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Outline

Overview Lay of the land

• Context

• Modelling the physical environment

• extremes

• sensing

• uncertainty analysis

• working across disciplines

• Reasons to be excited!

Thanks

• Shell

• Durham and Lancaster

• n others, n ≫ 0

◦ Climate change

◦ Population growth

◦ Economic development

◦ Urbanisation / migration

◦ Increasing risk awareness / aversion

(environmental, medical, litigation,

insurance, . . . )

◦ Food: land and ocean use

◦ Water: supply, flood, erosion

◦ Air: pollution / waste

◦ Energy: renewables mix

◦ Security: Connectivity / privacy
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Context



Context: digitisation

Digital acoustic sensing [Shell]. 10kHz sampling for each of n locations.

complexity, heterogeneity ⇔ beauty, opportunity

Accessible data

• n2020 ≫ n1980, p2020 ≫ p1980

• Streaming

• Connected data sources

• Numeric, text, images, sound, speech

• Increase in awareness of “data science”

Computing

• Parallelism: cores, clusters, GPU, memory,

cloud

• Freeware: PYTHON, R, (C, JAVA)

• Data engineering: e.g. Alteryx, Spark, SQL
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Context: models and uncertainty quantification

Smoke plume (Hirst et al. 2013)

More science

• Multi-scale

• ODEs, PDEs, dynamics

• Likelihood, extremes

More Bayesian

• Awareness, acceptance, interpretation

• Emulation, Gaussian processes

• Graphical models, dynamic linear models

• “Approximate” Bayesian methods

• Optimal decisions
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Context: better, faster measurement and coverage

An ocean drifter [diydrones.com]

Diameter ≈ 20cm, 1000s deployed.

• Good, cheap, widget sensors

• In-situ, bio-tracking, drifters, floaters

• Satellites

• Ocean, seismic, GHGs, land use, telemetry

• Drones, autonomous vehicles, high-altitude

pseudo-satellites

• Spectroscopy, optics, hyperspectral

• IoT
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Context: connectivity

• Everything and everyone digitally inter-connected

• Everything and everyone feasible source data for

empirical inference

• . . . whether we like it or not

• Global infrastructure

• 10n transactions per second, n ↑

• New state for humanity?

• “Crude” data “ingested” into “unstructured data

store”, subsequently “refined” and extracted to

structured data “data mart” or “data lake”

• Inference on data mart using “analytics”
[Microsoft]
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Context: connectivity

EO satellite coverage, 24.04.18 22.15pm [in-the-sky.org]. Only weather, NOAA, GOES,

Earth Resources, SARSAT, Disaster Monitoring, Tracking and Data Relay Satellites,

ARGOS, Planet, Spire shown. Drifter coverage, [NOAA]

• Waves: 9 altimeters, 12 radiometers,

3 scatterometers [1980-2014; Young 2016]

• CH4: Sentinel 5G / Tropomi [2017-date; ESA]

• ≈ 1500 drifters measuring temperature, surface

current, dispersion of surface particles

• Computing resources: e.g. JASMIN [CEDA]
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Modelling the physical environment



Spatio-temporal extremes

• Marine environment: wave, wind and current

fields. Short- and long-term hazards

• Planetary and atmospheric-oceanic

interactions, different processes, scales

• Measurements (altimetry, radar, laser, buoy)

• Complex physical models (e.g. genesis-track)

• Rich asymptotic theory: extreme value analysis

• Spatio-temporal, non-stationary, multivariate

• Typical sparse data (tails), multi-source

• Heatwave, drought, earthquake, solar flare, . . .
Roker lighthouse, Sunderland [Daily Express].

Huge scope and requirement for research in almost all aspects

including non-stationarity and uncertainty quantification in particular
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Non-stationary marginal extremes: gamma-GP model

• Sample of peaks over threshold y , with
covariates θ

• θ is 1D (directional) here, could be nD (space,

time, direction, season, . . . )

• Below threshold ψ

• y ∼ truncated gamma with shape α, scale 1/β

• Above ψ

• y ∼ generalised Pareto with shape ξ, scale σ

• ξ, σ, α, β, ψ all functions of θ

• Pr(X < ψ|θ) = τ

• Likelihood here
A gamma-generalised Pareto model (Randell et al. 2016)

Covariate effects critical but intricate ⇔ algorithms, computation
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Non-stationary marginal extremes: P-splines

• Physics: α, β, ρ, ξ, σ, ψ vary smoothly with θ

• B-spline basis ❇ on index set of covariates

• For η ∈ {α, β, ρ, ξ, σ, ψ}, write η = ❇βη

• In nD, ❇ = ❇θn ⊗ ...⊗ ❇θκ ⊗ ...⊗ ❇θ2 ⊗ ❇θ1

• Spline roughness for dimension κ ∼ ληκβ
′
ηκPηκβηκ

• Penalty Pηκ function of stochastic roughnesses δηκ

• B-splines local support, GLAMs for slick computation Kronecker product of marginal spline bases.

