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ABSTRACT
Ewans and Jonathan [2008] shows that characteristics of extreme storm severity in the northern North Sea vary

with storm direction. Jonathan et al. [2008] demonstrates, when directional effects are present, that omnidirec-
tional return values should be estimated using a directional extreme value model. Omnidirectional return values
so calculated are different in general to those estimated using a model which incorrectly assumes stationarity (or
inhomogeneity) with respect to direction. The extent of directional variability of extreme storm severity depends
on a number of physical factors, including fetch variability. Our ability to assess directional variability of extreme
value parameters and return values also improves with increasing sample size in general. In this work, we esti-
mate directional extreme value models for samples of hindcast storm peak significant wave height from locations
in ocean basins worldwide, for a range of physical environments, sample sizes and periods of observation. At each
location, we compare distributions of omnidirectional 100-year return values estimated using a directional model,
to those (incorrectly) estimated assuming stationarity. The directional model for peaks over threshold of storm peak
significant wave height is estimated using a non-homogeneous point process model as outlined in Randell et al.
[2013]. Directional models for extreme value threshold (using quantile regression), rate of occurrence of threshold
exceedances (using a Poisson model), and size of exceedances (using a generalised Pareto model) are estimated.
Model parameters are described as smooth functions of direction using periodic B-splines. Parameter estimation
is performed using maximum likelihood estimation penalised for parameter roughness. A bootstrap re-sampling
procedure, encompassing all inference steps, quantifies uncertainties in, and dependence structure of, parameter
estimates and omnidirectional return values. Physical environment has a large effect on estimated distributions of
100-year return values; the most severe environments of those considered are the Gulf of Mexico and northern North
Sea. However, when return value distributions are normalised relative to their median values, the (normalised) re-
turn value distributions for all locations considered are remarkably similar. Moreover, once the effect of sample
size is accounted for, the widths of return value distributions (quantified in terms of the inter-quartile range) are
also remarkably consistent. The effect on estimated return value distributions of neglecting the influence of non-
stationarity at different stages of the extreme value modelling procedure is unpredictable; a fully non-stationary
model is recommended. In general, accommodating non-stationarity in extreme value threshold and rate of occur-
rence of threshold exceedance appears most critical.
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1 Introduction
Coastal and marine structures must be designed for extreme environmental conditions. Design codes stipulate that off-

shore structures should be designed to exceed specific levels of reliability, expressed in terms of an annual probability of
failure or return-period. To define the environmental loading, metocean criteria therefore need to be specified to an appro-
priate return period, typically 100 years, but sometimes to 10000 years for the required failure probabilities. Extreme value
analysis of data from measurements and/or hindcasts are undertaken to derive these criteria, but the resulting uncertainties
associated with long return period criteria are usually large, as the number of data available for analysis is usually small by
comparison. In addition, there is no standard approach to analysis within the metocean community, and it remains a subject
of continuous debate and active research.

There is a large literature on applied extreme value analysis relevant to ocean engineering. Threshold methods in
extreme value analysis are reviewed by Scarrott and MacDonald [2012]. Tancredi et al. [2006] considers accounting for
threshold uncertainty in extreme value anlaysis. Wadsworth and Tawn [2012] presents likelihood-based procedures for
threshold diagnostics and uncertainty. Thompson et al. [2009] proposes automatic threshold selection for extreme value
analysis. Thompson et al. [2010] reports Bayesian non-parametric regression using splines. Muraleedharan et al. [2012]
and Cai and Reeve [2013] model significant wave height distributions with quantile functions for estimation of extreme
wave heights. Scotto and Guedes-Soares [2000] and Scotto and Guedes-Soares [2007] discuss the long-term prediction
of significant wave height. Methods for analysis of time-series extremes are reviewed by Chavez-Demoulin and Davison
[2012]. Ferro and Segers [2003] and Fawcett and Walshaw [2007] discuss modelling of clustered extremes. Mendez et al.
[2006] considers long-term variability of extreme significant wave height using a time–dependent POT model. Ruggiero
et al. [2010] reports increasing wave heights and extreme value projections for the US Pacific Northwest. Calderon-Vega
et al. [2013] models seasonal variation of extremes in the Gulf of Mexico using a time-dependent GEV model. Mendez et al.
[2008] considers the seasonality and duration in extreme value distributions of significant wave height. Mackay et al. [2010]
discusses discrete seasonal and directional models for the estimation of extreme wave conditions. Eastoe and Tawn [2012]
models non-stationary extremes with application to surface level ozone. Chavez-Demoulin and Davison [2005] provides a
nice introduction to modelling non-stationary extremes using splines, and Davison et al. [2012] is a good introduction to
spatial extremes. Jonathan and Ewans [2013] overviews extreme value analysis from a met–ocean perspective.

