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Motivation
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Katrina in the Gulf of Mexico.



Outline Motivation Challenges Basics Covariates Applications Multivariate Applications Current References

Katrina damage.
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Cormorant Alpha in a North Sea storm.
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”L9” platform in the Southern North Sea.
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A wave seen from a ship.
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Black Sea coast.
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Motivation

• Rational design an assessment of marine structures:

• Reducing bias and uncertainty in estimation of structural
reliability.

• Improved understanding and communication of risk.
• Climate change.

• Other applied fields for extremes in industry:

• Corrosion and fouling.
• Finance.
• Networks.
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Sanity check

• All models are wrong, some models are useful.
• George Box,

http : //en.wikipedia.org/wiki/George E . P. Box

• How can we make models as useful as possible?

• Consistency between physical, engineering and statistical
insights.
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Modelling challenges
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• Covariate effects:
• Location, direction, season, ...
• Multiple covariates in practice.

• Cluster dependence:
• e.g. storms independent, observed (many times) at many

locations.
• e.g. dependent occurrences in time.

• Scale effects:
• Modelling x2 gives different estimates c.f. modelling x .

• Threshold estimation.
• Parameter estimation.
• Measurement issues:

• Field measurement uncertainty greatest for extreme values.
• Hindcast data are simulations based on pragmatic physics,

calibrated to historical observation.
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• Multivariate extremes:
• Waves, winds, currents, forces, moments, displacements, ...
• Componentwise maxima⇔ max-stability⇔ regular

variation:
• Assumes all components extreme.
• ⇒ Perfect independence or asymptotic dependence only.

• Extremal dependence:
• Assumes regular variation of joint survivor function.
• Gives rise to more general forms of extremal dependence.
• ⇒ Asymptotic dependence, asymptotic independence.

• Conditional extremes:
• Assumes, given one variable being extreme, convergence of

distribution of remaining variables.
• Not equivalent to extremal dependence.
• Allows some variables not to be extreme.

• Inference:
• ... a huge gap in the theory and practice of multivariate

extremes ... (Beirlant et al. 2004)
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Basics
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Degenerate cdf of block maximum

• F (X ) = Pr(X ≤ x), cumulative distribution function (cdf)

• Mn = maxi{Xi}, block maximum

• Pr(Mn ≤ x) = [Pr(X ≤ x)]n, cdf of maximum

• As n ↑ ∞, Pr(Mn ≤ x) becomes degenerate (= 0
everywhere except at the maximum value of X , xF )

• What do we do to make Pr(Mn ≤ x) useful?
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Generalised extreme value distribution

• Try shifting and scaling the random variable to make its tail
more stable (this is like the central limit theorem)

• Yn = a−1
n (maxi{Xi} − bn)

• Pr(Yn 6 y) = [Pr(X ≤ bn + any)]n

• As n ↑ ∞, Pr(Yn 6 y) is almost always well behaved (we
have max-stable distribution)

Pr(Yn 6 y) → exp{(1 + ξ
y − µ
σ

)
− 1

ξ

+ } as n→∞ for ξ 6= 0

( → exp{exp(−y − µ
σ

)} when ξ = 0)

• Generalised extreme value distribution (GEV)
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Domain of attraction

• All max-stable distributions converge to the GEV for some
value of shape parameter, ξ
• Any max-stable distribution is within the domain of

attraction (DOA) of GEV for some ξ

• The Weibull distribution converges to GEV with:
• ξ = 0
• F̄ = kxαexp−cxτ
• an = 1

cτ (c−1 log n)(1/τ)−1

• bn = (c−1 log n)1/τ to leading order

• Note: this theory is analogous to central limit theorem.
There is nothing mysterious here.
• If you are happy that the mean of random variables with

arbitrary distributions converges to a Gaussian⇒ you
should be equally happy with GEV for block maxima!
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GEV⇒ GP
• Yn is max-stable, the maximum of n events (i.e. a block

maximum), each with distribution function F

• So, if n is large enough, F n(y) ≈ exp(−
(
1 + ξ y−µ

σ

)− 1
ξ )

• n log F (y) ≈ −
(
1 + ξ y−µ

σ

)− 1
ξ (log both sides)

• Pr(Yn > y) = 1− F (y) ≈ 1
n

(
1 + ξ y−µ

σ

)− 1
ξ (Taylor

expansion, log x = −(1− x))

• Pr(Yn > y |Yn > u) = 1−F (y)
1−F (u) ≈

(
1 + ξ y−u

σ̃

)− 1
ξ (simple

re-arrangement, where σ̃ = σ + ξ(u − µ))
• This is the generalised Pareto (GP) distribution.

