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Introduction

Overview

◦ Return values
◦ Problem : incorporating estimation (epistemic) uncertainty
◦ Possible estimators
◦ Theoretical orderings of estimators
◦ Simulation study
◦ Conclusions and a better way
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Return value basics

What is a return value?

◦ Random variable A represents the maximum value of some
physical quantity X per annum
◦ The N-year return value xN of X is then defined by the equation

FA(xN) = Pr(A ≤ xN) = 1− 1
N

◦ Typically N ∈ [102, 108] years
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Return value basics

An alternative definition

◦ Random variable AN represents the N-year maximum value of X
◦ The N-year return value x′N of X can be found from FAN for large

N, assuming independent annual maxima since

FA(xN) = 1− 1
N

⇒ FAN (xN) =

(
1− 1

N

)N

≈ exp(−1)

◦ Use FAN (x′N) = exp(−1) to define an alternative return value x′N
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Return value basics

Estimating a return value

◦ To estimate xN , we need knowledge of the distribution function
FA of the annual maximum

◦ We might estimate FA using extreme value analysis on a sample of
independent observations of A
◦ Typically more efficient to estimate the distribution FX|X>ψ of

threshold exceedances of X above some high threshold ψ using a
sample of independent observations of X, and use this in turn to
estimate FA and xN

◦ How is this done?
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Return value basics

Estimating a return value

◦ Asymptotic theory suggests for high threshold ψ ∈ (−∞, ∞) that

FX|X>ψ(x|ψ,σ ,ξ) = 1−
(

1 +
ξ

σ
(x−ψ)

)−1/ξ

+

for x > ψ, shape ξ ∈ (−∞, ∞) and scale σ ∈ (0, ∞)

◦ The full distribution of X is FX(x) = τ + (1− τ)FX|X>ψ(x) where
τ = Pr(X ≤ ψ)
◦ Thus

FA(x) = Pr(A ≤ x) =
∞
∑
k=0

fC(k)Fk
X(x)

where C is the number of occurrences of X per annum, with
probability mass function fC to be estimated (say with a Poisson
model with parameter λ)

◦ So what’s the problem?
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Incorporating epistemic uncertainty

Parameter uncertainty

◦ xN can be estimated easily in the absence of uncertainty

◦ In reality, we estimate parameters λ, ψ, σ and ξ from a sample of
data, and we cannot know their values exactly
◦ How does this epistemic uncertainty affect return value

estimates?

◦ A number of different plausible estimators for return values
under uncertainty
◦ Different estimators perform differently (bias and variance)
◦ Which estimators are likely to perform reasonably in fairly

general circumstances?

◦ Is it even sensible or desirable to estimate return values?
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Incorporating epistemic uncertainty

Incorporating uncertainty

◦ If a distribution FY|Z of random variable Y is known conditional
on random variables Z, and the joint density fZ of Z is also
known, the unconditional predictive distribution F̃Y can be
evaluated using

F̃Y(y) =
∫
ζ

FY|Z(x|ζ) fZ(ζ) dζ

◦ Th expected value of deterministic function g of parameters Z
given joint density fZ is

E[g(Z)] =
∫
ζ

g(ζ) fZ(ζ) dζ

◦ ζ = (λ,ψ,σ ,ξ), Y = A (or Y = AN)
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Different return value estimators xN1 = xN (E[Z])

Return value estimated using expected values of parameters, xN(E[Z])

◦ Motivated by the widespread approach of ignoring uncertainty in
parameters ζ for estimation of return values

xN1 = xN(E[Z])

◦ Simply plug in the mean parameter estimates E[Z] =
∫
ζ ζ fZ(ζ) dζ

◦ A related estimator converging to xN1 with increasing N, would
be x′N(E[Z])
◦ Similar choices of estimator could be based on mode(Z),

median(Z), ...
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Different return value estimators xN2 = E[xN (Z)]

Expected quantile of distribution of A with NEP 1− 1/N, E[xN(Z)]

xN2 = E[xN(Z)] =
∫
ζ

xN(ζ) fZ(ζ) dζ

◦ Solve for quantile xN(ζ) of the distribution of A with NEP
1− 1/N for a large number of parameter choices ζ , and then take
the mean

◦ A related estimator E[x′N(Z)] is the expected quantile of
distribution of AN with NEP exp(−1) (converges to xN2 as N
increases)
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Different return value estimators xN3 = Q̃A(1− 1/N)

Quantile of predictive distribution of A with NEP 1− 1/N,

Q̃A(1− 1/N)

◦ First calculated the predictive distribution F̃A

F̃A(x) =
∫
ζ

FA|Z(x|ζ) fZ(ζ) dζ

integrating over parameter uncertainty

◦ Then find the 1− 1
N quantile of F̃A

F̃A(xN3) = 1− 1
N

◦ Write briefly as xN3 = Q̃A(1− 1/N), where Q̃A is the predictive
quantile (or inverse) function corresponding to F̃A

◦ This would be the “obvious go-to” Bayesian estimate
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Different return value estimators xN4 = Q̃AN
(exp(−1))

Quantile of predictive distribution of AN with NEP exp(−1),

Q̃AN (exp(−1))

◦ First calculated the N-year predictive distribution FAN

F̃AN (x) =
∫
ζ

FAN |Z(x|ζ) fZ(ζ) dζ

integrating over parameter uncertainty

◦ Then find the exp(−1) quantile of F̃AN

F̃AN (xN4) = exp(−1)

