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Thanks

Thanks for contributions by Shell colleagues:

Kevin Ewans, Graham Feld, David Randell, Yanyun Wu

... and Lancaster students:

Kaylea Haynes, Emma Ross, Elena Zanini
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Motivation
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Motivation: turret mooring

Waves, winds, currents (all directional)
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Extremes: multivariate challenges

Spatial extremes using componentwise maxima:
⇔ max-stability ⇔ multivariate regular variation
Assumes all components extreme
⇒ Perfect independence or asymptotic dependence only
Composite likelihood for spatial extremes (Davison et al. 2012)

Extremal dependence: (Ledford and Tawn 1997)
Assumes regular variation of joint survivor function
Gives more general forms of extremal dependence
⇒ Asymptotic dependence, asymptotic independence (with +ve, -ve association)
Hybrid spatial dependence model (Wadsworth and Tawn 2012)

Conditional extremes: (Heffernan and Tawn 2004)
Assumes, given one variable being extreme, convergence of distribution of remaining
variables
Allows some variables not to be extreme
Not equivalent to extremal dependence

Application:
... a huge gap in the theory and practice of multivariate extremes ... (Beirlant et al.
2004)
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Application: location

(Actually North West Shelf of Australia, South Atlantic Ocean)
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Application: exploratory analysis

Spread of TP vs HS different for different directions
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Inference: objectives

Problem structure:

Bivariate sample {ẋij}n,2i=1,j=1 of random variables Ẋ1, Ẋ2

Covariate values {θij}n,2i=1,j=1 associated with each individual

For some choices of variables Ẋ , e.g. Ẋ1 = HS , Ẋ2 = TP , θi1 , θi2

For other choices, e.g. Ẋ1 = HS , Ẋ2 =WindSpeed, θi1 6= θi2 in general

We will assume θi1 = θi2 = θi

Objective:

Objective: model the joint distribution of extremes of Ẋ1 and Ẋ2 as a function of θ

(Drop subscripts wherever possible for convenience)
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Inference: outline

Follows conditional extremes (Heffernan and Tawn 2004)

Model Ẋ1 and Ẋ2 marginally as a function of θ
Quantile regression (QR) below threshold
Generalised Pareto (GP) above threshold

Transform to standard Gumbel variates X1 and X2

Model X2 given large values of X1 using non-stationary extension of conditional
extremes model (incorporating θ)

Simulate for long return periods
Generate samples of joint extremes on Gumbel scale
Transform to original scale

Simulate structure variables f (Ẋ1, Ẋ2) also
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Penalised B-splines

Physical considerations suggest model parameters vary smoothly with covariates θ

A typical parameter η on (an index) set of covariates all take the form:

η = Bβη

for B-spline basis matrix B (defined on index set of covariate values) and some βη
to be estimated

Multidimensional basis matrix B formulated using Kronecker products of marginal
basis matrices:

B = Bθ ⊗ Bx ⊗ By

Roughness Rη defined as:
Rη = β′ηPβη

where effect of P is to difference neighbouring values of βη
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Wrapped bases for periodic covariates
(seasonal, direction)

Multidimensional bases easily
constructed. Problem size sometimes
prohibitive

Parameter smoothness controlled by
roughness coefficient λ: cross validation
chooses λ optimally

We stick to a single dimension here
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Non-stationary marginal threshold exceedances

For sufficiently large threshold, the Ẋ s are marginally independently distributed according
to:

Pr(Ẋ > ẋi |Ẋ > φτ ′(θi )) = (1 +
ξi
ζi

(ẋi − φτ ′(θi )))
− 1

ξi

where:

φτ ′(θ) is a quantile threshold with non-exceedance probability τ ′

ξi = ξ(θi ) and ζi = ζ(θi )

φ, ξ and ζ are smooth functions

Use diagnostics to select an appropriate threshold level τ ′:

Q-Q plot

Stability of ξ(θ) with θ
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Non-stationary marginal below threshold

The unconditional cumulative distribution function for threshold excesses is:

F (ẋi ) = Pr(Ẋ ≤ ẋi )

= 1− (1− τ∗)(1 +
ξi
ζi

(ẋi − φτ ′(θi )))
− 1

ξi ẋi > φτ ′(θi )

= τL + (τH − τL)
(ẋi − φτL(θi ))

(φτH (θi )− φτL(θi ))
ẋi ≤ φτ ′(θi )

where {τd}Dd=1 is a set of threshold probabilities for which quantile thresholds φτd (θ) have
been estimated, and:

H = arg min
d
{φτd (θi ) ≥ ẋi}

with L = H − 1.

Typically we would have {τd}Dd=1 = 0.1, 0.2, ..., 0.9 say, and evaluate quantile regressions for
each. We would choice the smallest value for which GP gives good marginal fit, then use
quantiles corresponding to smaller values to approximate the CDF
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Threshold estimation: quantile regression

Data {θi , ẋi}ni=1

In vector terms on the set {θi}ni=1, τ th conditional quantile function φτ (θ) is:

φτ = Bβφτ

Estimated by minimising criterion `φτ :

`φτ = {τ
n∑

ri≥0

|ri |+ (1− τ)
n∑

ri<0

|ri |}

in terms of residuals:

ri = ẋi − φτ (θi )
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Roughness-penalised quantile regression

Use penalised criterion `∗φτ instead of `φτ :

`∗φτ = `φτ + λφτRφτ

where Rφτ is the roughness of φτ , regulated using λφτ , chosen using cross-validation or
similar.

