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1. Introduction

This article considers the problem of detecting changepoints in the second-order
(i.e. autocovariance) structure of time series. The ability to detect such struc-
tural changes in temporal dependence retrospectively is of value in a number
of applications, for example in renewable energy and biomedical research. It
is therefore surprising that more attention has not been devoted to this topic
within the literature to date, particularly when compared to the numerous con-
tributions which already exist for the change in mean or change in variance
problems (see Chen and Gupta (2000), Eckley et al. (2011) and references
therein). Below we review the current state of the art in the area of autoco-
variance changepoint detection before outlining our approach and the structure
of this paper.
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Previous work. As observed, comparatively little attention has been given to
the problem of autocovariance changepoint detection. A likelihood approach
was taken by Davis et al. (2006) and Gombay (2008) to detect changes in
autoregressive (AR) models. More specifically, Davis et al. (2006) introduce
the Auto-PARM algorithm for segmenting time series with a piecewise AR
structure. The test statistic used in Auto-PARM is a penalised likelihood ra-
tio, the penalty being the Minimum Description Length (MDL). The multiple
changepoint solution space is then traversed using a genetic algorithm to iden-
tify both the number and location of changepoints. In practice Auto-PARM
is powerful in detecting changepoints due to the likelihood-based test statis-
tic but has varied results when the assumption of piecewise AR structure is
violated.

Other, non-parametric, approaches to this retrospective changepoint problem
include the work of Ombao et al. (2001). Unfortunately this approach suffers
when the change occurs at non-dyadic time points. An alternative method has
been suggested by Ahamada et al. (2004) who consider the problem in a local
Fourier setting, whereby changepoints are identified by considering the mean
of the log-spectrum across a range of frequencies. As such, some changepoints
may not be detectable due to frequency cancellation. Most recently, Cho and
Fryzlewicz (2012) proposed a nonparametric test for autocovariance changepoint
detection by considering the problem in a locally stationary wavelet paradigm.
The results reported in their simulation study appear to be competitive with
those of Davis et al. (2006), though as we shall see later (Section 4) their method
can lack precision when one considers the locations of the detected changepoint
locations in certain circumstances. In addition, their approach assumes that
the variance of the summary statistics is contant across proposed changepoint
locations, a feature which is very difficult to validate in practice.

Our approach. The changepoint method which we propose is founded on the
Locally Stationary Wavelet time series model of Nason et al. (2000), a brief
review of which is provided in the next section. In contrast to the approach
proposed in Cho and Fryzlewicz (2012), we cast our changepoint problem in
a parametric framework. The novelty of our approach comes by constructing
a likelihood-based test for changes in the autocovariance structure in the time
domain which is equivalent to performing a test on the evolutionary wavelet
spectral structure in the wavelet domain. Consequently, unlike the approach
adopted by Davis et al. (2006) which assumes the process follows an AR model,
the LSW model allows more general time series forms.

The article is structured as follows: Section 2 briefly reviews LSW processes
before we proceed to describe our method for detecting changes in autocovari-
ance structure in Section 3. The performance of the method is compared against
Auto-PARM and the method from Cho and Fryzlewicz (2012) using simulated
data in Section 4, and for detection of storm seasons from oceanographic time
series in Section 5.
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2. Background to locally stationary wavelet processes

We begin by providing a brief review of the LSW modelling paradigm. Recall
that a wavelet is a (compactly supported) oscillating function with several prop-
erties that allow efficient location-scale decompositions; see Percival and Walden
(2006) and Nason (2008) for accessible introductions.

Below we give a brief review of the LSW approach and the properties which
we will utilise in Section 3.

