk

∂νk
∂βξj

+ λβξj{Pβξj}j

= {B′uξ + λβξPβξ}j , j = 1, 2, ..., p

where uξ is a m × 1 vector with elements ∂`
∂ξk

, k = 1, 2, ...,m. The second term on the right-hand-side of

the second line is identically zero, since ∂νk
∂βξj

= 0 always. In matrix notation

u∗βξ = B′uξ + λβξPβξ

An analogous expression is easily derived for scores u∗βν . To use the Newton-Raphson algorithm, we further
need expressions for the (elements of the) partial derivatives of u∗βξ and u∗βν with respect to (the elements

of) βξ and βν . For example

∂u∗βξj
∂βξl

=
∂2`∗

∂βξj∂βξl

=
∂

∂βξl
(u∗βξj )

=
∂

∂βξl
({B′uξ + λβξPβξ}j)

= {B′HξB + λβξP}jl
≈ −{B′H̄ξB − λβξP}jl for j, l = 1, 2, ..., p

where H̄ξjl = −E ∂2`∗

∂ξj∂ξl
, j, l = 1, 2, ..., p is diagonal. A similar expression is easily derived for

∂u∗βνj
∂βνl

.

Importantly,
∂u∗βξj
∂βνl

≈
∂u∗βνj
∂βξl

≈ 0 always since E ∂2`∗

∂ξj∂νl
= 0 from asymptotic independence of the generalised

Pareto parameters.

Substituting these expressions into the Newton-Raphson step above for u∗βξ we have, in matrix notation

0 = (B′uoξ + λβξPβ
o
ξ )− (B′H̄o

ξB − λβξP )(βξ − βoξ )

where the λβξPβ
o
ξ terms cancel on the right-hand-side, from which

(B′H̄o
ξB − λβξP )βξ = B′uoξ + λβξPβ

o
ξ + (B′H̄o

ξB − λβξP )βoξ

where uoξ and H̄o
ξ are uξ and H̄ξ evaluated at βoξ . Thus the vector Newton-Raphson step for βξ becomes

βξ = (B′H̄o
ξB − λβξP )−1(B′uoξ +B′H̄o

ξBβ
o
ξ )

The analogous expression for βν is

βν = (B′H̄o
νB − λβνP )−1(B′uoν +B′H̄o

νBβ
o
ν)

where uoν and H̄o
ν , uν and H̄ν evaluated at βoν . Alternating fits using the last two equations allow iter-

ation from starting solution (βoξ , β
o
ν) (typically corresponding to parameter stationarity) to the optimum
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maximum penalised likelihood solution. The elements of uoξ, u
o
ν , H̄0

ξ and H̄o
ν change at each iteration.
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Figure 1: Hsp
S against direction for all 1089 locations. Clear variability with direction, largest Hsp

S from 90o − 130o. Large
number of small events from 260o − 310o.
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Figure 2: Rose histogram plots of Hsp
S . Size and colour of bin shows proportion of interval of Hsp

S values. Left-hand plot
shows pooled rose for all 1089 locations. Right-hand plots show direction histograms for individual locations in the (from
left to right, top to bottom) NW, N, NE, W, Central, E, SW, S and SE locations respectively. All right-hand plots (except
“central”) correspond to locations at the boundary of the spatial domain in the given direction; the “central” plot corresponds
to the centre of the spatial domain. In left hand plot, large number of smaller storms from west, smaller number of larger
storms from east north-east.
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Figure 3: Spatial distributions of storm direction (arrow direction) and relative size of storm peak significant wave height
(arrow length) for the largest two cyclone events.
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Figure 4: Directional evolution of significant wave height (metres) for all cyclone events at the (single) central location,
emanating from 8 directional octants centred (from left to right, top to bottom) on NW, N, and NE; W and E; SW, S and
SE respectively.
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Figure 5: Spatio-directional plot for Poisson rate of threshold exceedance ρ. The 8 right-hand plots show ρ spatially for 8
directions (from left to right, top to bottom: storms from NW, N, and NE; W and E; SW, S and SE respectively). The
left-hand plot shows the direction from which ρ is largest for each location. Units of ρ are number of threshold exceedances
per degree longitude, latitude and direction, per annum.
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Figure 6: Spatio-directional plot for estimates of GP shape, ξ. The 8 right-hand plots show ξ spatially for 8 directions (from
left to right, top to bottom: storms from NW, N, and NE; W and E; SW, S and SE respectively). The left-hand plot shows
the direction from which ξ is largest, for each location.
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Figure 7: Spatio-directional plot for estimates of GP scale, σ. The 8 right-hand plots show σ spatially for 8 directions (from
left to right, top to bottom: storms from NW, N, and NE; W and E; SW, S and SE respectively). The left-hand plot shows
the direction from which σ is largest, for each location. Colour scale in metres.
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Figure 8: Validation of spatio-directional model for Hsp
S . Comparison of cumulative distribution functions (cdfs) for omni-

directional return values of the original sample (black) with those from 1000 realisations under the model corresponding to
the same time period as the original sample, shown in terms of the median (solid grey) and 95% uncertainty band (dashed
grey). Panels correspond to a 3 × 3 grid of locations in the spatial domain, the relative longitudes and latitudes of which are
given in the panel titles.
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Figure 9: Validation of spatio-directional model for Hsp
S . Comparison of cumulative distribution functions (cdfs) for directional

octant return values of the original sample (black) with those from 1000 realisations under the model corresponding to the
same time period as the original sample, shown in terms of the median (solid grey) and 95% uncertainty band (dashed grey)
aggregated over the 9 locations used in Figure 8. Panels correspond to directional octants centred (from left to right, top to
bottom) on NW, N, and NE; W and E; SW, S and SE respectively.
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Figure 10: 100-year return values Hsp
S100 without directional dissipation, using simulation. The left-hand plot shows median

omnidirectional return values for each of the 1089 locations. The 8 right-hand plots show median directional sector Hsp
S100 per

location for 8 directional octants centred (from left to right, top to bottom) on storms from NW, N, and NE; W and E; SW,
S and SE respectively. Colour scale in metres.
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Figure 11: 100-year return values HS100 with directional dissipation, using simulation. The left-hand plot shows median
omnidirectional return values for each of the 1089 locations. The 8 right-hand plots show median directional sector HS100 per
location for 8 directional octants centred (from left to right, top to bottom) on storms from NW, N, and NE; W and E; SW,
S and SE respectively. Colour scale in metres.
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Figure 12: Median omnidirectional 100-year return values Hsp
S100 (solid black) from pooling of all locations assuming spatial

independence ignoring all covariate effects, as a function of non-exceedance probability of constant extreme value threshold,
with 95% uncertainty band (dashed black). Corresponding estimates for storms from directional sector 90o-135o only are
shown in grey.
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