• Threshold exceedences from max-stable distributions are
GP distributed.

• Block maxima from max-stable distributions are GEV
distributed
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Poisson + GP⇒ GEV
• If occurrence rate of exceedences are Poisson, we can

write:

Pr(max in period 6 z) =
∞∑

k=0

(k storms in period)F k (z)

=
∞∑

k=0

λk

k !
exp(−λ)F k (z)

= exp(−λ(1− F (z)))

• But threshold exceedences are GP-distributed, so:

Pr(max in period 6 z) = exp(−λ
(

1 + ξ
z − u
σ̃

)− 1
ξ

)

• λ is expected number of exceedences, σ̃ = σ + ξ(u − µ).

• Set λ to be
(
1 + ξ u−µ

σ

)− 1
ξ (w.l.o.g)⇒ GEV
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Take-aways

• We should model tails of distributions with GEV and GP
distributions
• Threshold exceedences from max-stable distributions are

GP distributed.
• Block maxima from max-stable distributions are GEV

distributed
• Motivation for GEV and GP is asymptotic theory
• We can only justify fitting GEV and GP when we are clearly

in the tail

• Weibull is a restricted choice of distribution for modelling
corresponding to ξ = 0.
• Physics (e.g. Miche) tells us that Weibull cannot be correct
• Weibull might be easier to fit to data (since it is more

restricted), but this doesn’t necessarily make it better
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Effect of ξ

• Pr(X > x |X > u) = (1 + ξ x−u
σ )−

1
ξ

• If ξ < 0, there is a finite upper end-point xF which cannot
be exceeded

• If ξ ≥ 0, the upper end-point xF =∞

• For ocean waves, observation and physics suggests that
xF is finite. e.g Miche:
• 1

2 kLHMAX = 0.14π tanh(kLd)
• In deep water, Taylor expansion yields kLHMAX = 0.8 limit
• In shallow water, Taylor expansion yields HMAX

d = 0.8 limit

• Weibull distribution has the upper end-point xF =∞,
inconsistent with physics
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Effect of ξ < 0

• As ξ ↑ 0, then xF ↑ ∞
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Changing threshold
• Consider changing threshold from u to v , v > u

• Then Pr(X > x |X > u) = (1 + ξ x−u
σ )−

1
ξ

Pr(X > x |X > v) =
Pr(X > x)

Pr(X > v)

=
Pr(X > x |X > u)

Pr(X > v |X > u)

=
(1 + ξ x−u

σ )−
1
ξ

(1 + ξ v−u
σ )−

1
ξ

= (1 + ξ
x − v

σ + ξ(v − u)
)−

1
ξ

• ξ is unchanged, σ varies linearly with gradient ξ a.a.f.o.
threshold
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Return values

• GP or GEV model with parameters ξ, σ, u
• p-year return value xp is defined by:

1− 1
p

= exp{−λ
(

1 + ξ
xp − u
σ

)− 1
ξ

}

• λ is the expected number of exceedences per annum.

• Quantile q of the p-year maximum xp(q) is defined by:

q = exp(−pλ
(

1 + ξ
xp(q)− u

σ

)− 1
ξ

)

• pλ is the expected number of exceedences in p years.
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Covariates: outline
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• Sample {xi , θi}ni=1 of variate x and covariate θ.
• Non-homogeneous Poisson process model for threshold

exceedences
• Davison and Smith [1990], Davison [2003],

Chavez-Demoulin and Davison [2005]

• Rate of occurrence of threshold exceedence and size of
threshold exceedence are functionally independent.

• Other equivalent interpretations.