Following Fryzlewicz and Nason (2006), a triangular stochastic array {Xt,n}
n−1

t=0

for n = 1, 2, . . ., is in a class of Locally Stationary Wavelet (LSW) processes if
there exists a mean-square representation

Xt,n =
∞
∑

j=1

∑

k

Wj

(

k
n

)

ψj,k−tξjk. (1)

with j in {1, 2, . . .} and k ∈ Z as scale and location parameters, respectively.
The ψj = (ψj,0, . . . , ψi,Lj−1) are discrete, real-valued, compactly supported,
non-decimated wavelet vectors with support lengths Lj = O(2j), and the ξj,k
are zero-mean, orthonormal, identically distributed random variables. For each
j ≥ 1, the time-varying amplitudes,Wj(z) : [0, 1] → R are real valued, piecewise
constant functions with a finite (but unknown) number of jumps. Let Pj denote
the total magnitude of jumps in W 2

j (z), then the variability of functions Wj(z)
is controlled so that

•
∑∞

j=1
W 2

j (z) <∞ uniformly in z,

•
∑J

j=1
2jPj = O(logn) where J = ⌊log2 n⌋.

This modification of the constraints on the Wj(z) extends the LSW model class
to include time series with piecewise stationary second order structure.

Recall from classical time series theory that the second order structure of a
time series is characterised by the spectrum. The spectrum for a LSW process is
defined as Sj(k/n) = |Wj(k/n)|2 and changes over time as well as scale. Nason
et al. (2000) show that if Xt is a stationary process, i.e. does not change over
time, then W 2

j (k/n) is constant across each scale j. Thus if the second order
structure of a time series is piecewise stationary, this manifests itself as piecewise
constant W 2

j (k/n). Figure 1 provides an example of this where (a) shows a
realisation from a piecewise MA model with a changepoint at time 128 and (b)
shows the spectral estimate which, in the finer scales, clearly demonstrates a
step change at 128.

The specific relationship between the autocovariance structure of Xt and
W 2

j (k/n) is such that it is easily shown that

cov (Xt, Xt+v) =
∑

j,k

W 2
j

(

k
n

)

ψj,k−tψj,k−t−v. (2)

In the next section we utilise this decomposition to construct a test for a change
in second order structure.
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Fig 1. Example of a piecewise stationary MA process (model H) with changepoint at 128
(a) Original Time Series, (b) Average Evolutionary Wavelet Spectrum estimate over 100
realisations.

3. Detecting changes in second order structure

The Locally Stationary Wavelet (LSW) process can capture many dependence
structures. Of particular interest in changepoint applications is the fact that
a piecewise second-order time series will have its structure encoded as piece-
wise constant sequences in the local wavelet periodogram - a feature noted by
Cho and Fryzlewicz (2012). Consequently when using the LSW framework for
changepoint methods we do not need to be prescriptive about the structure of
the dependence beyond the requirements of the LSW definition.

In this article we restrict our consideration to LSW processes where the in-
novations {ξj,k} in (1) are Gaussian although extensions to other distributions
are possible.

Below we seek to identify a finite number of changes in autocovariance struc-
ture. This is achieved by first expressing our hypothesis for a single autoco-
variance change in the traditional setting. We then re-formulate the hypothesis
in terms of the W 2

j (k/n) parameters from the LSW model. Following this, we
derive the form of the likelihood of a Gaussian LSW process under the null and
alternative hypotheses which allows us to construct a test statistic in the usual
way. We then conclude this section by extending the single changepoint model
to multiple changes.

3.1. Detecting a single change in autocovariance structure

Our formulation of the hypothesis test for a single autocovariance changepoint
follows that of Berkes et al. (2009):
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Definition 3.1. The hypothesis to test for a single change in second order
structure at any lag v ≥ 0 is

H0 : cov (X0, X0−v) = cov (X1, X1−v) = · · · = cov (Xn−1, Xn−1−v) = c0,v

H1 : c1,v = cov (X0, X0−v) = · · · = cov (Xτ , Xτ−v)

6= cov (Xτ+1, Xτ+1−v) = · · · = cov (Xn−1, Xn−1−v) = cn,v.

For notational simplicity we assume that X−v, . . . , X−1 are observed.

