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Non-stationary conditional extremes of
northern North Sea storm characteristics
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Summary:

Characterising the joint structure of extremes of environmental variables is important for improved understanding of those

environments. Yet many applications of multivariate extreme value analysis adopt models that assume a particular form of

extremal dependence between variables without justification, or restrict attention to regions in which all variables are extreme.

The conditional extremes model of Heffernan and Tawn (2004) provides one approach to avoiding these particular restrictions.

Extremal marginal and dependence characteristics of environmental variables typically vary with covariates. Reliable

descriptions of extreme environments should also therefore characterise any non-stationarity. Jonathan et al. (2013) extends

the conditional extremes model of Heffernan and Tawn to include covariate effects, using Fourier representations of model

parameters for single periodic covariates.

Here, we extend the work of Jonathan et al. (2013), introducing a general-purpose spline representation for model parameters as

functions of multidimensional covariates, common to all inference steps. We use a non-crossing quantile regression to estimate

appropriate non-stationary marginal quantiles simultaneously as functions of covariate; these are necessary as thresholds for

extreme value modelling, and for standardisation of marginal distributions prior to application of the conditional extremes

model. Then we perform marginal extreme value and conditional extremes modelling within a roughness-penalised likelihood

framework, with cross-validation to estimate suitable model parameter roughness. Finally, we use a bootstrap re-sampling

procedure, encompassing all inference steps, to quantify uncertainties in, and dependence structure of, parameter estimates and

estimates of conditional extremes of one variate given large values of another.

We validate the approach using simulations from known joint distributions, the extremal dependence structures of which

change with covariate. We apply the approach to joint modelling of storm peak significant wave height and associated storm

peak period for extra-tropical storms at a northern North Sea location, with storm direction as covariate. We evaluate the

impact of incorporating directional effects on estimates for conditional return values.
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1. INTRODUCTION

Characteristics of extreme environments are non-stationary in general; they vary with respect

to covariates. Following the work of Davison and Smith (1990), numerous models for non-

stationary extremes have been proposed. For example, Chavez-Demoulin and Davison (2005)

describes smooth non-stationary generalized additive modelling for sample extremes, in

which spline smoothers are incorporated into models for exceedances over high thresholds.

Cooley et al. (2006) uses probabilistic inversion to infer the ages of climatic events based on

observations of extreme lichen diameters. Eastoe (2009) uses a pre-processing approach to

accommodate non-stationarity as part of a hierarchical model for multivariate extremes with

covariates. Atyeo and Walshaw (2009) develop a region-based hierarchical model for extreme

rainfall over the UK, incorporating spatial dependence and temporal trend. Gyarmati-

Szabo et al. (2011) models threshold exceedances of air pollution concentrations via a

non-homogeneous Poisson process with multiple change-points using reversible jump Markov

chain Monte Carlo. Grigg and Tawn (2012) uses a censored generalised extreme value model

for non-stationary threshold exceedances of extreme river flows. In oceanography and ocean

engineering, marginal extremes of significant wave height and spectral peak period vary

with wave direction and season (as demonstrated by, for example, Ewans and Jonathan 2008

and Jonathan and Ewans 2011). Coles and Walshaw (1994) develops a directional model

for extreme wind speed. Coles and Casson (1998) proposes an extreme value model for

hurricane wind speed with spatially-varying parameters. Butler et al. (2007) characterises

changes in the occurrence and severity of storm surge events in the southern and central

North Sea over the period 1955-2000. Mendez et al. (2008) introduces a seasonal peaks

over threshold model for significant wave height. Ruggiero et al. (2010) examines increasing

wave heights and extreme value projections for the U.S. Pacific Northwest. Kyselý et al.

(2010) estimates extremes in climate change simulations using the peaks over threshold

method with non-stationary threshold. Northrop and Jonathan (2011) discusses threshold
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modelling of spatially dependent non-stationary extremes with application to hurricane-

induced significant wave height. The characteristics of spectral peak period given large values

of significant wave height also exhibit directional dependence in general (see, for example

Jonathan et al. (2013)).

The conditional extremes model of Heffernan and Tawn (2004) provides a straightforward

framework for estimating multivariate extremal dependence in the absence of covariates.

The approach uses an asymptotic argument which conditions on one component of a

random vector and finds the limiting conditional distribution of the remaining components

as the conditioning variable becomes large. Conditions for the asymptotic argument to

hold have been explored by Heffernan and Resnick (2007). To estimate the conditional

extremes model for bivariate extremes of random variables Ẋ1 and Ẋ2, and to simulate

realisations under the model, the following procedure is appropriate. (a) Select a range of

appropriate thresholds for threshold exceedance modelling for each variable in turn. (b)

Estimate marginal generalised Pareto models for threshold exceedances for each variable in

the sample in turn for different threshold choices, plot the values of parameter estimates as

a function of threshold, and select the lowest threshold value per variable corresponding to

appropriate parameter behaviour. (c) Transform Ẋ1 and Ẋ2 in turn to the Gumbel scale

(to X1 and X2) using the probability integral transform. (d) Estimate conditional extremes

models for X2|X1 (and X1|X2) for various choices of threshold of the conditioning variate,

retain the estimated model parameters and residuals, plot the values of model parameter

estimates and examine residuals as a function of threshold, and select the lowest threshold per

variable consistent with modelling assumptions. (e) Simulate joint extremes on the standard

Gumbel scale under the model, and transform realisations to the original scale using the

probability integral transform.

In non-stationary marginal extreme value modelling of threshold exceedances, in addition

to non-stationary forms for generalised Pareto scale (in particular) and shape parameters,
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there is a growing literature favouring the adoption of non-stationary extreme value threshold

(see, for example, Kyselý et al. 2010, Thompson et al. 2010, Northrop and Jonathan 2011).

Anderson et al. (2001) notes that the combination of non-stationary threshold and stationary

generalised Pareto shape and scale is sufficient for modelling a sample of significant wave

heights in the North Sea. Physical and statistical intuition suggest, when considering a

non-stationary conditional extremes model for a given application, that non-stationary

estimates should be sought at each of the modelling stages (a), (b) and (d) above in order,

and adopted if justified statistically as in Section 5 below. Note however that physically

plausible oceanographic examples corresponding, for instance, to stationary marginal but

non-stationary conditional distributions are also conceivable.

A number of applications and refinements of the conditional extremes approach have been

reported. Keef et al. (2009) examines spatial risk assessment for extreme river flows using the

conditional extremes model. Keef et al. (2013a) proposes a variant of the conditional extremes

model in which marginal transformation to Laplace rather than Gumbel scale is performed.

The former has exponential tails on both sides and symmetry, capturing the exponential

upper tail of the Gumbel required for modelling positive dependence but the symmetry also

allows for negatively associated variables to be incorporated into the model parsimoniously.