Scope for more scalable descriptions, algorithms in nD ⇔ adaptive splines, reweighed kernels
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Non-stationary marginal extremes: priors, conditional structure and algorithms

Priors

density of βηκ ∝ exp

(

−
1

2
ληκβ

′
ηκPηκβηκ

)

ληκ ∼ gamma

τ ∼ beta

Full conditionals for Ω = {α, β, ρ, ξ, σ, ψ, τ}

f (τ |② ,Ω \ τ) ∝ f (② |τ,Ω \ τ)× f (τ)

f (βη|② ,Ω \ βη) ∝ f (② |βη,Ω \ βη)× f (βη|δη,λη)

f (λη|② ,Ω \ λη) ∝ f (βη|δη,λη)× f (λη)

Problem size

• p ≈ 5× 103 for θφ, and ≈ 3× 107 for XY θφ

• HPC, MATLAB cluster

Algorithms

• Elements of βη highly interdependent,

correlated proposals essential for good mixing

• “Stochastic analogues” of IRLS and

back-fitting algorithms

• Estimation of different penalty coefficients for

each covariate dimension

• Gibbs sampling when full conditionals available

• Otherwise Metropolis-Hastings (MH) within

Gibbs, using suitable proposal mechanisms

including adaptive MCMC and mMALA where

possible
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Spatio-temporal extremes: other areas

Spatial extremes Conditional extremes

Spatial dependence (Ross et al. 2017)
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Conditional Variance of residuals given Hs

Moving variance

Own function

97.5% quantile from own

2.5% quantile from own

Model variance

97.5% quantile from model

2.5% quantile from model

Directional variance with HS (Randell et al. 2018)

• Extreme ocean storms

• Max-stable process

• Non-stationary extremal dependence

• Maths here

• Storm evolution in time and direction

• Non-stationary Markov extremal model

• Dynamic model for direction

• Maths here

Extremes: scope and requirement for research in almost all aspects 12



Bayesian uncertainty analysis

A simple system model

• Flexible framework, Bayes linear

• Optimal design (Jones et al. 2015, 2018a)

• Extreme environments (Jones et al. 2018b)

• Probabilistic ODEs, Bayesian optimisation

Obs : z(x) = y(x) + ǫ

Sys : y(x) = e(x) + d(x)

Emul : e(x) = α
′
g(x) + r(x , ω) + η

Disc : d(x) = β
′
h(x) + s(x) + ξ

e : emulator or “process” model

d : discrepancy model

g , h : non-linear bases for covariate space

r , s : Gaussian process residuals

Priors : all Gaussian

Data : emulator E ,measured Z

Estimation : f (α, β, {ℓr}, {ℓs}, ω|E ,Z)

Prediction : f (y(x)|E ,Z)

General purpose, scalable approach to quantify system uncertainty
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Probabilistic inversion

Airborne sensing (Hirst et al. 2013)
Airborne and line-of-sight sensing (Hirst et al. 2013, 2017)

• Trace concentrations (ppb) of gases, particulates

• Transported on wind from source

• Sensitive optical point or line-of-sight sensors

• Wind field known approximately

• Background can be problematic (CO2)

• Measurement error

14



Probabilistic inversion

Model: y = A(α, δφ)s({z ,w , ρ}) + b(β) + ǫ(σ)

Physics Set-up

• Sources s: multiple, spiky; Gaussian mixture

• Background b: smooth; Gaussian Markov

random field, wind covariate

• Plume A: Gaussian

Parameters

• Source locations z , “widths” w and emission

rates ρ for mixture of m sources

• Random field background parameters β

• Measurement error standard deviation σǫ

• Wind–direction correction δφ

• Others (e.g. plume opening angles α)

• Static: point, line-of-sight

• Dynamic: vehicular, airborne

Inference

• Reversible jump MCMC inference over sources

Opportunities

• Multiple responses

• Forward model

• Non-stationary sources

• Design of measurement campaigns

• Other processes
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Working across disciplines: statistical know-how

Experimental process Methods Skill set

• Design

• Measurement

• Exploration,

visualisation

• Estimation

• Prediction, detection

• Validation

• Deployment

System design

• Data engineering

• Software design

• Communication and consultancy

• DoE: factorial, CC, space-filling

• Sampling

• Data reduction: PCA, clustering

• Regularisation: ridge, LASSO, elastic net

• Non-parametric: Gaussian processes, trees

• Model selection, evidence

• Model checking: cross-validation,

bootstrapping, randomised permutation

testing

• Vanilla MH / MCMC

• . . .