Typically an upper bound is placed on v to ensure that identifiability prob-
lems do not occur but this should not be so small that the model fails to capture
the second order structure adequately (e.g. using v = 0 when there is temporal
dependence). Auto-PARM and similar time domain methods require the practi-
tioner to decide how many lags, v should be considered. However, if we assume
that the time series Xt can be well modelled by a LSW process then (2) demon-
strates that the autocovariance structure across all lags is defined in terms of the
W 2

j (k/n). Thus there is no requirement to choose a maximum lag to consider.

In addition, if the time series Xt is stationary (H0) then W
2
j (k/n) = γj at each

scale j. In other words, under the null hypothesis the spectrum is constant over
time and hence only one parameter per scale need be estimated. We therefore
propose an equivalent form of the hypothesis provided in Definition 3.1, given
here:

Definition 3.2. The hypothesis to test for a single change in autocovariance
structure for a LSW time series can be stated as follows:

H0 : W 2
j

(

0

n

)

=W 2
j

(

1

n

)

= · · · =W 2
j

(

n−1

n

)

= γ0,j ∀j

H1 : γ1,j =W 2
j

(

0

n

)

= · · · =W 2
j

(

τ
n

)

6=W 2
j

(

τ+1

n

)

= · · · =W 2
j

(

n−1

n

)

= γn,j,

for some j ∈ {1, 2, . . .}.

Given this alternative definition we must now derive the form of the likelihood
under the null and alternative hypotheses (Section 3.1.2). Before we consider
this, let us first describe the likelihood of a general LSW process with Gaussian
innovations.

3.1.1. Likelihood of a LSW process with Gaussian innovations

Let x = {x1, . . . , xn} be an observed time series which is a LSW process with
Gaussian innovations {ξj,k}. Then the log-likelihood of the time series can be
expressed as follows:

ℓ(W |x) = n
2
log 2π − 1

2
log |ΣW | − 1

2
x
′Σ−1

W x, (3)

where the variance-covariance matrix, ΣW , has elements;

ΣW (k, k′) = cov (Xk, Xk′) =
∑

l,m

W 2
l

(

m
n

)

ψl,m−kψl,m−k′ .
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Here ΣW (k, k′) denotes the element in the k-th row and k′-th column of the
ΣW matrix. Henceforth, for notational simplicity, we shall omit the indexing of
Σ by W although its dependence on W will still be implicit.

We now turn to consider the formulation of the likelihood under the null and
alternative hypotheses.

3.1.2. Likelihood-based test statistic

Recall our equivalent form of the single changepoint hypothesis (Definition 3.2).
Under the null hypothesis the spectrum of a stationary process is constant, i.e.
W 2

j (k/n) = γj for all locations k and scales j. Similarly under the alternative
hypothesis the spectrum is piecewise constant. Hence, given a time series x =
{xt}nt=1 which can be modelled as a LSW process with Gaussian innovations the
likelihood ratio test statistic for a change in autocovariance structure is given
by

λ = max
J<τ<n−J

{

log
∣

∣

∣
Σ̂0

∣

∣

∣
+ x

′Σ̂−1

0 x− log
∣

∣

∣
Σ̂1

∣

∣

∣
− x

′Σ̂−1

1 x

}

where J = ⌊log2 n⌋. Here Σ̂0 and Σ̂1 are the maximum likelihood estimates of
the null and alternative variance-covariance matrices respectively. The entries
of these matrices are given by,

Σ̂0(k, k
′) =

∑

l

∑

m

γ̂0,lψl,m−kψl,m−k′ , (4)

and Σ̂1(k, k
′) =

∑

l





∑

m≤τ

γ̂1,lψl,m−kψl,m−k′ +
∑

m>τ

γ̂n,lψl,m−kψl,m−k′



 ,

(5)

where γ̂0,l, γ̂1,l and γ̂n,l are the maximum likelihood estimates of the null,
pre-change and post-change transfer function, W 2

l (m/n) respectively. Using the
above test statistic a changepoint is detected when, λ > c, where c is a constant.
If a changepoint is detected, the location τ̂ of the change is estimated as argτ λ.
The choice of c is discussed in Section 3.3.