Keef et al. (2013b) proposes additional constraints within the conditional extremes model

formulation, particularly relevant for negatively associated variables. Gilleland et al. (2013)

use the conditional extremes model to estimate joint extremes of large-scale indicators for

severe weather.

Estimation of joint extremal behaviour is of considerable interest in ocean engineering in

particular (see, for example Ewans and Jonathan 2014). Jonathan et al. (2010) applies the

conditional extremes model to storm peak significant wave height and associated spectral

peak period for hindcast samples from different ocean basins. Jonathan et al. (2012) considers

the joint modelling of directional ocean currents. There are numerous other approaches,
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including the popular empirical method of Haver and Nyhus (1986), and the first order

reliability method (FORM) and inverse-FORM (I-FORM) methodologies (for example

Winterstein et al. 1993 and Winterstein et al. 1999), both of which attempt to characterise

the marginal and conditional distributions of oceanographic variables. Recently, Jonathan

et al. (2013) extended the conditional extremes model to incorporate the effect of covariates.

The objective of the current work is to develop and evaluate an extended non-stationary

conditional extremes model using common general-purpose penalised spline representations

of model parameters with respect to multidimensional covariates. We illustrate the approach

in application to joint inference for storm peak significant wave height (HS) and associated

storm peak period (TP ) with respect to storm direction as covariate.

For those less familiar with the physics of ocean waves and wave-structure interactions,

significant wave height can be defined as four times the standard deviation of the ocean

surface elevation for a time interval, and peak period as the reciprocal of the frequency at

which the maximum wave energy is transmitted in the same interval. For wind-generated

waves, the mean value of peak period increases with increasing significant wave height.

Together, significant wave height (measured in metres) and peak period (measured in

seconds) provide a useful low-dimensional summary of the ocean wave (energy) spectrum

and therefore the characteristics of ocean waves for the time interval of interest. Kinsman

(1984) and Stewart (2008) provide excellent introductions. Reliable long term measurements

of significant wave height and associated wave characteristics for a specific ocean location

of interest over a sufficiently long period of time are rarely available. Instead, hindcast

time-series of ocean wave characteristics are generated using a physical model for the ocean

environment, incorporating wind field and wind wave generation models in particular. The

hindcast model is calibrated to observations of the environment from instrumented offshore

facilities, moored buoys and satellite altimeters in the neighbourhood of the location (see,

e.g, Cox and Swail 2000, Swail and Cox 2000). Storm peak significant wave height and
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associated storm peak period are isolated from hindcast time-series of significant wave height

and peak period corresponding to sea states of 3 hours duration for the whole historical

period of interest, using the procedure described in Ewans and Jonathan (2008). Briefly,

contiguous intervals of significant wave height above a low threshold are identified, each

interval corresponding to a storm event. The maximum of significant wave height during the

interval is termed the storm peak significant wave height for the storm. The value of peak

period at the time of the storm peak significant wave height is referred to as the associated

storm peak period. Storm peak significant wave height and associated peak period provide

a useful low-dimensional summary of each storm event for extreme value purposes.

Understanding the interaction of ocean environments with fixed and floating marine

structures is critical to the design of offshore and coastal facilities. Structural response to

environmental loading is typically the combined effect of multiple environmental variables

over a period of time, and is the subject of extensive academic study. Knowledge of the tails

of marginal and joint distributions of storm peak significant wave height and associated peak

period is central to estimation, by simulation or closed form approximation, of the statistics

of extreme structural response, and hence of structural reliability and safety. The directional

variability of extreme environments is also important to estimate, particularly for complex

responses of floating structures, but also for the design of safety-critical top-side facilities on

fixed structures (see, for example, Tromans and Vanderschuren 1995, Winterstein et al. 1993

and Ewans and Jonathan 2014).

The layout of the paper is as follows. In Section 2, we introduce the motivating

oceanographic application from the northern North Sea. Section 3 is a description of marginal

inference (incorporating threshold and quantile estimation using non-crossing quantile

regression, generalised Pareto modelling of threshold exceedances and transformation to

the Gumbel scale), and conditional extremes inference incorporating spline covariate

effects. Section 4 evaluates the model in application to simulated samples with known
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covariate-dependent extremal characteristics. Section 5 addresses estimation of conditional

extremes models for the motivating application under consideration, including full bootstrap

uncertainty analysis. A brief summary of a second application to the South Atlantic Ocean is

also provided. Section 6 discusses further enhancement to include multidimensional covariate

effects, and illustrates the dependence structure of conditional extremes model parameter

estimates for the northern North Sea application. Motivation and algorithmic details for

estimation of non-crossing quantiles are given in the appendix (Section 7).

2. MOTIVATING APPLICATION

We motivate and illustrate the methodology by considering joint estimation of extreme

values of storm peak HS and TP with directional covariate at a location in the northern

North Sea. The sample for analysis corresponds to hindcast values of storm peak HS over

threshold, observed during periods of storm events, and associated values for TP , together

with corresponding storm peak directions (strictly, the dominant wave direction at storm

peak). All references to HS and TP below are to storm peak events.

The wind and wave climate of the North Sea is highly variable both temporarily and

spatially. Main climatic variation is from north to south. Low pressure systems travelling

from west to east across the Atlantic cross the northern North Sea, resulting in more intense

winds and waves. Wind and wave directions rotate, however, through most compass headings

during the passage of storms. In the southern North Sea, these storms produce winds mainly

from the northwest to northeast and waves largely from the north. The northern North Sea

is also more exposed to long period swell waves from the North Atlantic and Norwegian Sea.

Some swell energy may also propagate into the southern North Sea. Throughout most of the

North Sea, the land masses of the UK, Scandinavia, and Western Europe introduce fetch-

limited effects on wave generation, resulting in less extreme conditions for wind and wave
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directions corresponding to upwind land shadows. For this reason also, the ocean environment

in the southern North Sea is relatively less severe.

The northern North Sea sample consists of 1163 pairs of values for the period October 1964

to August 1998 . With direction from which a storm travels expressed in degrees clockwise

with respect to north, Figure 1 consists of scatter plots of HS (upper panel) and TP (lower

panel) versus direction. The influence of relatively long fetches corresponding to the Atlantic

Ocean (directional sector [230, 280)), the Norwegian Sea (directional sector [320, 20)) and

the North Sea (directional sector [140, 200)) are clear, as is that of the land shadow of

Norway (directional sector [20, 140)). Scatter plots of HS (horizontal) and TP (vertical) for

the directional sectors identified in Figure 1 are given in Figure 2. The HS − TP dependence

for Atlantic storms is different to that for storms emanating from the south (i.e. travelling

up the North Sea), suggesting that the dependence between HS and TP varies with storm

direction. Inspection of samples from other ocean basins (see, for example, Section 5.3)

suggests that the dependence between HS and TP will be, in general, a function of storm

direction.

[Figure 1 about here.]

[Figure 2 about here.]