The requirement to consider directional effects in developing extreme criteria has been well demonstrated. Although
directional effects have long been known (see, for example, Graham 1981), and rigourous techniques for dealing with
covariates like direction in estimates have also been available for some time (see, for example, Davison and Smith 1990),
it is only recently that such methods have been adopted for establishing metocean design criteria. Graham [1981] notes
inconsistencies associated with estimating directional wave extremes with the omnidirectional extreme, and much debate
has ensued. Forristall [2004] notes the importance of ensuring that directional criteria are consistent with omnidirectional
criteria in the sense that they yield consistent failure probabilities in design. In particular, he points out that directional
criteria that are simply scaled to omnidirectional criteria estimated independently give inconsistent probabilities. In this
work, we present a rigorous and consistent approach (see Section 3) to estimation of cumulative distribution functions of
omnidirectional design criteria, using a non-stationary directional extreme value model, summarised in Randell et al. [2013]
and Jonathan et al. [2014]. The approach requires the estimation of extreme value threshold, rate of threshold exceedance
and size of threshold exceedance - all of which are functions of direction. In Section 4 we use the model to estimate
omnidirectional design values for samples of storm peak significant wave height from 8 locations worldwide. In Section 5
we quantify the difference between estimates for 100-year return values estimated by simulation from extreme value models
with directional effects incorporated fully (in threshold, rate and size), partly (in threshold and rate only) and not at all. Note
that, as is common in the statistics literature, we refer to “(non-) stationarity” with respect to direction in this work; some
readers may prefer the term “inhomogeneity” in this context.

Uncertainty in return value estimates for storm severity at a location is determined by a number of factors, but predomi-
nantly by (a) the physical characteristics of the ocean environment at that location, and (b) the size of the sample available for
extreme value modelling. For example, fluctuations in atmospheric pressure over the ocean produces storms whose severi-
ties are inherently random; this natural (or aleatory) uncertainty cannot be reduced (other than by intervening directly and
changing the physics of the environment!). However, return value uncertainty is also strongly influenced by sample size: all
other things being equal, the larger the sample, the smaller the sample (or epistemic) uncertainty. In Section 5 we explore
how the uncertainty in the 100-year return value for storm peak significant wave height varies as a function of environment
and sample size.

First, however, we introduce the 8 samples of storm severities.

2 Data and general wave climates
Eight samples of storm peak significant wave height Hsp

S and corresponding storm peak directions θsp for different time
periods and locations worldwide are considered in this work. Each of the eight samples corresponds to hindcast data for
a single geographic location within the ocean basin of interest. Storm peak data are isolated from hindcast time-series of
significant wave height HS and (dominant) wave direction θ in time as described in Ewans and Jonathan [2008]. Briefly,
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Fig. 1. Storm peak significant wave height Hsp
S on storm peak direction θsp for the 8 locations under consideration. From right to left, top to

bottom: Gulf of Mexico (GOM), North-West Shelf of Australia (NWS), Northern North Sea (NNS), Southern North Sea (SNS), South Atlantic
Ocean (SAO), Alaska (Als), South China Sea (SCS) and West Africa (WAf). Panel titles give the location, the sample period and storm peak
sample size.

contiguous intervals of HS above a low peak-picking threshold are identified, each interval corresponding to a storm event. In
this work, the peak-picking threshold for each sample is constant with respect to θ. The maximum of significant wave height
during the storm event is taken as the storm peak significant wave height for the storm. The value of wave direction at the
time of the storm peak is referred to as storm peak direction. Below, when referring to storm direction, we mean explicitly
the dominant wave direction for the storm peak sea state.