◦ Write briefly as xN4 = Q̃AN (exp(−1)), where Q̃AN is the
predictive quantile function corresponding to F̃AN
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Different return value estimators Summary

Summary
◦ Take average over uncertain parameters, and plug in to return

value calculation q1 = xN1 = xN(E[Z])

◦ Calculate return value for all sets of estimates independently, then
take average q2 = xN2 = E[xN(Z)]

◦ Calculate “average” annual maximum distribution, then take
1− 1/N quantile q3 = xN3 = Q̃A(1− 1/N)

◦ Calculate “average” N-year maximum distribution, then take
exp(−1) quantile q4 = xN4 = Q̃AN (exp(−1))

◦ Without parameter uncertainty, all these estimators are equivalent
◦ With parameter uncertainty, all these estimators are different
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Theoretical orderings of estimators

Theoretical inequalities

◦ We can show that the estimators have orderings, e.g.

Inequality Condition
I1 q3 ≥ q4 Always
I2 q2 > q0 ξ1 > max(ξ0, 0)
I3 q3 > q2 1 > ξ1 > max(ξ0, 0)
I4 q1 > q0 ξ0,ξ1 < 0, ∑iσi/∑i(−ξi) > σ0/(−ξ0)
I5 q2 > q0 ξ0,ξ1 < 0, (1/m)∑i(σi/(−ξi)) > σ0/(−ξ0)
I6 q3 > q0 ξ0,ξ1 < 0, maxk∈(1,2,...,m)(σk/(−ξk)) > σ0/(−ξ0)

◦ GP parameter set Z = {ξi,σi}m
i=1 ordered s.t. ξ1 = argmaxi(ξi)

◦ ξ0 and σ0 are the true underlying data-generating parameters
◦ Condition N → ∞ applies to all these cases
◦ Not specific to maximum likelihood estimation of GP parameters
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Simulation study Set-up

Simulation study
◦ Data from GP distribution, ξ0 ∈ −0.4,−0.35, ...,+0.1, σ0 = 1
◦ Sample sizes n = 102, 103 and 104, and λ = 102 events annually
◦ Return periods N = 102 and 104 years
◦ m = 105 sample realisations

◦ Fractional bias in return value
q j

q0
− 1

◦ Bias in exceedence probability

Pr(A > q j)−
1
N

◦ Bias in log exceedence probability (important for estimation)

log10(Pr(A > q j))− log10(
1
N
)
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Simulation study Return value

Fractional bias in return value, N = 100 years, λ = 100 annually

◦ n/λ ⇒ 1, 10, 100 years of data to predict 100 year return value
◦ q3 > q2 > q1 > q4, and q2 shows lowest bias
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Simulation study Exceedance probability

Bias in exceedance probability, N = 100, λ = 100

◦ q3 underestimates exceedance probability
◦ q2 shows lowest bias for ξ0 > −0.2
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Simulation study Log exceedance probability

Bias in log exceedance probability, N = 100, λ = 100

◦ q3 underestimates exceedance probability (huge for small n)
◦ q2 generally shows lowest bias
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Conclusions Findings

Findings

◦ Different estimators⇒ different estimates and systematic bias
◦ Why? E(g(Z)) 6= g(E(Z)) in general
◦ Worse for small sample size n, and→ 0 as n→ ∞
◦ E[xN(Z)] less biased, estimated from FA or FAN

◦ Q̃A(1− 1/N) is “obvious go-to”, but poor performance
⇒ Intuitively, better to take averages at end of calculation only
⇒ Decision-theoretic approach better

◦ Maximum likelihood estimation used here; other inference
schemes examined also; lots of other estimators possible!
◦ Uncertainties in return values are also large!
◦ Do safety factors elsewhere in the design process require return

values with assumed characteristics?
◦ Discussion of differences in return values only makes sense when

they have been calculated using the same approach
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Conclusions Findings

Decision-theoretic approach

◦ Consider structural loading R over some period for structural
strength r0

◦ Define a loss function, e.g. L(R|r0) = I(R > r0)

◦ Estimate conditional distribution FR|Z(r|ζ) for uncertain
environmental parameters ζ (computationally challenging!)
◦ Calculate expected loss

E(L|r0) =
∫
ζ

∫
r

L(r|r0) fR|Z(r|ζ) fZ(ζ) drdζ

◦ Adjust r0 so that E(L|r0) is acceptably small

◦ Propagate uncertainty in full through design calculation, and
integrate over uncertain parameters at the very end
◦ No need for return values
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Conclusions Findings

References

P. Jonathan, D. Randell, J. Wadsworth, and J.A. Tawn. Uncertainties in
return values from extreme value analysis of peaks over threshold
using the generalised Pareto distribution. Ocean Eng., 220:107725,
2021.

R. Towe, E. Zanini, D. Randell, G. Feld, and P. Jonathan. Efficient
estimation of distributional properties of extreme seas from a
hierarchical description applied to calculation of un-manning and
other weather-related operational windows. Submitted to Ocean
Engineering, draft at www.lancs.ac.uk/∼jonathan, 2021.

Jonathan Return values June 2021 22 / 23



Backup Comparing q3 and q4

q3, q4 and their uncertainties

◦ ξ0 = −0.2, sample size n = 103 and N = 100 years
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