3. MODEL

Consider two random variables Ẋ1(θ), Ẋ2(θ) of common covariate θ. We seek to characterise

their joint extremal structure for any particular value of the covariate θ. We assume

that the joint tail of Ẋ1(θ) and Ẋ2(θ) can be characterised adequately using covariate θ.

The framework developed here assumes that θ is multidimensional. For example, in an

oceanographic context, we might be interested in a spatio-directional description of the joint

extremal behaviour ofHS and associated TP , in which case we might adopt latitude, longitude
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and storm direction as a three-dimensional covariate. Simulation studies and applications

below assume a single covariate for ease of description and illustration.

We now describe the extension of the conditional extremes modelling procedure, outlined

in Section 1, to incorporate covariates. Sections 3.1 and 3.2 outline the coupled marginal

generalised Pareto modelling of threshold exceedances and quantile regression for threshold

selection respectively. Section 3.3 discusses transformation to standard Gumbel scale,

necessary for application of the conditional extremes model in Section 3.4. The adoption

of periodic B-spline representations for model parameter functions is outlined in Section

3.5. Section 3.6 describes the simulation procedure used to generate samples of conditional

extremes of one variate given large values of the other. The bootstrap procedure used to

estimate model parameter and return value uncertainty is outlined in Section 3.7.

3.1. Generalised Pareto model for threshold exceedances

Marginally, for each of Ẋ1(θ), Ẋ2(θ) in turn for a given value of θ, we assume that, conditional

on exceeding a large value, the corresponding random variables are generalised Pareto

distributed:

Pr(Ẋj(θ) > ẋ|Ẋj(θ) > ψj(θ; τj∗)) = (1 +
ξj(θ)

ζj(θ)
(ẋ− ψj(θ; τj∗)))−1/ξj(θ) for j = 1, 2

for ẋ > ψj(θ; τj∗), (1 +
ξj(θ)

ζj(θ)
(ẋ− ψj(θ; τj∗))) > 0 and ζj(θ) > 0. ψj(θ; τj∗) is a pre-selected

quantile threshold, assumed to be a smooth function of θ, associated with a non exceedance

probability τj∗:

Pr(Ẋj(θ) 6 ψj(θ; τj∗)) = τj∗

Model parameters ξj(θ), ζj(θ), respectively generalised Pareto shape and scale, are also

assumed to be smooth functions of the covariate.
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For a sample of values {ẋij}ni=1, j = 1, 2, corresponding to set {θi}ni=1 of known covariate

values, and pre-specified threshold ψj(θ; τj∗), estimates for the values of the functions ξj(θ)

and ζj(θ) at {θi}ni=1 can be obtained in principle by maximum likelihood estimation, by

minimising the negative log-likelihood:

`GP,j =
n∑
i=1

log ζj(θi) +
1

ξj(θi)
log(1 +

ξj(θi)

ζj(θi)
(ẋij − ψj(θi; τj∗))) for j = 1, 2

Each of the parameter functions ψj(θ; τj∗), ξj(θ) and ζj(θ) can be specified as a linear

combination of suitable basis functions, such as periodic splines and Fourier series for periodic

covariates such as direction, as discussed in Section 3.5. In this case, we regulate parameter

smoothness with covariate using a penalised likelihood fitting criterion:

`∗GP,j = `GP,j + λξjRξj + λζjRζj for j = 1, 2

for roughness coefficients λξj , λζj , and parameter roughnesses Rξj , Rζj which are easily

evaluated for suitable choice of basis. The values of roughness coefficients are selected using

cross-validation to maximise the predictive performance of the model, measured in terms of

the sum, over cross-validation iterations, of the likelihood value for the omitted data at each

iteration.

3.2. Quantile regression model for thresholds

For each random variable in turn, the quantile threshold ψj(θ; τ) corresponding to quantile

probability τ is estimated using quantile regression, by minimising the roughness penalised

loss criterion:

`∗QR,j = {τ
n∑

i,rij≥0

|rij|+ (1− τ)
n∑

i,rij<0

|rij|}+ λψj
Rψj

for j = 1, 2
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and residuals rij = ẋij − ψj(θi; τ). The terms in brackets on the right hand side correspond to

the unpenalised quantile regression loss criterion. Parameter roughness Rψj
can be evaluated

in closed form for efficient estimation. The value of roughness coefficient λψj
is selected using

cross-validation to maximise the predictive performance of the quantile regression model.

In practice, quantile regression thresholds are estimated for an increasing sequence of D

quantile probabilities 0 < τ1 < τ2 < ... < τd < ... < τD < 1. For each choice of τd, standard

diagnostic plots for generalised Pareto fitting (such as the variation of the estimated shape

parameter or some extreme quantile estimate with threshold) are examined. The lowest value

of quantile probability consistent with an adequate generalised Pareto fit is selected as τj∗.

The quantile regression threshold estimates for quantile probabilities 6 τj∗ are useful for

marginal transformation to standard Gumbel scale, discussed in the next section.

Using the approach described in Bollaerts (2009) and Bollaerts et al. (2006) developed from

the work of Marx and Eilers, and Koenker (see, for example, Marx and Eilers 1998, Koenker

2005, Eilers and Marx 2010), quantile regression can be formulated as a linear programme

with roughness penalisation for simultaneous estimation of all quantile levels with the non-

crossing constraint that ψj(θ; τd) 6 ψj(θ; τd+1), for d = 1, 2, ..., D − 1, j=1,2. Motivation for

and details of the linear programme are given in Section 7.1.

3.3. Marginal transformation to standard Gumbel scale

The conditional extremes model is applied to random variables with standard Gumbel

marginal distributions. For each random variable in turn, the quantile regression models

for different quantile probabilities, and the marginal generalised Pareto model for threshold

exceedances, provide a means to transform from sample {ẋij}ni=1 corresponding to random

variable Ẋj(θ) at the set {θi}ni=1 of known covariate values to an equivalent sample {xij}ni=1

corresponding to random variable Xj(θ) with standard Gumbel distribution for any θ.
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Above the threshold ψj(θ; τj∗), the unconditional cumulative distribution function for

threshold exceedances ẋ > ψj(θ; τj∗), for any value of θ, is given by:

Pr(Ẋj(θ) 6 ẋ) = 1− (1− τj∗) Pr(Ẋj(θ) > ẋ|Ẋj(θ) > ψj(θ; τj∗)) for j = 1, 2

Below the threshold, in the absence of a parametric form for the cumulative distribution

function, we approximate it using:

Pr(Ẋj(θ) 6 ẋ) ≈ τd + (τd − τd−1)
(ẋ− ψj(θ; τd−1))

(ψj(θ; τd)− ψj(θ; τd−1))
for j = 1, 2

where ψj(θ; τd−1) 6 ẋ < ψj(θ; τd) for the sequence of quantile probabilities τd such that

τd 6 τj∗.