Remark In practice, the variance-covariance matrix estimates occasionally
produce singular matrices thus when this occurs we regularize the estimates
to obtain invertible matrices. The work reported in this article adopts the reg-
ularization approach proposed by Schnabel and Eskow (1999), one of many
regularization methods available.

Unfortunately, due to the structure of Σ, the maximum likelihood estimates of
W 2

j (k/n) have no closed form. However several authors including (Nason et al.,
2000; Fryzlewicz and Nason, 2006) have derived alternative means of estimating
{W 2

j (k/n)}. We turn to these to provide plug-in estimates as an alternative for γ̂.

In what follows we estimateW 2
j (k/n) by averaging the empirical estimates from

Nason et al. (2000) within each segment and using these as plug-in estimates in
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equations 4 and 5. Due to the use of plug-in estimates the test statistic is thus
a likelihood-based test rather than a formal likelihood ratio test.

The consistency of likelihood methods for detecting changepoints has been
shown in Csorgo and Horváth (1997). It is well known that plug-in estimates
that are consistent possess the same properties as maximum likelihood esti-
mates. Thus the proof of consistency for identifying changepoints using plug-in
estimates follows directly provided the estimates used are consistent.

3.2. Multiple changes in second order structure

Thus far we have considered the problem of detecting a single changepoint. More
generally we are interested in detecting (potentially) multiple changes. The like-
lihood ratio test statistic was shown to be consistent when estimating a single
changepoint in the presence of multiple changes in Vostrikova (1981). Several
algorithms have been proposed in the changepoint literature which extend sin-
gle changepoint tests to multiple changes (e.g. Scott and Knott (1974); Bai and
Perron (2003); Killick et al. (2012) and references therein). Typically the con-
sistency of these search methods are proved for additive error whereas the LSW
model has a multiplicative error structure. However, Cho and Fryzlewicz (2012)
extend the consistency of the Binary Segmentation algorithm (Scott and Knott,
1974) to multiplicative errors and thus we implement this algorithm here.

In essence, the Binary Segmentation algorithm (Algorithm 1) applies the sin-
gle changepoint test and upon identifying a change, iteratively implements the
test statistic on sub-segments of the time series. In practice, we require an upper
bound on the number of changepoints in order that the model remains identi-
fiable. Thus we assume that there exists an upper bound, Q, on the number of

Input: A set of data of the form, (x1, x2, . . . , xn).
A test statistic λ(·) dependent on the data.
An estimator of changepoint position τ̂(·).
A rejection threshold (penalty) c.

Initialise: Let C = ∅, and S = {[1, n]}
Iterate while S 6= ∅

1. Choose an element of S; denote this element as [s, t].

2. If λ(xs:t) < c, remove [s, t] from S.

3. If λ(xs:t) ≥ c then:

(a) remove [s, t] from S;

(b) calculate r = τ̂(xs:t) + s− 1, and add r to C;

(c) if r 6= s add [s, r] to S;

(d) if r 6= t − 1 add [r + 1, t] to S.

Output the set of changepoints recorded C.

Algorithm 1: The Binary Segmentation Algorithm.
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changepoints in the series such that J(Q+1) < n = 2J , which when rearranged
gives Q < (2J − J)/J .

3.3. Penalty Choice

It is common in the changepoint literature to introduce a penalty to guard
against overfitting (too many changepoints). When consideration extends to
(potentially) multiple changepoints the penalty typically takes the form of a
function dependent on the number of changepoints, e.g. βf(m) where β is a
constant and f(·) is a function of the number of changepointsm. See, for example
Lavielle (2005); Harchaoui and Levy-Leduc (2010).

