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Introduction and motivation

Large systems

Large systems

I Research: galaxy evolution, climate change

I Manufacturing: fouling, corrosion, fatigue

I Environmental: ground, water and airborne monitoring

I Commerce: financial, transactional, software
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Introduction and motivation

Large systems

System characteristics

I High dimensional (> 1000 variables)

I Dependent variables (e.g. in time or space)

I Evolves (e.g. in time)

I Observed with error

I Observing complete system prohibitively costly
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Introduction and motivation

Large systems

Method components

1. Specify model
I Partial belief structure
I Exchangeability assumptions (if any)

2. Simulate to estimate full belief structure

3. Adjust expectations given beliefs and observations
I Incomplete and irregular observations
I Learn about system level and (co-)variance structure

4. Simulate adjusted system to forecast

5. Make decision
I Expected loss to optimise decision
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Introduction and motivation

Modelling

Typical model specification

I Two spatial dimensions (l , c), one temporal (t)

I Observations in time (t) and one spatial dimension (c) only

I Observations with error (εYlct)

I Global evolution (εΘct) with respect to t and c

I Local evolution in l dimension (εrlct) relative to global
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Introduction and motivation

Modelling

Typical model form

Observation: Yct = fl (Zlct + εYlct) Var(εYlct) = σ2
Y

System: Zlct = FΘct + rlct

Global Effects: Θct = GΘct−1 + εΘct Var(εΘt) = ΣΘ

Local Effects: rlct = g(rlct−1) + εrlct Var(εrlct) = σ2
rl

I fl reduces (or “integrates” over) l

I g describes local evolution

I F and G are regression and system evolution matrices
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Introduction and motivation

Modelling

Partial to full beliefs

Specify partial beliefs:

I Specify model form fl , F, G and g

I Specify variance structures σ2
Y , ΣΘ and σ2

rl

I Specify initial values for Θc0 and rlc0

Estimate full beliefs:

I Generate multiple realisations of model evolution
I Calculate empirical estimates for any expectations and

(co-)variance structures of interest
I In particular: E (Y), Var(Y), Cov(Y,Θ)
I Also: E (Θ), Var(Θ) ...
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Updating beliefs

The Bayes linear approach

The Bayes linear approach

Full Bayesian modelling of large systems:

I Difficult or impractical to make full prior specifications

I Non-physical simplifications required for modelling

Bayes linear modelling:

I Requires specification of partial beliefs only

I Is computationally efficient for high dimensional problems

I Uses expectation as a primitive rather than probability

I Beliefs are updated using adjusted expectations

I de Finetti [1974] or Goldstein and Wooff [2007]
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Updating beliefs

The Bayes linear approach

Adjusting beliefs

Observe data D to update beliefs B

The adjusted expectation vector for B given D is:

ED(B) = E (B) + Cov(B,D)Var(D)†(D − E (D))

The adjusted variance matrix for B given D is:

VarD(B) = Var(B)− Cov(B,D)Var(D)†Cov(D,B)

I ED(B) used as an updated estimator for B

I VarD(B) can be viewed as the mean square error of the
estimator ED(B)
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Updating beliefs

The Bayes linear approach

Motivating Bayes linear

Two collections of random quantities, B = (B1 . . .Br ) and
D = (D1 . . .Ds).
The adjusted expectation for Bi given D is the linear
combination aT

i D,

ED(B) =
s∑

i=0

aT
i Di

which minimises;

E

(
(Bi −

k∑
i=0

aT
i Di )

2

)
over choices of aT

i .

I Must specify prior mean vectors and variance matrices for B
and D and a covariance matrix between B and D.