Using the probability integral transform, we can transform from original to standard

Gumbel scales, since:

Pr(Xj(θ) 6 x) = exp(− exp(−x)) = Pr(Ẋj(θ) 6 ẋ) for j = 1, 2

so that the individuals in the transformed sample {xij}ni=1, j = 1, 2 are given by:

xij = − log(− log(Pr(Xj(θi) 6 x))) for i = 1, 2, ..., n, and j = 1, 2

now assumed to be marginally stationary.

3.4. Conditional extremes model

For positively dependent random variables X1(θ), X2(θ) with standard Gumbel marginal

distributions for any θ, we extend the asymptotic argument of Heffernan and Tawn (2004)

for the form of the conditional distribution of Xjc(θ), j
c = 1, 2 given the value of Xj(θ),

j = 1, 2, j 6= jc for any value of covariate θ :

(Xjc(θ)|Xj(θ) = x) = αj(θ)x+ xβj(θ)Wj(θ) for j, jc = 1, 2, jc 6= j
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and x > φj(κj∗) where φj(κj∗) is a threshold with non-exceedance probability κj∗ above

which the conditional extremes model fits well. The parameter functions αj(θ) ∈ [0, 1],

βj(θ) ∈ (−∞, 1] vary smoothly with covariate θ. Wj(θ) is a random variable drawn from an

unknown distribution. We assume that the standardised variable Zj = (Wj(θ)− µj(θ))/σj(θ)

follows a common distribution Gj, independent of covariate, for smooth location and scale

parameter functions µj(θ), σj(θ) > 0. We write, for any value of θ:

(Xjc(θ)|Xj(θ) = x) = αj(θ)x+ xβj(θ)(µj(θ) + σj(θ)Zj) for j, jc = 1, 2, jc 6= j

For potentially negatively dependent variables (corresponding to α = 0 and β < 0, see

Heffernan and Tawn 2004), extended forms of the equations above are available in the

stationary case, and can be easily specified for the non-stationary case also. However, for

most applications of practical interest, and for oceanographic applications involving HS and

TP in particular, we expect α > 0 so that positive dependence only need be considered.

In practice, were we to estimate α to be approximately zero, the extended form of the

conditional extremes model would then need to be considered. To estimate the parameter

functions αj(θ), βj(θ), µj(θ) and σj(θ), we follow Heffernan and Tawn (2004) in assuming

that Gj is the standard normal distribution. The corresponding negative log likelihood for

pairs {xi1, xi2} from the original sample for which xij > φj(κj∗), conditioned on Xj(θ) is:

`CE,j =
∑

i,xij>φj(θi;κj∗)

log sij +
(xijc −mij)

2

2s2
ij

for j, jc = 1, 2, jc 6= j

where mij = αj(θi)xij + µj(θi)x
βj(θi)
ij and sij = σijx

βj(θi)
ij . Adopting a penalisation procedure

to regulate parameter roughness, the penalised negative log likelihood is:

`∗CE,j = `CE,j + λαj
Rαj

+ λβjRβj + λµjRµj + λσjRσj for j = 1, 2
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where parameter roughnesses Rαj
, Rβj , Rµj , Rσj are easily evaluated, and roughness

coefficients λαj
, λβj , λµj , λσj are estimated using cross-validation. ‘To reduce computational

burden, we choose to fix the relative size of the roughness coefficients so that only one

roughness coefficient λj (= δαj
λαj

+ δβjλβj + δµjλµj + δσjλσj) is estimated for each j = 1, 2.

The values of δαj
, δβj , δµj and δσj used are set by careful experimentation, as discussed in

Section 4.1. Residuals:

rij =
1

σ̂j(θi)
((xijc − α̂j(θi)xij)x

−β̂j(θi)
ij − µ̂j(θi)) for j, jc = 1, 2, jc 6= j

evaluated for xij > φj(κj∗) are inspected to confirm reasonable model fit, as discussed in

Section 4. The set of residuals is also used as a random sample of values for Zj from the

unknown distribution Gj for simulation to estimate extremes quantiles in Section 5.

The limit assumption underlying the non-stationary conditional extremes model is itself

an extension of that made by Heffernan and Tawn (2004), and has been reported previously

(Jonathan et al. 2013). For positively dependent random variables X1(θ) and X2(θ) of

common covariate θ with standard Gumbel marginal distributions for any value of θ, we

assume that the standardised variable:

Zj = σj(θ)
−1(

Xjc(θ)− αj(θ)
x
βj(θ)
j

− µj(θ)) for j, jc = 1, 2, jc 6= j

is such that:

Pr(Zj 6 z|Xj = xj, θ)→ G(z) as z →∞

for some non-degenerate distribution G independent of covariate θ, where α, β, µ and σ

are smooth functions of θ. For the current simulation studies and applications, this would

seem to be a reasonable assumption, by construction for simulations, and from physical

considerations and inspection of model diagnostics for applications.
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3.5. Parameter functional forms

Physical considerations usually suggest that parameters ψj(θ), ξj(θ), ζj(θ), αj(θ), βj(θ),

µj(θ) and σj(θ) would be expected to vary smoothly with respect to covariates θ. In some

situations, for example involving directional or seasonal covariates, we might also expect

parameters to vary periodically with respect to some components of θ. Adopting the notation

η(θ) for a typical parameter function, this can be achieved by expressing η(θ) in terms of an

appropriate basis for the covariate domain. In the illustrations reported here, with periodic

covariate on [0, 360), we adopt a basis of periodic B-splines of appropriate order (cubic

throughout this work). We calculate the B-spline basis matrix B (m× p) for an index set of

m (typically less than sample size, n) covariate values, at p uniformly spaced knot locations

on [0, 360). More generally, for example in the case of a spatio-directional covariate, we

would define B-spline bases BLng (mLng × pLng), BLtt (mLtt × pLtt) and BDrc (mDrc × pDrc)

for longitude, latitude and direction respectively on the domain of interest, from which the

full spatio-directional basis B (m× p = mLngmLttmDrc × pLngpLttpDrc) is evaluated as

B = BDrc ⊗BLtt ⊗BLng

where ⊗ represents the Kronecker product. Values of η on the index set can then be expressed

as

η = Bβ

for some vector β (p× 1) of basis coefficients to be estimated.

The roughness R of η(θ) is evaluated on the index set using the approach of Eilers and

Marx (2010). Writing the vector of differences of consecutive values of β as ∆β, and vectors

of second and higher order differences using ∆kβ = ∆(∆k−1β), k > 1, the roughness R of β

15



Environmetrics P. Jonathan, K. Ewans and D. Randell

is given by

R = β′Pβ

where P = (∆k)′(∆k) for differencing at order k. We use k = 1 throughout this work.