The approach we adopt follows the work of Lavielle (2005); a data driven
method which is intuitive whilst also conveying the complexity of the decision
through a graphical manner. The intuition behind the approach is the same as
that of parameter selection in linear modelling, i.e. when a true changepoint
(informative parameter) is included the negative log-likelihood will decrease by
a larger amount than when a false changepoint (uninformative parameter) is
included. Hence, for a given sequence of data, we seek to identify the point at
which the negative log-likelihood ceases to reduce significantly. More formally,
let Kmax be an upper bound on the number of segments; 1 ≤ K ≤ Kmax; τ
be the ordered locations of changepoints; J(τ ,x) be the negative log-likelihood
for time series x with changepoints τ ; and τ̂K the locations of K changepoints
that minimise J(τK ,x). Then, the approach can be summarised as follows:

1. For each K ∈ {0, . . . ,Kmax} calculate τ̂K and J(τ̂K ,x).
2. Determine, lK = J(τ̂K ,x)− J(τ̂K+1,x) for K ∈ {0, . . . ,Kmax − 1}.
3. The number of changepoints is the largest K such that lK ≫ lj for j > K.

A simple graphical method can also be implemented for the above which may
prove more intuitive in practice. This involves producing a plot of J(τK ,x)
against K and visually identifying the point of maximum curvature. Figure 2(a)
shows an example, from model B in Section 4, of the type of graphic produced
by this method where the true number of changes is 2. For this example the
values of lk are 150, 138, 29, 29, 20, . . . from which it is clear that li ≫ lj for
i = 2. This is the procedure which we implement in Section 4. As such this is
reminiscent of using a scree plot in Principal Components Analysis to identify
the number of principal components.

4. Simulation study

In this section we compare the performance of the method presented in Section
3 against Auto-PARM (AP) proposed by Davis et al. (2006) and the work of
Cho and Fryzlewicz (2012) (CF). We replicate a selection of simulations from
these earlier papers to demonstrate how the proposed method, henceforth re-
ferred to as WL (wavelet-based likelihood) compares. In addition, new simu-
lation examples are introduced to highlight the flexibility of the WL method.
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Fig 2. An example plot, from model B, of the negative log-likelihood against number of change-
points for the purpose of identifying the number of changepoints.

In all simulations we report results obtained for Haar wavelets though we note
that similar results were obtained for other wavelet families. For comparison
we used the default values specified in Davis et al. (2006) and Cho and Fry-
zlewicz (2012) for implementation of the AP and CF methods respectively. For
the WL method, the number of changepoints were identified using the method
described in Section 3.3 and the practitioner implementing the approach had
no knowledge of the true number of changepoints.

As Eckley et al. (2011) observe, consideration of both the number and dis-
tribution of changepoint estimates is helpful in assessing the benefits of the
different methods. Thus for each simulation case we consider (i) the number
and (ii) the location of the identified changepoints. Tables 1, 2 and 3 report
the number of changepoints detected by simulation scenario whilst Figure 3 dis-
plays the density of identified changepoints for scenarios where the methods are
materially different. In each of the scenarios detailed below the innovations, ǫt
have standard Normal distribution unless specified otherwise.

(A) Stationary AR(1) process with no changepoints This scenario is
designed to assess the performance of the test when there are no changepoints.
We fit an AR(1) model for a variety of parameter values, a (as used by Cho and
Fryzlewicz (2012)). More specifically we simulate from,

Xt = aXt−1 + ǫt for 1 ≤ t ≤ 1024.

Results from Table 1 show that as expected, Auto-PARM outperforms both CF
and WL. However, the WL method has similar performance to Auto-PARM for
all but the highest positive auto-covariances.
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(B) Piecewise stationary AR process with clearly observable changes
Datasets are simulated from,

Xt =







0.9Xt−1 + ǫt if 1 ≤ t ≤ 512,
1.68Xt−1 − 0.81Xt−2 + ǫt if 513 ≤ t ≤ 768,
1.32Xt−1 − 0.81Xt−2 + ǫt if 769 ≤ t ≤ 1024,

i.e. the changes occur at dyadic points in the time series. This example highlights
the increased power the WL method has over the traditional likelihood when the
changepoints are at dyadic points in the time series. This is because there are
more scales where the changepoint can be identified and thus more evidence for
a change. Table 2 shows that we have comparable performance to Auto-PARM
and substantially outperform CF in this type of scenario.