The samples were chosen to reflect typical ocean environments of interest to the ocean engineer. The prevailing climates
of the 8 locations impose different directional characteristics on Hsp

S as illustrated in Figure 1, which shows Hsp
S (in metres,

corresponding to the storm peak sea-state of three hours duration throughout) on storm peak direction θsp for all samples.
Direction (from which waves emanate) is measured clockwise from North, so that 90◦ corresponds to a storm peak from the
east. Hindcast data providers are acknowledged in the descriptions of the 8 environments below. Confidentiality prevents



precise specification of the locations in each case.
In the Gulf of Mexico, hurricanes produce the most severe sea states. Most storms originate in the Atlantic Ocean

between June and November and propagate west to northwest into the Gulf producing the largest sea states with dominant
directions from the southeast to east directions. Whereas more than 100 years of hurricane data are available for hindcast
modelling, data prior to the commencement of overflights in 1944 are regarded as less reliable. The sample used here
corresponds to the period 1950-2008, consisting of 170 hurricane events. The sample was drawn from the GOMOS [2008]
hindcast study.

Extreme sea states off the northwest shelf of Australia are also dominated by tropical storms, occurring from October to
April. Reliable storm data are available from around 1970, with between three to five storms occurring at a given location per
annum. Some of these storms do not produce significant sea states, so that the number of data available for a given location is
less than 100. The general direction of propagation of the storms over the region is south to southwest, with some re-curving
eastward at lower latitudes. Accordingly, the extreme sea states tend to have dominant directions from west through north to
east. The sample was drawn from the NAMOS hindcast study.

Extreme sea states in the North Sea are dominated by winter storms originating in the Atlantic Ocean and propagating
eastwards across the northern part of the North Sea. Due to their proximity to the storms, sea states at northern North Sea
locations are usually more intense than in the southern North Sea. Occasionally, the storms travel southeast-ward and intrude
into the southern North Sea producing large sea states (see, for example, Magnusson and Donelan 2012). The directionality
of the extreme seas varies considerably with location, depending on land shadows of the UK, Scandinavia, and the coast
of mainland Europe, and the fetches associated with the Atlantic Ocean, Norwegian Sea, and the North Sea itself. In the
northern North Sea the main fetches are the Norwegian Sea to the North, the Atlantic Ocean to the west, and the North Sea
to the south. Extreme sea states from the directions of Scandinavia to the east and the British Isles to the southwest are
not possible. The shielding by these land masses is more effective for southern North Sea locations, resulting in a similar
directional distribution but reduced wave heights by comparison with northern North Sea locations. With up to several tens
of storms impacting the North Sea each winter, the number of events for analysis is several times that of locations in tropical
cyclone dominated regions of the Gulf of Mexico and the North-West Shelf of Australia. The samples were drawn from the
WAM (Reistad et al. [2009]) hindcast study.

For the South Atlantic Ocean sample, observations correspond to storm peaks for the period June 1984 to July 1995.
Three directional regimes are identified by consideration of fetch conditions, corresponding to the land shadow of Brazil
(directional sector [240,350)), the northern Atlantic (directional sector [350,90)) and the southern Atlantic (directional
sector [90,350)). The largest winds in this region are generated by smaller-scale intensified cyclonic extra-tropical lows.
These events cause large winds from the southeast through the southwest and, due to the long fetch from this sector, large
waves with particularly long periods can be generated during these events. In general, the open exposure to the southern
South Atlantic leads to sea states that have a significant swell component, most prevalent during the austral winter (June,
July, August). The sample was drawn from the BOMOS hindcast study.

The Alaskan sample corresponds to a location in the eastern Chukchi Sea off the northwest coast of Alaska. Weinzapfel
et al. [2011] report three primary storm tracks affecting coastal waters of northern Alaska in summer and early fall. Wave
conditions generated by these systems may be categorized into several broad groups (Francis and Atkinson 2012). The most
prevalent track has lows that move from the Bering Sea into the Chukchi Sea from the south. These lows are usually strongest
when they first enter the Chukchi Sea. The associated pressure gradient will tighten across the entire North Slope and winds
will increase out of the east and east-northeast, increasing most in the northern Chukchi Sea and in the western Beaufort
Sea. Lows on this track typically begin to fill and weaken as they reach the northern Chukchi Sea area and then fade to the
northwest. Another storm track generates lows that move north from the Gulf of Alaska into the interior of Alaska, continue
north or north-northeast, and then emerge in the Canadian portion of the Beaufort Sea. As the low moves through the interior,
the gradient tightens along the North Slope. This is apparent more so in the eastern Beaufort Sea than the western Beaufort
Sea or the Chukchi Sea. Once these lows reach the eastern Beaufort Sea, they usually begin to weaken and fill like their
counterparts in the Chukchi Sea. A third storm track that affects these areas presents lows that move in from the East Siberian
Sea and move west to east across the Chukchi and Beaufort Seas. These storm systems induce westerly winds across the
region, opposite from the prevailing easterlies. This third storm track often produces the strongest storm systems seen across
the region during summer and early autumn. Wind waves are mitigated by the annual development of shore-fast ice. The
sample was drawn from the GROW-FINE hindcast study.