• Time, season, space, direction, GCM parameters ...
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• Generalised Pareto density (and negative conditional
log-likelihood) for sizes of threshold excesses:

f (xi ; ξi , σi ,u) =
1
σi

(1 +
ξi

σi
(x − ui))−

1
ξ
−1 for each i

lE (ξ, σ) = −
n∑

i=1

log(f (xi ; ξi , σi ,ui))

• Parameters: shape ξ, scale σ are functions of covariate θ.
• Threshold u set prior to estimation.
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• (Negative) Poisson process log-likelihood (and
approximation) for rate of occurrence of threshold
excesses:

lN(µ) =

∫ n

i=1
µdt −

n∑
i=1

logµi

l̂N(µ) = δ

m∑
j=1

µ(jδ)−
m∑

j=1

cj logµ(jδ)

• {cj}mj=1 counts the number of threshold exceedences in
each of m bins partitioning the covariate domain into
intervals of length δ

• Parameter: rate µ, a function of covariate θ.
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• Overall:

l(ξ, σ, µ) = lE (ξ, σ) + lN(µ)

with all of ξ, σ and µ smooth with respect to t .

• We can estimate µ independently of ξ and σ.
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• We can impose smoothness on parameters in various
ways.

• In a frequentist setting, we can use penalised likelihood:

`(θ) = l(θ) + λR(θ)

• R(θ) is parameter roughness (usually quadratic form in
parameter vector) w.r.t. covariate θ.

• λ is roughness tuning parameter

• In a Bayesian setting, we can impose a random field prior
structure (and corresponding posterior) on parameters:

f (θ|α) = exp{−α
n∑

i=1

∑
θj near θi

(θi − θj)
2}

log f (ξ, σ|x , α) = l(ξ, σ, µ|x)

−
n∑

i=1

∑
θj near θi

{αξ(ξi − ξj)
2 + ασ(σi − σj)

2}
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Covariates: applications
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Fourier directional model for GP shape and scale at Northern
North Sea location, with 95% bootstrap confidence band.
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Spatial model for 100-year storm peak significant wave height
in the Gulf of Mexico (not to scale), estimated using a
thin-plate spline with directional pre-whitening.
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Multivariate: outline
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Component-wise maxima

• Beirlant et al. [2004] is a nice introduction.

• No obvious way to order multivariate observations.
• Theory based on component-wise maximum, M.

• For sample {xij}n
i=1 in p dimensions:

• Mj = maxn
i=1{xij} for each j .

• M will probably not be a sample point!

• P(M 6 x) =
∏p

j=1 P(Xj 6 xj) = F n(x)

• We assume: F n(anx + bn)
D→ G(x)

• Therefore also: F n
j (an,jxj + bn,j )

D→ Gj (xj )
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Homogeneity

• Limiting distribution with Frechet marginals, GF

• GF (z) = G(G←1 (e−
1

z1 ),G←2 (e−
1

z2 ), ...,G←p (e−
1

zp ))

• VF (z) = − log GF (z) is the exponent measure function
• VF (sz) = s−1VF (z)

Homogeneity order -1 of exponent measure implies
asymptotic dependence (or perfect independence)!
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Composite likelihood for spatial dependence
• Composite likelihood lC(θ) assuming Frechet marginals:

lC(θ) = −
n∑

i=1

n∑
j=1

log f (zi , zj ; θ)

f (zi , zj) = (
∂V (zi , zj)

∂zi

∂V (zi , zj)

∂zj
−
∂2V (zi , zj)

∂zi∂zj
)e−V (zi ,zj )

• Exponent measure has simple bivariate parametric form,
e.g. :

V (zi , zj) = (
1
zi

+
1
zj

)(1− α(h)

2
(1− (1− 2

(ρ(h) + 1)zizj

z2
i + z2

j
)2))

with two pre-specified functions α and ρ of distance h
whose parameters must be estimated.



Outline Motivation Challenges Basics Covariates Applications Multivariate Applications Current References

• Component-wise maxima has some pros:
• Most widely-studied branch of multivariate extremes.
• Composite likelihood offers some promise, but is itself an

approximation.
• And many cons:

• Hotch-potch of methods.
• Does not accommodate asymptotic independence.
• Threshold selection!
• Covariates!