3.6. Simulation procedure

Inferences (for example, concerning the probabilities of extreme sets in X1(θ) and X2(θ),

for some value or interval of θ) are drawn using the non-stationary conditional extremes

approach by simulating joint occurrences using the estimated marginal and conditional

extremes models. To simulate a realisation of an exceedance of a high quantile of the

conditioning variate Xj(θ) (j = 1, 2) and a corresponding value of the conditioned variate

Xjc(θ) (jc = 1, 2, jc 6= j), for some θ, we proceed as follows:

1. Draw a value of covariate θs (for example, at random from the original sample or from

some estimate of its distribution estimated from the sample),

2. Draw a value of residual rsj from the set of residuals obtained during model fitting (see

Section 3.4),

3. Draw a value xsj of the conditioning variate from its standard Gumbel distribution,

4. If the value xsj exceeds φj(κj∗) continue to step 5, else repeat steps 1 to 3,

5. Estimate the value of the conditioned variate xsjc using:

xsjc = α̂j(θs)xsj + x
β̂j(θs)
sj (µ̂j(θs) + σ̂j(θs)rsj)

where the obvious notation is used for the estimated values of model parameters (see

Section 3.4),

6. Transform the pair xsj, xsjc in turn to the original scale (to ẋsj, ẋsjc) using the

probability integral transform (see Section 3.3)
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Note that this procedure can be extended to include realisations for which xsj ≤ φj(κj∗),

by drawing a pair of values (for the conditioning and conditioned variates) at random from

the subset of the Gumbel-transformed original sample (for which the conditioning variate is

≤ φj(κj∗)) at step 4.

3.7. Bootstrap estimation of parameter uncertainty

Throughout this work, 95% bootstrap confidence intervals for model parameters and return

values are estimated using the bias-corrected and accelerated (BCa) method (Efron 1987,

DiCiccio and Efron 1996) by repeating the full analysis for 2000 bootstrap resamples of the

original sample (for the simulation studies in Section 4) and the original storm peak data (for

the oceanographic application in Section 5). In particular, estimation of optimal roughness

penalties is performed independently for each bootstrap resample, so that uncertainty bands

also reflect variability in these choices. It was also confirmed that 2000 resamples was

sufficient to ensure stability of bootstrap confidence intervals.

4. SIMULATION STUDY

We evaluate the method in estimating extreme quantiles using samples drawn from known

bivariate distributions with particular extremal dependence structures varying as a function

of single periodic covariate θ ∈ [0, 360). Standard Gumbel marginal distributions are assumed

throughout, so that marginal estimation of generalised Pareto parameters (Section 3.3) is

unnecessary. Sample size is set to 6000, and modelling threshold set at the 90th percentile

of the standard Gumbel distribution, so that a sample of size 600 is available for modelling,

typical of samples of ocean extremes.
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4.1. Case 1: Bivariate distribution with Normal dependence transformed

marginally to standard Gumbel

For any value of covariate θ,

(X1(θ), X2(θ)) = − log(− log(ΦΣ(θ)(X1N , X2N)))

where (X1N , X2N) are Normally-distributed random variables with zero mean and covariance

matrix Σ(θ). Σ(θ) has elements Σ11 = Σ22 = 1, and Σ12 = Σ21 = ρ(θ). ΦΣ(θ) is the

cumulative distribution function of N(0,Σ(θ)). Conditionally, that (XjcN(θ)|XjN(θ) = x) ∼

N(ρ(θ)x, (1− ρ2(θ))), for j, jc = 1, 2, jc 6= j is useful for simulation of realisations. X1

and X2 have standard Gumbel marginal distributions, and are dependent (unless ρ=0)

but asymptotically independent (unless ρ=1). Conditionally, (Xjc(θ)|Xj(θ) = x) = ρ2(θ)x+

x1/2Wj(θ) for large x, for j, jc = 1, 2, jc 6= j, and Wj is (asymptotically) Normally-distributed

(see, for example, Heffernan and Tawn 2004). The true values of αj(θ) and βj(θ) in the

conditional model (see Section 3.4) are therefore ρ2(θ) and 0.5 respectively. In each of 6

intervals [60 ∗ (j − 1), 60 ∗ j), j = 1, 2, 3, ..., 6, of covariate θ, we set the value of ρ2(θ) to

be respectively 0.6, 0.9, 0.5, 0.1, 0.7 and 0.3 . We sample 1000 values at random from

each interval to construct the sample. When aggregated across direction, a scatter plot (not

shown) shows no evidence of heterogeneity. Yet when we partition the data with respect

to covariate, as illustrated in Figure 3, the changing dependence structure of the sample is

obvious.

[Figure 3 about here.]

The conditional extremes model is estimated assuming a cubic B-spline basis with (p =)

60 knots on [0, 360), with a first order spline penalty (k = 1), as outlined in Section 3. 10-

fold cross-validation is used to estimate the value of the single parameter roughness λ (see

Section 3.4, suppressing the j subscript without loss of generality due to symmetry of X1
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and X2), with values of weights δα, δβ, δµ and δσ set to 1,1,10,10 respectively (following some

experimentation). Resulting parameter estimates were found to be relatively insensitive to

reasonable choices of weights.

Selection of optimal λ is illustrated in Figure 4. The resubstitution curve illustrates that

increasing parameter flexibility with respect to covariate, by reducing λ, improves the model’s

ability to describe the sample. However, the cross-validation curve indicates a clear optimal

choice for λ (of approximately 2.2 on the log10 scale) to maximise the predictive performance

of the model.

[Figure 4 about here.]

Figure 5 shows 2.5%, median and 97.5% bootstrap estimates for parameters α, β, µ and σ,

together with the known theoretical values for α and β. There is good agreement in general,

particularly in light of the step changes in the values of the true parameters with covariate.

[Figure 5 about here.]

Figure 6 shows bootstrap estimates for conditional return values of the associated variate

X2, corresponding to values of the conditioning variate X1 with non-exceedance probabilities

(for period of sample) of (a) 0.99 and (b) 0.999, together with sample estimate and known

value. Again, there is good agreement.

[Figure 6 about here.]

4.2. Case 2: Mixture of bivariate distribution with Normal dependence

transformed marginally to standard Gumbel, and bivariate extreme value

distribution with exchangeable logistic dependency and Gumbel marginal

distributions

For this case, the functional form of the dependence between variables X1(θ) and X2(θ)

changes as a function of θ, over the same six covariate sectors as defined for simulation Case
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1. In the first, second and third sectors, with θ ∈ [0, 180), the dependence structure of case

1 is retained, with ρ2(θ) set to 0.8, 0.1 and 0.8 respectively. In the remaining three sectors,

θ ∈ [180, 360), a logistic dependence structure is assumed, such that in these sectors

Pr(X1(θ) 6 x1, X2(θ) 6 x2) = exp(−(exp(x/ω(θ)) + exp(y/ω(θ)))ω(θ)),

with parameter ω(θ) set to 0.6, 0.1 and 0.6 respectively. Scatter plots of the sample drawn

per covariate sector are shown in Figure 7.