The main climatic features of the South China Sea are monsoons. The southwest monsoon occurs in the northern summer
and the northeast monsoon in the northern winter. Monsoonal surges cause increased sea states and are the source of the
extreme sea states in the southern areas off the west coast of Borneo. Typhoons dominate the extremes in the northern South
China Sea, but the extreme sea state data we are examining in this paper are off Borneo and are dominated by monsoonal
surges with southeast and northeast directions. The number of monsoonal surges each season is similar to the number of
winter storms experienced in the North Sea, and so the number of data available for extreme value analysis is rather similar
to that for the North Sea. The sample was drawn from the SEAFINE hindcast study.

In the absence of strong wind forcing in low latitudes off west Africa, extreme sea states correspond to swell events and



are relatively mild. Almost all swell events originate from mid-latitude storms progressing eastward in the south Atlantic
and Southern Ocean. Thus, the dominant directions associated with these events at low latitude locations off west Africa
occur within a narrow south to southwest sector. As the number of events more or less corresponds to the number of southern
mid-latitude storms, the number of data available for extremal analysis is similar to a North Sea or South China Sea location.
Although squall events also occur, they are not present in the hindcast sample, drawn from the WANE hindcast study.

3 Model
We seek to estimate a directional extreme value model for storm peak significant wave height Hsp

S at each location, the
parameters of which vary smoothly with respect to storm peak direction θsp.

3.1 Model components
Following Randell et al. [2013], for each sample {żi}ṅ

i=1 of ṅ storm peak significant wave heights observed with storm
peak directions {θ̇i}ṅ

i=1 (with the “sp” superscript suppressed for brevity), we proceed using the peaks over threshold ap-
proach as follows.

Threshold: We first estimate a threshold function ψ above which observations ż are assumed to be extreme. The threshold
varies smoothly as a function of direction (ψ

M
= ψ(θ)) and is estimated using quantile regression. We retain the set of n

threshold exceedances {zi}n
i=1 observed with storm peak directions {θi}n

i=1 for further modelling. The quantile regression
lack of fit criterion is given in section 3.2.

Rate of occurrence of threshold exceedance: We next estimate rate of occurrence ρ of threshold exceedance using a Poisson
process model with Poisson rate ρ(

M
= ρ(θ)). The Poisson density is:

fρ = exp(−
∫

ρ(θ)dθ)
n

∏
i=1

ρ(θi)

Magnitude of occurrence of threshold exceedance: We estimate size of occurrence of threshold exceedance using a gener-
alised Pareto (henceforth GP) model. Briefly, for a peak X over threshold ψ, the form of the generalised Pareto distribution
with shape parameter ξ and scale parameter σ is

Fψ(x) =
F(x)−F(ψ)

1−F(ψ)
= Pr(X ≤ x|X > ψ) = 1− (1+

ξ

σ
(x−ψ))−1/ξ for ξ 6= 0

for ψ ∈ (−∞,∞), σ ∈ (0,∞) and ξ ∈ (−∞,∞) with x > ψ, 1+ ξ(x−ψ)/σ > 0, with the right hand side taken to be 1−
exp(−(x−ψ)/σ) when ξ = 0. Note that ξ and σ (and ψ) are assumed to vary smoothly with direction.

This approach to extreme value modelling follows that of Chavez-Demoulin and Davison [2005] and is equivalent to direct
estimation of a non-homogeneous Poisson point process model (see, for example, Dixon et al. 1998, Jonathan and Ewans
[2013]).