Learning about large industrial systems

Updating beliefs

Exchangeable events

Exchangeable events

I In an exchangeable sequence of random variables, future
samples behave like earlier ones

I A collection of quantities X = {X1,X2, . . . } is exchangeable if
our beliefs are invariant under permutation of X

I The role of exchangeability in subjective analysis is analogous
to that of independence in classical inference

I An exchangeable sequence can be represented as a mixture of
underlying i.i.d. sequences (de Finetti [1974])
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Updating beliefs

Exchangeable events

Exchangeability and independence

Independent events are exchangeable, but exchangeable events
may not be independent

I A sequence of i.i.d. random variables is exchangeable

I Sampling without replacement is exchangeable, but not
independent

I For the bivariate normal random variable:

Z ∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
components Z1 and Z2 are exchangeable, but independent
only if ρ = 0
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Updating beliefs

Exchangeable events

Second order exchangeability

A collection X = {X1,X2, . . . } is second order exchangeable if our
beliefs about first and second order specification are invariant
under permutation of X

E (Xi ) = µ Var(Xi ) = σ Cov(Xi ,Xj) = γ i 6= j

I Equivalent to full exchangeability for Bayes linear modelling
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Updating beliefs

Exchangeable events

The representation theorem

For (s.o.) exchangeable X = X1,X2, . . ., we represent each Xi as
the sum of two random quantities, a “mean” plus “residual”:

Xi =M+Ri

Each pair Ri and Rj are uncorrelated i 6= j and each Ri is
uncorrelated with M (Goldstein [1986])

E (M) = µ Var(M) = γ

E (Ri ) = 0 Var(Ri ) = σ − γ

I Simplifies specification of (co-)variance structures

I Adjust beliefs about M not Xi
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Updating beliefs

Exchangeable events

Exchangeable errors: simple (co-)variance structures

Global Effects: Θct = GΘct−1 + εΘct Var(εΘt) = ΣΘ

Assume (s.o.) exchangeability of εΘct over c and t

εΘct =MΘ +RΘct

I Then Var(εΘct) = σ2
Θ, for all c and t

I And Cov(εΘc ′t′ , εΘct) = γΘ, for all c ′ 6= c and t ′ 6= t

I Hence, a simple two parameter form for ΣΘ = ΣΘ(σ2
Θ, γΘ)
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Updating beliefs

Exchangeable events

Exchangeable squared errors: (co-)variance learning

Global Effects: Θct = GΘct−1 + εΘct Var(εΘt) = ΣΘ

Assume (s.o.) exchangeability of ε2
Θct over c and t

ε2
Θct =MV +RVct

I Then E (ε2
Θct) = E (MV ) = σ2

Θ, for all c and t

I Hence adjusting beliefs about MV allows us to learn about
variances
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Updating beliefs

Exchangeable events

Method components revisited

1. Specify model
I Partial belief structure
I Exchangeability assumptions (if any)

2. Simulate to estimate full belief structure

3. Adjust expectations given beliefs and observations
I Incomplete and irregular observations
I Learn about system level and (co-)variance structure

4. Simulate adjusted system to forecast

5. Make decision
I Expected loss to optimise decision
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Updating beliefs

Making decisions

Making decisions: Optimal inspection design

I Identify good inspection designs with which to update our
beliefs

I Potential designs evaluated in terms of reducing uncertainty
about critical system characteristics

I Utility or loss is used to compare designs

For example:

I Simple decision to replace or retain a system component
subject to potential costly failure
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Updating beliefs

Making decisions

Loss for component replacement

I Simple maintenance decision δ ∈ ∆ to replace R or retain R̄.

I Outcome o ∈ O is either failure F or survival F̄ .

I Loss L(o, δ) is specified as:

F F̄

R LR LR
R̄ LF 0
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Updating beliefs

Making decisions

Expected loss with observed data

For observed data D:

E[O|D][L(O, δ)|D] = L(F , δ)Pr(F |D) + L(F̄ , δ)Pr(F̄ |D)

E [L(O,R)|D] = L(F ,R)Pr(F |D) + L(F̄ ,R)Pr(F̄ |D) = LR

E [L(O, R̄)|D] = L(F , R̄)Pr(F |D) + L(F̄ , R̄)Pr(F̄ |D) = LFPr(F |D)

Replacement is selected when:

E [L(O,R)|D] < E [L(O, R̄)|D]

Pr(F |D) >
LR
LF
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Updating beliefs

Making decisions

Expected loss with unobserved data

Expected loss of decision δ based on as yet unobserved data D
from design d is:

E[O][L(O, δ)] = E[D]{E[O|D][L(O, δ)|D]}
= E[D]{L(F , δ)Pr(F |D) + L(F̄ , δ)Pr(F̄ |D)}

Optimal decision δ∗ satisfies:

δ∗ =

{
R if Pr(F |D) > ρ
R̄ if Pr(F |D) ≤ ρ where ρ =

LR
LF
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Updating beliefs

Making decisions

Expected loss for design, E [L(O, δ∗)]

E[O][L(O, δ∗)]

= E[D]{E[O|D][L(O, δ∗)|D]}
= E[D]{L(F , δ∗)Pr(F |D) + L(F̄ , δ∗)Pr(F̄ |D)}

= E{L(F , δ∗)Pr(F |D) + L(F̄ , δ∗)Pr(F̄ |D)|δ∗ = R}Pr(δ∗ = R)

+ E{L(F , δ∗)Pr(F |D) + L(F̄ , δ∗)Pr(F̄ |D)|δ∗ = R̄}Pr(δ∗ = R̄)

= LRPr(Pr(F |D) > ρ)

+ LFE{Pr(Pr(F |D)|Pr(Pr(F |D) ≤ ρ}Pr(Pr(F |D) ≤ ρ)

= LR I1 + LF I2
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Updating beliefs

Making decisions

Expected loss for design, E [L(O, δ∗)]

E [L(O, δ∗)] = LR I1 + LF I2

I Integrals I1 and I2 evaluated for given probability distributions
characterised by location and scale parameters

I Adjusted expectations and variances from the Bayes linear
update used to estimate location and scale

I Computationally fast: no need to simulate data D for given
design d



Learning about large industrial systems

Application: corrosion monitoring

Corrosion monitoring

Application: Corrosion monitoring of offshore platform
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Application: corrosion monitoring

Corrosion monitoring

Corrosion monitoring

I Offshore platforms have large numbers of components
subject to corrosion

I Corrosion can lead to failure incurring costs

I A typical offshore platform has >100 corrosion circuits, each
with 20 to 1000 components, hence potentially >5000
components subject to corrosion.

I Some corrosion circuits have similar characteristics
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Application: corrosion monitoring

Corrosion monitoring

Typical corrosion circuit diagram
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Application: corrosion monitoring

Data characteristics

Data characteristics

I Minima: over whole component observed

I Short time series: data per component is limited, but large
number of components

I Irregular inspections: inspections are carried out when
possible, often when processes are shut down, often several
months or years apart

I Incomplete inspections: due to size of systems and
inaccessibility of components, complete systems are rarely
inspected
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Application: corrosion monitoring

Data characteristics

Typical inspection design for a corrosion circuit
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Application: corrosion monitoring

Data characteristics

Method components

1. Specify model
I Partial belief structure
I Exchangeability assumptions (if any)

2. Simulate to estimate full belief structure

3. Adjust expectations given beliefs and observations
I Incomplete and irregular observations
I Learn about system level and (co-)variance structure

4. Simulate adjusted system to forecast

5. Make decision
I Expected loss to optimise decision
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Application: corrosion monitoring

Data characteristics

Model

The system is modelled as:

Ytc = min
l

(Xtc + rtcl + εYtcl) Var(εYtcl) = σ2
Yc

Xtc = Xt−1c + αtc + εXtc Var(εXtc) = ΣX

αtc = αt−1c + εαtc Var(εαtc) = Σα

rtcl = rt−1cl + εrtcl Var(εrtcl) = σ2
rc
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Application: corrosion monitoring

Data characteristics

Learning about wall thickness and corrosion rate

I Perform simulations of model based on partial belief
specification

I Simulations together with inspection data yield updated
adjusted expectations for wall thickness and corrosion rate
parameters

I Modelling covariance structure, we learn about all
components even unobserved
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Application: corrosion monitoring

Data characteristics

Typical covariance structure based on adjacency
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Application: corrosion monitoring

Bayes linear variance learning

Variance learning: why?