[Figure 7 about here.]

X1(θ) and X2(θ) have standard Gumbel marginal distributions for any choice of θ ∈ [0, 360).

Conditionally, for θ ∈ [180, 360), Pr(X2(θ) 6 x2|X1(θ) = x1) can be written in closed form.

Sample realisations from this bivariate distribution are obtained by first sampling one

variate from its marginal distribution and subsequently sampling the second variate from the

conditional distribution given the value of the first variate. X1(θ) and X2(θ) are dependent

(unless ω(θ) = 1). Conditionally, (X2(θ)|X1(θ) = x1) = x1 +W (θ) for sufficiently large x1,

exhibiting asymptotic dependence (since X2(θ)|X1(θ) = x1 depends on x1 for large x1). For

θ ∈ [180, 360), the value of ω(θ) (ω(θ) < 1) has no effect on the asymptotic conditional

dependence structure and does not influence the parameters α(θ) and β(θ) which are 0 and

1 respectively. The conditional extremes model was estimated using the procedure described

for simulation Case 1. Figure 8 shows 2.5%, median and 97.5% bootstrap estimates for

parameters α, β, µ and σ, together with the known theoretical values for α and β. Estimation

of α is good. It is however noteworthy that identification of β is less precise for θ ∈ [180, 360),

due to redundancy between β, µ and σ. Nevertheless, bootstrap estimates (in Figure 9)

for conditional return values of the associated variate X2, corresponding to values of the

conditioning variate X1 with non-exceedance probabilities (for period of sample) of 0.99 and

0.999, together with sample estimate and known value, show good agreement.

[Figure 8 about here.]
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[Figure 9 about here.]

5. APPLICATION

In this section we outline the application of the model introduced in Section 3 to the sample

of northern North Sea storm peak significant wave heights and associated peak periods

described in Section 2, with storm direction as the covariate of interest.

5.1. Transformed covariate scale

Marginal quantile regression thresholds ψj(θ; τd) for quantile probabilities τd of 0.1, 0.2, ..., 0.9

were estimated for storm peak HS (j = 1) and TP (j = 2), and used in turn for generalised

Pareto modelling. We found it advantageous to use evenly-spread transformed covariate

values {θ∗i }ni=1, with:

θ∗i =
360

n
(r(θi)− 1) for i = 1, 2, ..., n

where r(θi) is the rank of θi in the set of covariates, namely the position of θi in the set

of covariate values sorted in ascending order. The set {θ∗i }ni=1 is uniformly distributed on

[0, 360) by design, stabilising estimation on the transformed θ∗ scale. Interpreted on the

original θ scale, the transformation imposes greater smoothness in directional sectors which

are less frequently observed, and allows greater threshold flexibility in more frequently

observed sectors, in a natural way according to the rate of occurrence of events from different

directions. Estimates on the transformed scale necessarily also provide a relatively poor

sample description for intervals of the original covariate θ which are under-represented in

the sample; that is, for θ ∈ [20, 140) for the northern North Sea application (see Figure 1). In

this interval, spline knot spacing on the θ scale is relatively very coarse. Parameter estimates

are therefore essentially interpolated between those for the nearest spline knot locations, and
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are not informative for the intervals themselves in general. For this reason, we choose not to

include parameter estimates for this sparsely-populated covariate interval.

5.2. Northern North Sea

We find that for thresholds corresponding to τd = 0.7 and above, we have reasonable

generalised Pareto parameter stability for both HS and TP . We therefore set τ1∗ = τ2∗ = 0.7

and adopt ψ(θ; τj∗), j = 1, 2 as extreme value thresholds for HS and TP respectively. Plots

of non-crossing quantile regression threshold estimates for τd of 0.1, 0.2, ..., 0.7 are given in

Figure 10 for HS and TP respectively.

[Figure 10 about here.]

Figure 11 shows bootstrap 2.5%, 50% and 97.5% estimates for non-stationary extreme value

threshold, generalised Pareto shape and scale for both HS and TP (in black) with storm

direction. For comparison, the figure also shows the corresponding stationary estimates (in

grey). The discrepancy is clear, particularly for storms from the south. The relative profiles

of generalised Pareto shape and scale estimates with direction illustrate their characteristic

negative dependence (see, for example, Scarrott and MacDonald 2012). The large reduction

in the value of shape for HS in [210,330) represents a shortening of the generalised Pareto tail

with increasing angle. This is compensated to some extent by increasing scale, but not fully

- the largest values of shape are positive, for severe Atlantic storms, indicating a generalised

Pareto distribution unbounded to the right.

Scatter plots (not shown) of the transformed sample on Gumbel scale, partitioned by

covariate, show differences in dependence structure similar to those shown on the original

scale in Figure 2. Directional differences in the relationship between HS and TP persist, as

can be seen, for example, from consideration of gradients of TP on HS in panels (b) and (e),

which we expect to be reflected in the estimate of conditional extremes slope parameter α.

Using a format similar to that of Figure 11, Figure 12 shows estimates for the non-stationary
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conditional extreme model parameters with storm direction. Estimates of α are in the region

of 0.5, and of β are negative. Differences between non-stationary (black) and stationary

(grey) estimates are greatest for α, with higher values corresponding to storms from the

Atlantic, the Norwegian Sea and in particular for storms emanating from the south. It is

noteworthy that estimates for σ appear somewhat smaller for storms from the south than

for Atlantic storms. This concurs with physical intuition, in that Atlantic storms are likely

to contain swell components with longer peak periods, unlike storms from the south; this

is evident in Figure 2. The general characteristics of parameter estimates in Figure 12 are

similar to those reported in Jonathan et al. (2013), for a similar northern North Sea sample.

[Figure 11 about here.]

[Figure 12 about here.]

To examine whether the non-stationary model is a significant improvement on the stationary

model, Figure 13 illustrates 95% bootstrap confidence intervals for the difference between

non-stationary and stationary parameter estimates for the northern North Sea application.

It can be seen that the confidence interval for the difference in parameter estimates for

α does not include zero for storm direction of approximately 270o, indicating that the non-

stationary model yields a significantly better representation for this parameter. For the other

parameters, however, the corresponding confidence intervals do include zero.

[Figure 13 about here.]

Bootstrap estimates of marginal return values for TP with storm direction, corresponding

to non-exceedance probability of 0.999 relative to the period of the sample, are shown in

Figure 14. The figure also gives bootstrap estimates for return values for TP conditional on

values of HS with the same non-exceedance probabilities. For both marginal and conditional

return values, corresponding return values assuming stationarity are shown for comparison

(in grey). There is general agreement between stationary and non-stationary estimates for
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both marginal and conditional return values, the latter reduced with respect to the former

due to the dependence between TP and HS. There is evidence for direction trends in return

values, particularly for Atlantic storms compared to others. Inspection of plots corresponding

to Figure 14 for the difference between non-stationary and stationary estimates for the

extreme quantile of TP and TP given HS (not shown) indicates that significant differences

between non-stationary and stationary estimates occur near 200o and 300o.