3.2 Parameter estimation
For quantile regression, we seek a smooth function ψ of direction corresponding to non-exceedance probability τ of Hsp

S
for any θ. We estimate ψ by minimising the quantile regression lack of fit criterion

`ψ = {τ
n

∑
i,ri≥0
|ri|+(1− τ)

n

∑
i,ri<0
|ri|}

for residuals ri = zi−ψ(θi;τ). We regulate the smoothness of the quantile function by penalising lack of fit for parameter
roughness Rψ (with direction), by minimising the penalised criterion

`∗ψ = `ψ +λψRψ

where the value of roughness coefficient λψ is selected using cross-validation to provide good predictive performance.
For Poisson modelling, we use penalised likelihood estimation. The rate ρ of threshold exceedance is estimated by

minimising the roughness-penalised (negative log) likelihood

`∗ρ = `ρ +λρRρ



where Rρ is parameter roughness with respect to direction, λρ is again evaluated using cross-validation, and Poisson (negative
log) likelihood is given by

`ρ =−
n

∑
i=1

logρ(θi)+
∫

ρ(θ)dθ

For computational ease, ρ is estimated on a partition of the covariate domain into m equally-sized contiguous intervals
as explained in Chavez-Demoulin and Davison [2005]. The generalised Pareto model of size of threshold exceedance is
estimated in a similar manner by minimising the roughness penalised (negative log) GP likelihood

`∗
ξ,σ = `ξ,σ +λξRξ +λσRσ

where Rξ and Rσ are parameter roughnesses with respect to direction, λξ and λσ are evaluated using cross-validation, and
GP (negative log) likelihood is given by

`ξ,σ =
n

∑
i=1

logσi +(
1
ξi

+1) log(1+
ξi

σi
(zi−ψi))

where ψi = ψ(θi), ξi = ξ(θi) and σi = σ(θi), and a similar expression is used when ξi = 0 (see Jonathan and Ewans 2013).
In practice, we set λξ = κλσ for prespecified constant κ, so that only one cross-validation loop is necessary. The value of κ

is estimated by inspection of the relative smoothness of ξ and σ with respect to covariates.

3.3 Parameter smoothness
Physical considerations suggest that we should expect the model parameters ψ,ρ,ξ and σ to vary smoothly with respect

to direction θ. For estimation, this can be achieved by expressing each parameter in terms of an appropriate basis for the
directional domain D = [0,360). We calculate a periodic marginal B-spline basis matrix Bθ for an index set of 32 directional
knots, so that the linear combination Bβ provides a flexible description of any function varying with θ on the index set, for
appropriate choice of coefficient vector β. We also allocate observations to 32 directional bins centred at the spline knots,
based on (circular) directional distance. Model estimation therefore reduces to estimating appropriate basis coefficients for
each of ψ,ρ,ξ and σ. The roughness R of any function can also be easily evaluated on the index set. Following the approach
of Eilers and Marx (see, for example, Eilers and Marx 2010), we define roughness using

R = β
′Pβ

where the penalty matrix P is easily evaluated for the directional domains. The form of P is motivated by taking differences
of neighbouring values of β, penalising lack of local smoothness.

3.4 Uncertainty quantification
Bootstrap resampling is used for uncertainty quantification. 95% bootstrap uncertainty bands are estimated by repeating

the full extreme value analysis for 1000 resamples of the original storm peak sample. In particular, estimation of optimal
roughness penalties is performed independently for each bootstrap resample, so that uncertainty bands also reflect variability
in these choices. It was also confirmed that 1000 resamples was sufficient to ensure stability of bootstrap confidence intervals.
Experience of similar applications suggests that the naive bootstrap used here provides reasonable estimates of confidence
intervals, but we note that other more sophisticated bootstrap schemes are available, including the bias-corrected accelerated
bootstrap (BCa, Efron 1987, DiCiccio and Efron 1996). Note that bootstrap uncertainty is also fully incorporated within the
estimation of return value distributions in Section 4 in the spirit of the weighted likelihood bootstrap of Newton and Raftery
[1994].

3.5 Estimated parameters
For all models discussed here, extreme value threshold corresponding to a non-exceedance probability of 0.8 were set.