• Parametric forms.
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Extremal dependence

• Bivariate random variable (X ,Y ):
• asymptotically independent if

limx→∞ Pr(X > x |Y > x) = 0.
• asymptotically dependent if limx→∞ Pr(X > x |Y > x) > 0.

• Extremal dependence models:
• Admit asymptotic independence.

• But have issues with:
• Threshold selection.
• Covariates!
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• Bingham et al. [1987]

• (XF ,YF ) with Frechet marginals (Pr(XF < f ) = e−
1
f ).

• Assume Pr(XF > f ,YF > f ) is regularly varying at
infinity:

limf→∞
Pr(XF > sf ,YF > sf )

Pr(XF > f ,YF > f )
= s−

1
η for some fixed s > 0

• This suggests:

Pr(XF > sf ,YF > sf ) ≈ s−
1
η Pr(XF > f ,YF > f )

Pr(XG > g + t ,YG > g + t) = Pr(XF > eg+t ,YF > eg+t )

≈ e−
t
η Pr(XF > eg ,YF > eg)

= e−
t
η Pr(XG > g,YG > g)

on Gumbel scale XG: Pr(XG < g) = exp(−e−g).
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• Ledford and Tawn [1996] motivated by Bingham et al.
[1987]

• Assume model Pr(XF > f ,YF > f ) = `(f )f−
1
η

• `(f ) is a slowly-varying function, limf→∞
`(sf )
`(f ) = 1

• Then:

Pr(XF > f |YF > f ) =
Pr(XF > f ,YF > f )

Pr(YF > f )

= `(f )f−
1
η (1− e−

1
f )

∼ `(f )f 1− 1
η

∼ `(f )Pr(YF > f )1− 1
η

• At η < 1 (or limf→∞`(f ) = 0), XF and YF are As.Ind.!
• η easily estimated from a sample by noting that LF , the

minimum of XF and YF is approximately GP-distributed:

Pr(LF > f + s|LF > f ) ∼ (1 +
s
f

)−
1
η for large f



Outline Motivation Challenges Basics Covariates Applications Multivariate Applications Current References

Conditional extremes

• Heffernan and Tawn [2004]

• Sample {xi1, xi2}ni=1 of variate X1 and X2.
• (X1,X2) need to be transformed to (Y1,Y2) on the same

standard Gumbel scale.
• Model the conditional distribution of Y2 given a large

value of Y1.
• Asymptotic argument relies on X1 (and Y1) being large.

• Applies to almost all known forms of multivariate extreme
value distribution, but not all.
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• (X1,X2)
PIT⇒ (Y1,Y2).

• (Y2|Y1 = y1) = ay1 + yb
1 Z for large values y1 and +ve

dependence.
• Estimate a, b and Normal approximation to Z using

regression.

• (Y1,Y2)
PIT⇒ (X1,X2).

• Simulation to sample joint distribution of (Y1,Y2) (and
(X1,X2)).

• Pros:
• Extends naturally to high dimensions
• c.f. copulas

• Cons:
• Threshold selection for (large number of) models.
• Covariates!
• Consistency of Y2|Y1 and Y1|Y2 not guaranteed.
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Multivariate: applications
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Environmental design contours derived from a conditional
extremes model for storm peak significant wave height, HS, and
corresponding peak spectral period, TP .
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Current profiles with depth (a 32-variate conditional extremes
analysis) for a North-western Australia location.
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Fourier directional model for conditional extremes at a
Northern North Sea location.
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Current developments
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Extreme quantiles from Bayesian model incorporating scale
uncertainty via a Box-Cox transformation, point-wise for North
Sea.
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Box-Cox scale λ, point-wise for North Sea.
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Generalised Pareto shape, point-wise for North Sea.
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A Weibull-GP model for the distribution of waves in shallow
water.
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• p-spline approaches to spatio-temporal and
spatio-directional extreme value models.
• Easy specification of multi-covariate roughness.

• Composite likelihood approaches to (asymptotically
dependent) joint extremes.

• Laplace approximation as alternative to MCMC.
• Statistical down-scaling to estimate climate change

effects on structural safety.
• Mixture modelling for elimination of threshold selection
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Thanks
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