[Figure 14 about here.]

5.3. South Atlantic Ocean

A second application to a South Atlantic Ocean location, summarised briefly here, provides

qualitatively similar findings to the northern North Sea application above. The sample of

storm peak significant wave heights and associated storm peak periods, for the period June

1984 to July 1995, can be partitioned approximately by storm direction into three subsets

by consideration of fetch conditions. Inspection of scatter plots for TP against HS for these

subsets suggests that storm direction influences dependence structure. A non-stationary

conditional extremes model is estimated as for the northern North Sea application, with

non-stationary extreme value threshold, marginal and dependence model parameters. As for

the northern North Sea, conditional extremes parameter α again shows greatest variability

with storm direction, but values for α are generally lower than for the northern North

Sea. Corresponding non-stationary marginal and conditional return values for TP show

stronger directional variation than their northern North Sea counterparts, with local peaks

corresponding to northern and southern Atlantic storms.
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6. DISCUSSION

In this article, we introduce an extension of the conditional extremes model of Heffernan

and Tawn (2004) facilitating general non-stationary conditional extremes inference using

spline representations of model parameters with respect to multidimensional covariates.

We evaluate and illustrate the approach for bivariate extremes with respect to a single

periodic covariate. Simulation studies show that the methodology provides good estimation

of return values when sample dependence characteristics vary with covariate. Estimation of

model parameter α is generally relatively good. Identification of β is sometimes difficult due

to degeneracy of β, µ and σ, as seen for simulation Case 2 (in Section 4.2) in particular.

Applications to hindcast ocean storm time-series of storm peak significant wave height and

associated peak period show that storm directional variability is evident, and that directional

extreme values models are necessary in general for realistic characterisation of marginal

and dependence structure, and for reliable estimation of return values. Non-stationarity of

conditional return values for peak period is more prominent for the South Atlantic Ocean

application. Parameter estimates from the conditional extremes model exhibit interesting

dependence. For example, Figure 15 gives convex hulls enclosing estimates for pairs of

conditional extremes parameters for 2000 bootstrap re-samples within each of 6 directional

sectors (see Figure 2) for the northern North Sea application. Some features are noteworthy,

such as the negative dependence between β and µ, and β and σ, and the positive dependence

between µ and σ for this application.

[Figure 15 about here.]

We adopt penalised B-splines as flexible bases to describe smooth variation of model

parameters with respect to covariates. Extension to higher dimensions is limited only

by computational (memory) constraints in general. Using sparse matrix operations and

innovative algorithms such as those proposed by Eilers and Marx (2010), computational
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efficiency is vastly improved compared with naive implementation. Adaptation to a random

field representation is relatively straightforward, given the algorithmic similarity of the

two approaches. The choice of splines, as opposed to a Fourier description of parameter

variation with covariates has two advantages. Firstly, B-splines have local support facilitating

efficient and stable inference. Secondly, in contrast to Fourier, spline models are easily and

consistently extendible to multidimensional covariates using Kronecker products of spline

bases as discussed in Section 3.

The methodology requires a means for transformation of non-stationary marginal

distributions to standard stationary form. Non-crossing quantile regression is one means of

achieving this, at least approximately. Since examination of parameter estimates with respect

to non-stationary thresholds corresponding to different non-exceedance probabilities is a

critical diagnostic in extreme value analysis generally, we recommend non-crossing quantile

regression as a useful approach to threshold selection when covariate effects are thought to

be influential. Reliable quantification of parameter and return value uncertainty is similarly

important. In this work, we use an all-encompassing bootstrap scheme, re-sampling the

original storm peak sample with replacement, repeating the full analysis including cross-

validatory assessment of optimal parameter roughness for each re-sample, thereby capturing

uncertainties throughout the modelling procedure.
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7. APPENDIX

7.1. Non-crossing quantile regression

Quantile regression estimation minimising the roughness penalised loss criterion from Section

3.2 can be achieved using linear programming. A linear programme for multiple simultaneous

non-crossing quantile regression is outlined in this section, preceded by a brief motivation.

Suppressing the indexing subscript j for conciseness (so that ẋi = ẋij, i = 1, 2, ..., n, for the

j of interest is understood) and temporarily ignoring roughness penalisation, a simplified

loss criterion for estimation of quantile ψ(θ; τ) with non-exceedance probability τ becomes

`∗QR = {τ
n∑

i,ri≥0

|ri|+ (1− τ)
n∑

i,ri<0

|ri|}

with ri = ẋi − ψ(θi; τ). Minimisation of this expression can be written as

min
ψ
{τ

n∑
i

u+
i + (1− τ)

n∑
i

u−i }

subject to

ψ̂(θi; τ) + u+
i − u−i = ẋi for i = 1, 2, ..., n,

where u+
i and u−i are “positive and negative residuals” respectively defined as

u+
i = |ψ(θi; τ)− ψ̂(θi; τ)| for ψ(θi; τ) > ψ̂(θi; τ)

= 0 otherwise, for i = 1, 2, ..., n,

and

u−i = |ψ(θi; τ)− ψ̂(θi; τ)| for ψ(θi; τ) < ψ̂(θi; τ)

= 0 otherwise, for i = 1, 2, ..., n.
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In this form, the quantile regression is easily estimated using linear programming. Reinstating

roughness penalisation, the quantile regression can be expressed as

min
ψ
{τ

n∑
i

u+
i + (1− τ)

n∑
i

u−i + λψ(

p∑
j=k+1

(v+
j + v−j )}

subject to an additional constraint

∆kβj + v+
j − v−j = 0 for j = k + 1, k + 2, ..., p

where β is the p-vector of basis coefficients for the quantile function (such that, in

matrix terms, ψ = Bβ, for spline basis matrix B), ∆kβ is its kth difference, defined for

j = k + 1, k + 2, ..., p, and v+
j and v−j are positive and negative residuals of the difference

respectively, defined as

v+
j = |∆kβj| for ∆kβj > 0

= 0 otherwise, for j = k + 1, k + 2, ..., p,

and

v−j = |∆kβj| for ∆kβj < 0

= 0 otherwise, for j = k + 1, k + 2, ..., p.

In this form, roughness penalised quantile regression for a single quantile is also easily

estimated using linear programming.

Estimation of non-crossing roughness penalised quantile regression for two quantile non-

exceedance probabilities τ1 and τ2 (> τ1) can also be expressed as a linear programme, in

which both quantile functions are estimated simultaneously subject to a further constraint
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that

βτ2,j − βτ1,j + tj = 0 for j = k + 1, k + 2, ..., p

with tj > 0, for j = k + 1, k + 2, ..., p, where βτ1 and βτ2 are p-vectors of basis coefficients.