Solved simultaneously for set {τd}Dd=1 using linear programming.
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Regression quantiles

Transform directions to uniform prior using QR estimation

Deciles to 80%
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Cross-validatory choice of QR roughness penalty, λ

Penalty of approximately 0.1 appropriate
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Exceedance sizes: Generalised Pareto

Generalised Pareto model for size of threshold exceedance estimated by minimising
roughness penalised log-likelihood:

`∗ξ,ζ = `ξ,ζ + λξRξ + λζRζ

(Negative) conditional generalised Pareto log-likelihood:

`ξ,ζ =
n∑

i=1

log ζi +
1

ξi
log(1 +

ξi
ζi

(ẋi − φτ ′(θi )))

Parameters: shape ξ, scale ζ

Threshold φτ ′ from quantile regression

λξ and λζ estimated using cross validation. In practice set λξ = κλζ for fixed κ
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Parameter estimates

Top line: HS , bottom line: TP

Left to right: threshold, shape, scale

Grey: stationary

95% bootstrap uncertainty bands also
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Transformation to Gumbel scale

Transform sample {ẋi}ni=1 to sample {xi}ni=1 on Gumbel scale using probability integral
transform:

exp(− exp(−xi )) = Pr(X ≤ xi ) = Pr(Ẋ ≤ ẋi ) from above
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Conditional extremes

On Gumbel scale, by analogy with Heffernan and Tawn [2004] we propose the following
conditional extremes model:

(Xk |Xj = xj , θ) = αθxj + xβθj (µθ + σθZ) for xj > φG
jτ ′(θ)

where:

φG
jτ ′(θ) is a high directional quantile of Xj on Gumbel scale, above which the model

fits well

αθ ∈ [0, 1], βθ ∈ (−∞, 1], σθ ∈ [0,∞)

Z is a random variable with unknown distribution G

Z will be assumed to be approximately Normally distributed for the purposes of
parameter estimation
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Penalised likelihood

For sample {xik , xij , θi}mi=1 corresponding to threshold exceedances {xij}mi=1 of φG
jτ ′ ,

negative log likelihood `α,β,µ,σ is given by:

`α,β,µ,σ =
n∑

i=0

log si +
(xik −mi )

2

2s2
i

where:

mi = mi (xij , θi ) = α(θi )xij + µ(θi )x
β(θi )
ij

si = si (xij , θi ) = σ(θi )x
β(θi )
ij

Penalised negative log likelihood `∗ is given by

`∗α,β,µ,σ = `α,β,µ,σ + λαRα + λβRβ + λµRµ + λσRσ

Imposing non-negativity: We choose to model
√
α and

√
σ so that their squares are

non-negative. Roughness penalty estimated using cross-validation.
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Parameter estimates
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Estimating TP associated with extreme quantile of HS

Given parameter estimates and sample of residuals:

Estimate quantiles of TP given any quantile of HS on Gumbel scale

(TP |HS = h, θ) = α̂θh + hβ̂θ (µ̂θ + σ̂θZ) for h > φG (θ, τGj∗)

Transform to original scale

Compare with model ignoring covariate effects
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Return values
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Return values

Return values from simulation: maximum HS per octant for 100-year return period.

Octants centred on cardinal directions.

Largest storms up North Sea from south.
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Return values

Return values from simulation: marginal HS for 100-years.

Octants centred on cardinal directions.
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Return values

Marginal maximum TP for 100-year return period per octant (solid).

Conditional TP given 100-year HS per octant (dashed).
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Return values

Marginal maximum TP for 100-year return period per octant.

Largest TP from south and from Atlantic.
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Return values

Conditional TP given 100-year HS per octant.

Largest conditional TP from Atlantic.
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Limit assumption

Extension of Heffernan and Tawn [2004]. The limit assumption required to justify the
conditional model is:

Pr(
x
−βφ
j (Xk − αφxj)− µφ

σφ
≤ z |Xj = xj , θ)→ G(z) as xj →∞
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Simulation study 1

Bivariate distribution with Normal dependence transformed marginally to standard
Gumbel

(X1(θ),X2(θ)) = − log(− log(ΦΣ(θ)(X1N ,X2N)))

(X2(θ)|X1(θ) = x) = ρ2(θ)x + x1/2W (θ) for large x

6 directional intervals: ρ2 = 0.6, 0.9, 0.5, 0.1, 0.7, 0.3

Sample size 1000× 6

Marginals assumed known

Estimate conditional model only

α = ρ2 and β = 1/2.
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Study 1: sample

NSCE 33 / 43



Study 1: partitioned
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Study 1: roughness coefficient choice

NSCE 35 / 43



Study 1: parameter estimates
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Study 1: return values
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Simulation study 2

Mixture of bivariate distribution with Normal dependence transformed marginally to
standard Gumbel, and bivariate extreme value distribution with exchangeable logistic
dependency and Gumbel marginal distributions. Same intervals of θ.

For θ ∈ [0, 180):

Dependence structure of study 1 with ρ2 = 0.8, 0.1, 0.8.

For θ ∈ [180, 360):

Logistic dependence structure

Pr(X1(θ) ≤ x1,X2(θ) ≤ x2) = exp(−(exp(x1/ω(θ)) + exp(x2/ω(θ)))ω(θ))

(X2(θ)|X1(θ) = x) = x + Z(θ) for large x

ω = 0.6, 0.1, 0.6

Value of ω(< 1) has no effect on asymptotic conditional dependence structure.

α = 1 and β = 0.
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Study 2: partitioned
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Study 2: parameter estimates
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Study 2: return values
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Conclusions and references

Conclusions

Non-stationary extension of conditional extremes method

Requires efficient estimation of covariate effects (penalised B-splines here)

Makes engineering application of conditional extremes model feasible, particularly for
floating structures
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