(C) Piecewise stationary AR process with less clearly observable
changes Datasets are simulated from,

Xt =







0.4Xt−1 + ǫt if 1 ≤ t ≤ 400,
−0.6Xt−1 + ǫt if 401 ≤ t ≤ 612,
0.5Xt−1 + ǫt if 613 ≤ t ≤ 1024.

In this example the changes no longer occur at dyadic time points and the
changes are less clear. As with scenario B, our method has a similar performance
to that of Auto-PARM whilst CF over estimates the number of changepoints
24% of the time.

(D) Piecewise stationary AR process with a short segment Datasets
are simulated from,

Xt =

{

0.75Xt−1 + ǫt if 1 ≤ t ≤ 50,
−0.5Xt−1 + ǫt if 51 ≤ t ≤ 1024.

The results for this example demonstrate that with relatively short segments
the three methods perform well.

(E) Piecewise stationary AR process with high autocorrelation Datasets
are simulated from,

Xt =







1.399Xt−1 − 0.4Xt−2 + ǫt, ǫt ∼ N (0, 0.82) if 1 ≤ t ≤ 400,
0.999Xt−1 + ǫt, ǫt ∼ N (0, 1.22) if 401 ≤ t ≤ 750,
0.699Xt−1 + 0.3Xt−2 + ǫt ǫt ∼ N (0, 1) if 751 ≤ t ≤ 1024.

The changepoints in this model are hard to identify because the autocorrelation
function does not change very much between segments. For number of change-
points, the CF method outperforms both Auto-PARM and WL due to its vari-
ance stabilizing techniques. However, when we consider location of changepoints
Figure 3(b) shows that the performance of our method is perhaps closer to CF
than first appears. The distribution of changepoints for CF and our method are
similar in shape and noticably different from that of Auto-PARM which detects
spurious changepoints towards the start of the data.
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(F) Piecewise stationary ARMA(1,1) process Datasets are simulated
from,

Xt =















0.7Xt−1 + ǫt + 0.6ǫt−1 if 1 ≤ t ≤ 125,
0.3Xt−1 + ǫt + 0.3ǫt−1 if 126 ≤ t ≤ 352,
0.9Xt−1 + ǫt if 353 ≤ t ≤ 704,
0.1Xt−1 + ǫt − 0.5ǫt−1 if 705 ≤ t ≤ 1024.

Figure 3(c) shows that all the methods identify the final changepoint more
often than the first two. This is because the autocovariance function has greater
difference between the second and third segments than between the first and
second. For the remaining two changepoints, the WL method identifies both
with similar probability whereas Auto-PARM prefers the second and CF the
first changepoint. This again shows that the WL method is, in some sense, a
compromise between the general structure of CF and the likelihood power of
Auto-PARM.

(G) Piecewise stationary MA process Datasets are simulated from,

Xt =

{

ǫt + 0.8ǫt−1 if 1 ≤ t ≤ 128,
ǫt + 1.68ǫt−1 − 0.81ǫt−2 if 129 ≤ t ≤ 256,

In this scenario the WL method outperforms both Auto-PARM and CF meth-
ods. Although Auto-PARM detects the largest number of correct changepoints,
Figure 3(d) shows that the location of these changepoints is split across two
modes; around 125 and 135. The CF method performs poorly in this exam-
ple, particularly when we consider Figure 3(d) which demonstrates that CF
can severely mislocate the changes. In contrast to both these methods, the WL
method has its mode around 127 and retains good detection of the correct num-
ber of changepoints.