In linear programming terms, simultaneous estimation of D non-crossing quantile functions

can therefore be expressed as

min
φ
c′φ such that Aφ = b

where

c =

[
Q1; ... Qd; ... QD; 0

(D−1)p×1

]
,

Qd =

[
0
p×1

; τd1
n×1

; (1− τd)1
n×1

; λψ1
p×1

; λψ1
p×1

]
,

A =
(
A1; A2; A3

)
and

b =
(
b1; b2; b3

)
The linear combination c′φ is the loss criterion for simultaneous quantile regression, and

pairs (A1, b1), (A2, b2) and (A3, b3) in the constraint term respectively impose spline goodness

of fit, smoothness and quantile non-crossing. The optimal value of the common roughness

coefficient λψ is estimated using cross-validation.
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In detail,

For spline fit: A1 =

[
I

D×D
⊗
[
B
n×p

I
n×n

−I
n×n

0
n×(p−k)

0
n×(p−k)

]
, 0

Dn×(D−1)p

]
,

b1 =

[
ẋ1
n×1

; ... ẋd
n×1

; ... ẋD
n×1

]
,

ẋd = {ẋi}ni=1 for d = 1, 2, ..., D,

For smoothness: A2 =

[
I

D×D
⊗
[

∆k

(p−k)×p
0

(p−k)×n
0

(p−k)×n
I

(p−k)×(p−k)
−I

(p−k)×(p−k)

]
, 0

D(p−k)×(D−1)p

]
,

b2 =

[
0

D(p−k)×1

]
.

For non-crossing: A3 =

[
∆1

D−1×D
⊗
[

I
p×p

0
p×n

0
p×n

0
p×(p−k)

0
p×(p−k)

]
, −I

(D−1)p×(D−1)p

]
,

b3 =

[
0

(D−1)p×1

]
.

where the parameter vector φ is

φ =

[
φ1; ... φd; ... φD; t

(D−1)p×1

]

and

φd =

[
βψd
p×1

; u+
d

n×1

; u−d
n×1

; v+
d

(p−k)×1

; v−d
(p−k)×1

]

where u+
d > 0, u−d > 0, v+

d > 0, v−d > 0 and t > 0 are vectors of “residuals” (or slack

variables in optimisation terminology) and βψd
are spline coefficients for the dth quantile,

d = 1, 2, ..., D.

Illustrations of non-crossing quantile estimates for HS and TP from the northern North

Sea application are given in Figure 10 of Section 5.2.
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FIGURES

Figure 1. Northern North Sea sample. Directional scatter plots of (a) storm peak significant wave height and (b) associated storm

peak period. Vertical grey lines indicate boundaries for 6 directional sectors, corresponding to different fetch conditions, estimated by

inspection.
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Figure 2. Northern North Sea sample. Scatter plots of associated storm peak period against storm peak significant wave height for the

6 directional sectors identified in Figure 1 (ordered, clockwise from 20o). The characteristics of dependence between TP and HS varies

from sector to sector.
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Figure 3. Simulation Case 1. Scatter plot per covariate interval. Values for intervals for covariate θ, parameter ρ2 and sample size n

are shown in each panel.
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Figure 4. Simulation Case 1. Cross-validatory selection of optimal roughness penalty λ for conditional extremes model. Negative log

likelihood as a function of λ for cross-validation (black) and resubstitution (grey).
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Figure 5. Simulation Case 1. Sample, bootstrap and true conditional extremes parameters with covariate. Sample estimates are given

in solid grey. Median bootstrap estimates are given in solid black, with 95% bootstrap uncertainty bands in dashed black. True values

of α and β in dashed grey.
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Figure 6. Simulation Case 1. Conditional return values of the associated variate Ẋ2, corresponding to values of the conditioning variate

Ẋ1 with non-exceedance probabilities (for period of sample) of (a) 0.99 and (b) 0.999. Bootstrap median (solid) and 95% uncertainty

band (dashed) in black. Estimate using actual sample in solid grey. True values in dashed grey.
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Figure 7. Simulation Case 2. Scatter plot per covariate interval. Values for intervals for covariate θ, parameters ρ2, ω and sample size

n are shown in each panel.

40



FIGURES Environmetrics

Figure 8. Simulation Case 2. Estimates for parameters α, β, µ and σ and their uncertainties as functions of covariate θ. Sample

estimates are given in solid grey. Median bootstrap estimates are given in solid black, with 95% bootstrap uncertainty bands in dashed

black. The true values of α and β are shown in dashed grey.
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Figure 9. Simulation Case 2. Conditional return values of the associated variate Ẋ2, corresponding to values of the conditioning variate

Ẋ1 with non-exceedance probabilities (for period of sample) of (a) 0.99 and (b) 0.999. Bootstrap median (solid) and 95% uncertainty

band (dashed) in black. Estimate using actual sample in solid grey. True values in dashed grey.
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Figure 10. Northern North Sea. Non-crossing quantile estimates corresponding to non-exceedance probabilities of 0.1, 0.2, ..., 0.7, for

(a) storm peak significant wave height and (b) associated storm peak period.
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Figure 11. Northern North Sea. Sample (solid black) and 95% bootstrap uncertainty band (dashed black) estimates for parameters of

marginal models for (a,b,c) extreme storm peak significant wave height and (d,e,f) associate storm peak period. (a,d) quantile regression

threshold, (b,e) generalised Pareto shape, and (c,f) generalise Pareto scale. Corresponding estimates assuming no directional effect are

given in grey.
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Figure 12. Northern North Sea. Non-stationary estimates for parameters α, β, µ and σ and their uncertainties (in black) as functions

of covariate θ in terms of sample estimate (solid) and 95% bootstrap uncertainty bands (dashed). Corresponding stationary estimates

in grey.
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Figure 13. Northern North Sea. 95% bootstrap confidence intervals for the difference between non-stationary and stationary estimates

for parameters α, β, µ and σ (in dashed black) as functions of covariate θ. Also shown are bootstrap median difference (solid black)

and sample difference (grey)
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Figure 14. Northern North Sea. Estimates for (a) marginal return values of associated storm peak period with non-exceedance

probabilities (for period of sample) of 0.999, and (b) conditional return value of associated storm peak period given a value of storm

peak significant wave height with non-exceedance probabilities (for period of sample) of 0.999. Estimates as functions of covariate

θ (black) in terms of sample estimate (solid) and 95% bootstrap uncertainty band (dashed). Corresponding estimates assuming no

directional dependence in grey.
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Figure 15. Northern North Sea. Convex hulls for pairs of parameter estimates corresponding to centre points of the directional sectors

defined in Figure 2. Sectors 1 to 3 are in black, and 4 to 6 in grey. Sectors 1 and 4 are solid, 2 and 5 are dashed, 3 and 6 are dotted.
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