As an illustration, Figure 2 shows plots for ψ,ρ,ξ and σ with direction, for non-exceedance probability 0.8 of Hsp
S , in the case

of the South Atlantic Ocean (SAO) sample. The directional extreme value threshold ψ is largest for storms peaks directions
from the southwest, then for storms peaks directions from the northwest. In the directional interval [240,350) corresponding
to the land-shadow of Brazil, since no observations are present to be allocated to directional knots, the directional threshold
is set to the global sample median; this has no effect on the analysis, since there are no data present for these directions. The
rate ρ of threshold exceedance is highest for storms from the northeast, then for storms from the southwest. From inspection
of the 95% uncertainty bands in the figure, it is clear that there is significant directional variability in both ψ and ρ. The
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Fig. 2. Extreme value analysis of Hsp
S for the South Atlantic Ocean (SAO) sample: Extreme value threshold ψ, rate of threshold exceedance

ρ, generalised Pareto shape ξ and scale σ with storm peak direction θsp using a threshold non-exceedance probability of 0.8. Each panel
shows bootstrap median threshold (solid black) on storm peak direction θsp with 95% bootstrap uncertainty band (dashed black). Also shown,
for ψ, is the actual sample (grey).

same cannot be said for the generalised Pareto shape ξ and scale σ estimates, which are highly uncertain with direction as
illustrated by the wide bootstrap uncertainty bands. There is evidence for a peak of both ξ and σ at around 200◦.

Model diagnostics are essential to demonstrate adequate model fit. For the current applications, we are particularly
concerned that estimated storm peak extreme value models generate directional distributions of Hsp

S consistent with observed
storm peak data. To quantify this, we use a simulation procedure (described below in Section 4) to generate 1000 realisations
of storms, each realisation for the same period as the original data. We then construct 95% uncertainty bands for cumulative
distribution functions (cdfs) of Hsp

S , omnidirectionally and partitioned by direction. Then we confirm that empirical cdfs
for the actual data are consistent with the simulated cdfs. Figure 3 illustrates this the South Atlantic Ocean (SAO) sample.
The left-hand panel shows the omnidirectional cdf for the original sample (red), the corresponding median from simulation
(solid black), together with 2.5%ile and 97.5%ile from simulation (both dashed). The right hand panel compares cdfs for
directional octants in the same way. There is good agreement for all samples.

4 Estimation of return values
Return values corresponding to some return period P of interest are estimated by simulation under the model developed

in Section 3. The procedure is as follows, for each of a large number of realisations of storms:

1. Select a bootstrap resample and the corresponding estimated directional extreme value model for storm peak significant
wave height.

2. For each directional covariate bin, estimate the number of storm peak realisations to be drawn at random from a Poisson
distribution, using the estimated directional rate of threshold exceedance, ρ, for that bin, scaled to return period, P. If T
is the period of the original sample, the scaled rate for period P is ρ×P/T ). Then, for each storm peak realisation:

(a) Draw a pair of values for storm peak direction θsp∗ at random from the directional bin.
(b) Draw a value of storm peak significant wave height Hsp∗

S corresponding to θsp∗ at random from corresponding the
generalised Pareto model.

3. Accumulate maximum values for Hsp∗
S per directional bin.

Empirical cumulative distribution functions for storm peak events for return period P are then trivially estimated by
sorting the values for simulated storm peaks for arbitrary combinations of directional bins. Since realisations based on
models from different bootstrap resamples of the original sample are used, the resulting cumulative distribution functions
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Fig. 3. Validation of directional model for Hsp
S for the South Atlantic Ocean (SAO) sample, by comparison of cumulative distribution functions

(cdfs) for original sample with those from 1000 sample realisations under the model corresponding to the same time period as the original
sample. The left-hand panel shows the omnidirectional cdf for the original sample (red), the corresponding median from simulation (solid
black), together with 2.5%ile and 97.5%ile from simulation (both dashed). The right hand panel compares cdfs for 8 directional octants
(centred on cardinal and semi-cardinal directions) in the same way. Titles for plots, in brackets, are the number of actual events and the
average number of simulated events in each directional sector.

incorporate both the (aleatory) inherent randomness of return values and the extra (epistemic) uncertainty introduced by
model parameter estimation from the sample data.