The simulation results can be summarized as follows. As expected, when the
Auto-PARM assumptions of piecewise AR model and independent segments are
valid, it tends to outperform both CF and the proposed method. However, when
the underlying assumption of a piecewise AR model is not valid, there are cases
where the proposed method outperforms both Auto-PARM and CF. Indeed in 7
out of 10 scenarios the WL method clearly outperforms that of its nonparametric
counterpart CF. Of the 3 remaining cases, results also highlighted that when
considering performance of a changepoint method, the location of the changes
should be taken into account in addition to the number of changepoints detected.
This is particularly apparent for Model G where the number of changepoints
identified by CF was reasonable but Figure 3(d) showed many of these changes
were far from the true location. The simulation study used the Haar wavelet.
Similar results were obtained for other wavelet families as expected, see Gott
and Eckley (2013).
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Fig 3. (a) Realisation from model E. (b)-(d) Density plots of the changepoints identified for
(b) model E, (c) model F and (d) model G. In each plot the red line is the WL method; the
blue line is the CF method and the green line is the AP method.

Table 1

Results for scenario A from our method (WL), the method from Cho and Fryzlewicz (2011)
(CF) and Auto-PARM (AP). We report the percentage of repetitions that identified that

number of changepoints. True number of changepoints is in bold

Model A
a -0.7 -0.1 0.4 0.7

no. cpts WL CF AP WL CF AP WL CF AP WL CF AP
0 100 71 100 100 89 100 100 94 100 91 92 100

1 0 24 0 0 11 0 0 5 0 9 7 0
≥ 2 0 5 0 0 0 0 0 1 0 0 1 0
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Table 2

Results for scenarios B-D from our method (WL), the method from Cho and Fryzlewicz
(2011) (CF) and Auto-PARM (AP). We report the percentage of repetitions that identified

that number of changepoints. True number of changepoints is in bold

no. of Model B Model C Model D
cpts WL CF AP WL CF AP WL CF AP
0 0 0 0 0 0 0 4 2 0
1 0 0 0 0 0 0 94 83 100

2 98 70 94 94 76 100 2 15 0
3 2 27 6 6 22 0 0 0 0
4 0 3 0 1 1 0 0 0 0

≥ 5 0 0 0 0 1 0 0 0 0

Table 3

Results for scenarios E-G from our method (WL), the method from Cho and Fryzlewicz
(2011) (CF) and Auto-PARM (AP). We report the percentage of repetitions that identified

that number of changepoints. True number of changepoints is in bold

no. of Model E Model F Model G
cpts WL CF AP WL CF AP WL CF AP
0 0 0 0 0 0 0 0 0 0
1 26 9 9 20 12 51 99 85 100

2 45 75 33 22 36 33 1 15 0
3 26 15 31 35 45 16 0 0 0
4 3 1 15 22 6 0 0 0 0

≥ 5 0 0 12 1 1 0 0 0 0

5. Storm season identification

We now consider storm season identification using significant wave heights.
There is evidence (see for example Hidgkins et al. (2002)) that the onset of
storm seasons is shifting. This is of interest as short-term operations, such as
inspection and maintenance of marine structures, are typically performed out-
side seasons when storms are prevalent to minimise risk. As such knowledge
of the date of onset of the storm season, e.g. of winter in the North Sea, or
of hurricane season in the Gulf of Mexico, is particularly important if this is
changing. For example, within the oil and gas industry, the current popular-
ity of liquefying natural gas on an offshore production platform and offloading
it to a shuttle gas carrier, requires knowledge of environmental winds, waves
and currents that excite vessel motions, limiting floating liquified natural gas
(FLNG) operations. If the time periods that allow production and offloading are
sufficient, the system has the potential to work safely and efficiently, and the
economic benefit of FLNG can be realised, maximising the time periods during
which FLNG platforms can be offloaded. Similarly, for offshore wind turbines,
environmental conditions frequently cause costly delays in the installation and
maintenance process. A systematic approach to identify approximately homo-
geneous periods in the ocean environment, and transitions between calm and
stormy seasons in particular, is therefore highly desirable.