[Drew Conway]

[Yanir Seroussi]

Excellence in inter-disciplinary research requires fit-for-purpose statistical thinking and modelling 16



Reasons to be excited!

Large-scale environmental inference (more here)

• Non-stationarity

• Bayesian uncertainty analysis

• Scalability

• Complexity (e.g. solitons, plume evolution, overturning

circulation)

Successful inter-disciplinary research

• Pragmatism, parsimony, impact

• Tailored solutions (e.g. exploit sparsity in typhoon modelling)

Physical environment

• Rich physics: multi-scale, dynamics

• Measurement: multi-source, multi-type

• “Data fusion” and calibration

• Global societal impact

Statistical inference

• Sample scale, size and speed

• Non-stationary, spatio-temporal

• Multivariate

• Likelihoods informed by theory and physics

• Bayesian inference, emulation

• Uncertainty quantification, optimal decisions

Statistical practice

• Good statistical thinking, parsimony

• Ethics, responsibility, accountability

Computation

• Slick algorithms exploiting architecture

• System design, data engineering

Useful integrated physical, measurement, computational and statistical science
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Non-stationary marginal extremes: simple gamma-GP model (back)

• Density is f (y |ξ, σ, α, β, ψ, τ)

=







τ × fTG (y |α, β, ψ) for y ≤ ψ

(1− τ)× fGP(y |ξ, σ, ψ) for y > ψ

• Likelihood is L(ξ, σ, α, β, ψ, τ |{yi}
n
i=1)

=
∏

i :yi≤ψ

fTG (yi |α, β, ψ)
∏

i :yi>ψ

fGP(yi |ξ, σ, ψ)

× τ
nB (1− τ)(1−nB ) where nB =

∑

i :yi≤ψ

1

• Estimate all parameters as functions of θ
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Spatial extremes (back)

• Locations {sk}
p
k=1, maxima {Xk}, covariates {Ck}, density ḟ , cdf Ḟ

• ḟ (x1, x2, ..., xp) =
[

ḟ (x1)ḟ (x2)...ḟ (xp)
]

ḟ (x1, x2, ..., xp)

• Xk ∼ GEV(ξk , βk , µk), so ḟ , Ḟ known

• GEV parameters ξk , βk , µk vary smoothly between locations, and with Ck

• Frechet scale: x → z ; ḟ , Ḟ → f ,F

• F (z1, z2, ..., zp) = exp{−V (z1, z2, ..., zp)}

• Vkl(zk , zl ; h(Σ)) =
1
zk
Φ(m(h)

2
+ log(zl/zk )

m(h)
) + 1

zl
Φ(m(h)

2
+ log(zk/zl )

m(h)
)

• h = sl − sk , m(h) = (h′Σ−1h)1/2, Φ is Gaussian

• Covariate effects C in Σ

• Joint Bayesian inference for {ξk(C), σk(C), µk(C)} and Σ(C)
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Conditional extremes (back)

Basics Storm evolution

• Y1, Y2 on standard Laplace scale via

non-stationary marginal modelling

• For large class of joint distributions, we have

(Y2|Y1 = y1) = α21y1 + y
β21
1 W21 for y1 > φ1,

• φ1 large, α ∈ [−1, 1], β ∈ (−∞, 1]

• W21 estimated from regression residuals

• Easily extended to p dimensions with

non-stationarity

• {Yt , θt}, Yt ∼ Laplace, θt ∈ [0, 2π)

• MEM(τ) for order τ :

(Yt+τ |Yt = y) = ατy + yβτWt+τ |t,t+1,...,t+τ−1

• W estimated by kernels

• Direction: ∆θt+1 = γ1∆θt + γ2∆θt−1 + ǫt

• varǫt = f (Y o
t )

(Heffernan and Tawn 2004, Jonathan et al. 2014) (Winter and Tawn 2015, Randell et al. 2018)
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Extremes and climate change (back)

UQ Multi-source

• Hierarchical model

• Stephenson (2009)

• Reich and Shaby (2012)

• Allows DLM, emulation, UQ

• Asymmmetric logistic dependence (so AD)

• Statistical downscaling

• e.g. Towe et al. [2017]

• Non-stationarity

• Arbitrary covariate representations

• Physical model (“hindcast”) is basic framework

• Complementary measurements (e.g. satellites)

• HT calibration

• Non-stationarity

• Vanilla version in Jones et al. [2018b]
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