A return value (such as “a 100-year event”) is itself a random quantity with a probability distribution. Engineering design
convention is to summarise the distribution of a return value using one number: its most probable value, corresponding to
the mode of the probability density of the return value. In a stationary case, when the generalised Pareto shape parameter of
the corresponding extreme value model is known to be identically zero, the mode of the return value distribution corresponds
to the return value with non-exceedance probability exp(−1) ≈ 0.37 . That is, there is a probability of ≈ 0.63 that the
largest event in the return period will exceed the (most probable = engineering) return value in reality! In general, the non-
exceedance probability of the mode of the return value distribution depends on the values of all of ψ,ρ,ξ and σ, which are
themselves functions of θ in this article. More importantly, the width of the return value distribution (e.g. its inter-quartile
range) also depends on all model parameters in general. In order to understand the relative severities of extreme events at
different locations, it is wise therefore to consider the complete distribution of return value, rather than just its most probable
value. This is the purpose of the simulation performed here.

Figures 4 and 5 show directional 100-year return value distributions for all samples in terms of cumulative distribution
functions for individual directional octants and the omnidirectional case. Systematic variation of return values with direction
is clear.

Figure 6 compares omnidirectional 100-year return value distributions for all samples. The severest environments are
seen to be the northern North Sea (NNS) and Gulf of Mexico (GOM). It is apparent that the width of the distribution of return
value is also considerably larger for these two locations. To investigate this effect further, Figure 7 compares omnidirectional
100-year return value distributions for all samples first centred with respect to the median 100-year return value for the
sample, and then scaled with respect to it. On the original scale, NNS has the longest right-hand tail, and West Africa (WAf)
the shortest. When scaled with respect to the median of the distribution, the distributions of return values are also more
consistent. WAf remains the shortest tailed, but now the South Atlantic Ocean (SAO) is the longest tailed.

5 Discussion
Uncertainty in a return value such as HS100 at some location is determined by (a) the physical environment (producing

storms whose severities are inherently random - this natural variability cannot be reduced) and (b) the sample (the uncertainty
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Fig. 4. Directional 100-year return value distributions for GOM, NWS, NNS and SNS samples. Each panel shows cumulative distribution
functions for individual directional octants (as labelled beneath the figure) and the omnidirectional case (black). Return value distributions are
estimated by simulation under the directional model, incorporating uncertainty in parameter estimation using bootstrap resampling. Directional
octants are centred on cardinal and semi-cardinal directions, and labelled clockwise from North with colours from dark to light blue through
yellow to light then dark red.The omnidirectional estimate is the rightmost curve.

due to which can be reduced in principle by increasing sample size). We might expect to see some evidence for the relative
impact of natural and sample uncertainty in the estimated cumulative distribution functions of HS100 in Figures 4-7. To
aid discussion, Figure 8 gives inter-quartile ranges (IQR, that is, the difference between the 75%ile and 25%ile) for HS100
distributions from different samples as a function of sample size. The left hand plot shows IQR on the original scale,
and the right hand plot shows median-scaled IQR (that is, IQR divided by the median of the corresponding cumulative
distribution function). The lines in Figure 8 represent minimum and maximum inter-quartile ranges estimated from models
of 25 randomly-chosen time-intervals (of given sizes) of the Southern North Sea (SNS) sample. These show that inter-
quartile range reduces as a function of sample size as expected. Relative to the SNS, therefore, it would appear that the IQR
for the Gulf of Mexico (GOM) location is large on the original scale (probably due to the small sample size, see Figure 1),
and that for West Africa (WAf) is particularly small (probably due to the near unidirectionality of the sample). The median-
scaled IQR for the South China Sea (SCS) sample is also large compared to SNS (probably due to the physical environment).
IQRs for the North-West Shelf of Australia (NWS), the Northern North Sea (NNS), South Atlantic Ocean (SAO) and Alaska
(Als) show reasonable consistency with SNS in both original and median-scaled plots.

Jonathan et al. [2008] demonstrates that fitting a non-stationary sample using a stationary model leads to biased estimates
of return values, whereas adoption of models which incorporate covariate effects provide relatively unbiased estimates.
For data exhibiting directional effects, a directional extreme value model generally explains observed variation signicantly
better than a model which ignores directionality, and that omnidirectional criteria developed from a directional model are
different from those generated when directionality is not accounted for. They further show, for simulated directional data
with known extreme value characteristics, that omnidirectional criteria derived from a directional model are more accurate
and should be preferred in general over those based on models which ignore directional effects. It is interesting therefore
to compare cumulative distribution functions for HS100 using different model which incorporate directional modelling to
different degrees. Figure 9 compares omnidirectional 100-year return value distributions from stationary and non-stationary
models for all samples.