Consider, by way of example, significant wave heights for a location in the
central North Sea. Figure 4(a) depicts the measured wave height at 12 hour
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Fig 4. Central North sea application: (a) Significant wave heights (b) First difference of (a)
with identified changepoints. Vertical dotted lines: WL method, short lines at the top of the
plot: CF method, short lines at the bottom of the plot: AP method.

intervals for the period March 1992 - December 1994. Ocean engineers note that
whilst certain features such as the cyclic nature of the series or the fact that
wave heights tend to be lower during the summer than the winter are clear, other
features are harder to discern. Specifically the points at which the storm season
starts and ends are much more challenging to identify. For example methods
of modelling the trend alone do not produce sufficiently accurate estimates of
the storm season start and end. Use of established change in mean or change
in regression methods such as those implemented in Killick and Eckley (2010)
confirm this. However ocean engineers have suggested that looking at the second
order structure could be more helpful since the variability of wave heights is
expected to be small during calm and larger during storm seasons.

To identify whether a change in second order structure has occurred we must
first remove the trend from the data. We choose to remove the trend by differ-
encing but other methods of trend removal could be used. The resulting series is
depicted in Figure 4(b). The change in second order structure is now more evi-
dent and the series appears to have a locally stationary structure. The question
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we therefore consider is how to detect the changes in autocovariance structure
in this series and whether these changes correspond to the start and end of the
storm season.

We apply the WL, AP and CF methods to detect changes in auto-covariance
of the differenced data shown in Figure 4(b). Applying the WL method from
Section 3 we identify changepoints at 12th May 1992, 5th October 1992, 1st
April 1993, 19th November 1993, 10th April 1994 and 10th August 1994. Each
of these dates is indicated by a dashed vertical line in Figure 4(b). The change-
points identified by the CF and AP methods are indicated by vertical lines
at the top and bottom of Figure 4(b) respectively. It is clear that the auto-
matic penalty selection contained within the CF and AP methods results in
more changepoints being identified than storm seasons. Both methods identify
changes at approximately the same times as the WL method with additions be-
tween seasons. The exception to this is the CF method which does not identify
a change around October 1992 where the WL and AP methods do. The results
for the three methods were (blindly) presented to ocean engineers who selected
the WL method as the set of changepoints which most closely matched their
own assessment of the start and end of the storm season.

6. Concluding remarks

As discussed in Section 1, oceanographic applications require methods for seg-
menting time series where the observations cannot be assumed to be indepen-
dent. The work presented in this paper has addressed this issue by developing
a test for a change in autocovariance structure using the LSW framework and
assuming no prior knowledge of the structure of the autocovariance. A benefit
of this approach is that it does not assume a specific structure for the autoco-
variance.

The proposed approach was compared with both the Auto-PARM method
of Davis et al. (2006) and a wavelet-based method recently proposed by Cho
and Fryzlewicz (2012). The simulation study in Section 4 showed that the WL
method provides an extra degree of refinement between a restrictive model as-
sumption (Auto-PARM) and a nonparametric approach (Cho and Fryzlewicz,
2012). The refinement comes by using a more flexible model structure, namely
the LSW model within a likelihood based framework. Intuitively since it is
founded on the likelihood framework, when the LSW model assumptions hold
the WL method should outperform a nonparametric approach.

Whilst all the changes in the simulations were detected, situations could arise
where a change is too small in magnitude or too close to another change to be
identified. This is a challenge for all the methods detailed in this paper. For
changes in mean and variance there are clear guidelines on how small a change
can be detected by specific methods. For changes in autocovariance there are no
guidelines due to the complexities of possible pre and post change structures;
as such it would be an interesting avenue for future research.

The proposed method was also applied to oceanographic data encountered by
an industrial collaborator. The results demonstrate that the proposed method
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gives an automatic approach for segmenting series into seasons when storms are
prevalent for further analysis or planning of maintenance. An added advantage
of the WL method is that a specific number of changepoints can be identified
whereas the CF and AP methods would require postprocessing procedures for
selecting the changes that correspond to storm seasons.
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