I Prior specification of (co-)variances is difficult

I Variance parameters in model typically fixed. Poor prior
specification leads to poor model performance

I Variance is not directly observable. Adjusting beliefs more
difficult
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Application: corrosion monitoring

Bayes linear variance learning

Variance learning: simple corrosion model
For example:

Xct = Xct−1 + αct + εXct

αct = αct−1 + εαct

Differences of observations eliminate effects of wall thickness’
and corrosion rates (Wilkinson [1997])

X
(1)
t = Xct − Xct−1 = αct + εXct = αct−1 + εαct + εXct

X
(2)
t = Xct − Xct−2 = Xct−1 + αct − Xct−2 + εXct

= αct + αct−1 + εXct + εXct−1

= 2αct−1 + εαct + εXct + εXct−1
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Application: corrosion monitoring

Bayes linear variance learning

Variance learning: squared differences

Therefore:

X
(2)
t − 2X

(1)
t = −εαct − εXct + εXct−1

and:

E [(X
(2)
t − 2X

(1)
t )2] = E [(−εαct − εXct + εXct−1)2]

= E [ε2
αct ] + E [ε2

Xct ] + E [ε2
Xct−1]

= σ2
αc + 2σ2

Xc
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Application: corrosion monitoring

Bayes linear variance learning

Variance learning: exchangeability in time

Assume squares of residuals are (s.o.) exchangeable in time.
Using representation theorem:

[εXct ]
2 =M(Vc) +Rt(Vc)

where:
E ([εXct ]

2) = σ2
Xc = Vc Var([εXct ]

2) = ΣVc

Cov([εXct ]
2, [εXct′ ]

2) = ΓVc t 6= t ′
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Application: corrosion monitoring

Bayes linear variance learning

Variance learning: adjusting beliefs

Compute ED [M(Vc)]:

D =

{
(X

(2)
t − 2X

(1)
t )2

2 + λ

}T

t=3

ED [M(Vc)] = E [M(Vc)] + Cov[M(Vc),D]Var[D]−1(D − E (D))

= σ2
Xc + 2′TΓVcVar[D]−1(D − 1T (σ2

αc + 2σ2
Xc))

yielding an adjusted estimate for the variances in the model
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Application: corrosion monitoring

Bayes linear variance learning

Variance learning: generalisations

Generalisations include:

I General time step form for irregular time points

I Partial inspections using exchangeable variances across
components

I Mahalanobis distance fitting to update local variances
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Application: corrosion monitoring

Model diagnostics

Model diagnostics

I Mahalanobis distance to estimate data discrepancy,
comparing data to our prior estimates

Dis(X ) =
(D − E (D))2

VarD

I For each of our updated values we can also compute the
adjustment discrepancy

DisD(X ) =
(ED(X )− E (X ))2

RVarDX
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Application: corrosion monitoring

Model diagnostics

Typical model diagnostics
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Conclusions and future work

Conclusions

General purpose framework for modelling and inspection design
of large systems

Compared to existing methods, the model is novel in that:

I Analysis of multivariate systems possible, rather than
modelling components separately and independently

I Data from incomplete inspections at arbitrary times used to
learn about the whole system

I Uncertainties in system parameters adjusted, as are the
dependencies between these

I Economically-optimal future inspection strategies can be
estimated consistently
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Conclusions and future work

Future work

I Efficient implementation of sequential Bayes linear
calculation

I Search methods for good designs in high dimensions

I Elicitation of prior partial beliefs

I Flexible forms for modelling for system element behaviour

I Enhanced criteria for evaluation of inspection schemes

I Fundamental modelling of physical processes (e.g.
corrosion)

I New applications to manufacturing, environmental and
commercial problems
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Conclusions and future work

Thank you

david.randell@durham.ac.uk
philip.jonathan@shell.com

Randell et al. [February 2010]

www.lancaster.ac.uk/∼jonathan
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Backup

E[Y ](g(Y )) = E[X ](E[Y |X ](g(Y )|X ))

E[Y |X ](g(Y )|X ) =
∑
i

g(Yi )Pr(Yi |X )
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