For each location, cumulative distribution functions (cdfs) in black correspond to a fully directional model in which all
of quantile extreme value threshold ψ, rate of threshold exceedance ρ, generalised Pareto shape ξ and scale σ (see Section
3) are functions of direction. Cdfs corresponding to a “semi-directional” model are in blue, in which ψ and ρ are directional,
but ξ and σ are constants with direction). Cdfs in red correspond to a constant model, in which all model parameters are fixed
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Fig. 5. Directional 100-year return value distributions for SAO, Als, SCS and WAf samples. See Figure 4 for further description.

with respect to direction. Estimated cdfs are very similar for GOM, but there is considerable variation between estimates for
most locations. In general, for these samples, we see that (a) fully-directional estimates agree well with “semi-directional”
estimates, for all but the SNS sample; (b) the characteristics of cdfs from the constant model are unpredictable with respect
to those from the fully-directional and “semi-directional” model; (c) there is no systematic difference in width or median
value of cdfs from the fully-directional and “semi-directional” models compared to the constant model. From (a) we infer,
as is intuitively obvious, that accommodating covariate effects in extreme value threshold and threshold exceedance rate
estimation is sometimes sufficient for a good extreme value model, and that accommodating covariate effects in models for
sizes of threshold exceedances is sometimes - but not always - less important. From (b) and (c) we infer that a constant
model gives unreliable estimates with unpredictable behaviour with respect to full-directional and “semi-directional” models
when covariate effects are present. For all models and all locations discussed in this work, an extreme value threshold
corresponding to a non-exceedance probability of 0.8 is adopted. That is, only the largest 20% of storm peak significant
wave height events are considered for extreme value modelling. Clearly it might be the case that different threshold levels
should be considered for different model forms at different locations. In ongoing work, the effect of threshold selection
(in particular) on the relative characteristics of return value distributions is being examined more thoroughly. We are also
exploring, both theoretically and by means of further extreme value modelling of hindcast samples, the impact of location
characteristics on the widths (for example, inter-quartile ranges) of return value distributions in particular.

In this work, we estimate omnidirectional return value distributions for eight geographic locations in different ocean
basins using a non-stationary extreme value model. Physical environment has a large effect on estimated distributions
of 100-year return values; the most severe environments of those considered are the Gulf of Mexico and northern North
Sea. However, when return value distributions are normalised relative to their median values, the (normalised) return value
distributions for all locations considered are remarkably similar. Moreover, once the effect of sample size is accounted for,
the widths of return value distributions (quantified in terms of the inter-quartile range) are also remarkably consistent. The
effect on estimated return value distributions of neglecting the influence of non-stationarity at different stages of the extreme
value modelling procedure is unpredictable; a fully non-stationary model is recommended. In general, accommodating
non-stationarity in extreme value threshold and rate of occurrence of threshold exceedance appears most critical.
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Fig. 6. Omni-directional 100-year return value distributions for all samples (as labelled), estimated by simulation under the directional model,
incorporating uncertainty in parameter estimation using bootstrap resampling.
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Fig. 8. Inter-quartile range (IQR) of the HS100 distributions (from Figure 6 or 7, coloured dots) as a function of sample size. The dashed
lines are minimum and maximum inter-quartile ranges estimated using 25 randomly-chosen time-intervals (of given size) of the Southern
North Sea (SNS) sample. The left hand plot shows IQR on the original scale, whereas IQRs are median-scaled on the right hand side.
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Fig. 9. Comparison of omnidirectional 100-year return value distributions from stationary and non-stationary models, for all samples. Each
panel shows omnidirectional cumulative distribution functions for the corresponding sample. These are estimated by simulation under a fully-
directional model (in black, in which all of quantile extreme value threshold ψ, rate of threshold exceedance ρ, generalised Pareto shape ξ

and scale σ are functions of direction), a “semi-directional” model (in blue, in which ψ and ρ are directional, but ξ and σ are constants with
direction) and a constant or stationary model (in red, in which no model parameters vary with direction).




