

On the estimation of ocean engineering design contours

Philip Jonathan, Kevin Ewans & Jan Flynn

philip.jonathan@shell.com kevin.ewans@shell.com jan.flynn@shell.com

June 2011

Jonathan, Ewans & Flynn, OMAE 2011 (Rotterdam) On the estimation of ocean engineering design contours

<ロ> <同> <同> < 回> < 三>

3

Motivation

- Environmental design contours required for structural design
- FORM approach available
 - Assumptions might be unrealistic
 - Uncertainty not usually quantified
- Statistical modelling offers an alternative approach to estimate design contours
 - Conditional extremes modelling based on work of Heffernan & Tawn (2004)
- Different forms of design contours are possible
 - Contours of constant probability density
 - Contours of constant exceedence probability

< 同 > < 三 > < 三 >

Objectives

- Evaluate different options for design contour estimation
 - ▶ By analogy with 1-D, more natural to use constant exceedence probability P(X₁ > x₁, X₂ > x₂) than constant probability density
 - FORM provides contours of constant probability density
- Evaluate performance of design contour estimation for simulated data
- Estimate design contours for measured and hindcast applications
- Evaluate uncertainty of estimated design contours

< 同 > < 三 > < 三 >

Content

- Introduction to FORM
- Introduction to Conditional Extremes modelling
- Illustration of different types of design contours
- ▶ Applications to estimation of (*H_S*, *T_P*) contours for
 - Measured Northern North Sea
 - Hindcast Northern North Sea
 - Measured Gulf of Mexico
 - Hindcast North-West Shelf of Australia
- Conclusions and recommendations

< 同 > < 三 > < 三 >

-

FORM in outline

- Joint estimation of contours for 2 or more environmental variates
- Independent of structural loading and response
- Used to define design point for structural reliability
- Probability integral transform (PIT) used to derive independent random variables to derive surface of constant probability density
- For example, in the case of 2 variates:
 - $H_S \sim$ Weibull $\stackrel{PIT}{\Rightarrow} U_1 \sim$ standard Normal
 - $T_P|H_S \sim log-Normal \stackrel{PlT}{\Rightarrow} U_2 \sim standard Normal$
 - **Circle** $u_1^2 + u_2^2 = \beta^2$ gives constant probability density
 - $(U_1, U_2) \stackrel{PIT}{\Rightarrow} (H_S, T_P)$ to get contours on original scale

・ 同 ト ・ ヨ ト ・ ヨ ト

FORM characteristics

- ► FORM assumes we can transform to **independent** random variables
- ► FORM assumes prior knowledge of the distribution of X₁ and (X₂|X₁)
 - Usually based on empirical fitting not physics
 - $T_P|H_S \sim log-Normal$ commonly used.
 - What about parameters of distribution?
 - Do they vary with location, with time?
 - ▶ What about other variates, e.g. *Current speed* |*H_S*?
 - Can we treat current speed and H_S as independent?
 - If not, which functional form for distribution? Parameters?
- Model explains body of distribution, not necessarily tail of distribution
 - $T_P|H_S \sim log-Normal$ may be appropriate for body but not tail of distribution
- Difficult in practice to extend beyond 2 variates

Conditional extremes modelling in outline

- Model the conditional distribution of Y_2 given a large value of Y_1
- ► (X₁, X₂) need to be transformed to (Y₁, Y₂) on the same standard Gumbel scale
- Asymptotic argument relies on X_1 (and Y_1) being large
- In a nut shell:
 - $\blacktriangleright (X_1, X_2) \stackrel{PIT}{\Rightarrow} (Y_1, Y_2)$
 - $(Y_2|Y_1 = y_1) = ay_1 + y_1^b Z$ for large values y_1
 - $\blacktriangleright (Y_1, Y_2) \stackrel{PIT}{\Rightarrow} (X_1, X_2)$
 - ▶ Simulation to sample joint distribution of (Y₁, Y₂) (and (X₁, X₂))
- Marginal generalised Pareto modelling for (X_1, X_2) :

•
$$F_{GP}(x_1;\xi,\beta,u) = 1 - (1 + \frac{\xi}{\beta}(x_1 - w_{X1}))_+^{-\frac{1}{\xi}}$$

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Conditional extremes modelling characteristics

- Value of conditioning variate must be large for conditional extremes model to apply
- ▶ No prior knowledge of form of distribution of X_1 and $X_2|X_1$ required
- Models tail of distribution using conditional extremes
- Models body of distribution empirically

・ 同 ト ・ ヨ ト ・ ヨ ト

3

(人間) システン イラン

3

Exceedence contours explained

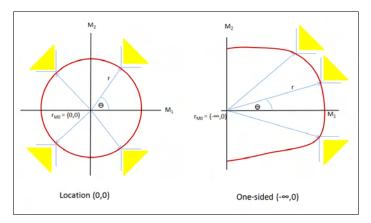


Figure: Contours of constant exceedence probability (C2-C4) radiate outwards from reference location r_{M0}

•
$$Pr(\bigcap_{j=1}^{2}(r_{Mj}(\theta; r_{M0})M_{j} > r_{Mj}(\theta; r_{M0})m_{j}(\theta))) = \alpha$$

< 同 > < 三 > < 三 >

Constant density contours explained

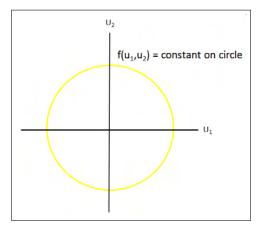


Figure: Contours of constant probability density (C1) are circles in U-space. Density is constant **on the contour only**

•
$$f(u_1, u_2) = (2\pi)^{-1/2} \exp(-\frac{1}{2}(u_1^2 + u_2^2))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Contour types C1-C3

- All of C1-C3 use the conditional extremes model to transform: (H_S, T_P|H_S) ⇒ (U₁, U₂) ~ standard Normal as a first step
- C1: Constant probability density, standard Normal scale
 - Contours are circles $u_1^2 + u_2^2 = \beta^2$
- C2: Constant exceedence probability, standard Normal scale
 - Contour (u_1, u_2) such that: $Pr(\bigcap_{j=1}^2 (r_{Uj}(\theta; (0,0))U_j > r_{Uj}(\theta; (0,0))u_j(\theta))) = \alpha$
- C3: Constant 1-sided exceedence probability, standard Normal scale
 - Contour (u_1, u_2) such that: $Pr(\bigcap_{j=1}^2 (r_{Uj}(\theta; (-\infty, 0))U_j > r_{Uj}(\theta; (-\infty, 0))u_j(\theta))) = \alpha$
- ► All of C1-C3 transform contour in U-space to contours in (H_S, T_P)-space as a final step

イロン 不同 とくほう イヨン

э.

Contour type C4

- C4: Constant 1-sided exceedence probability on original scale
 - Direct simulation using full conditional extremes model
 - Contour (x_1, x_2) such that: $Pr(\bigcap_{j=1}^2 (r_{X_j}(\theta; (-\infty, 0))X_j > r_{X_j}(\theta; (-\infty, 0))X_j(\theta))) = \alpha$

回 と く ヨ と く ヨ と

Illustration using model of Haver and Nyhus

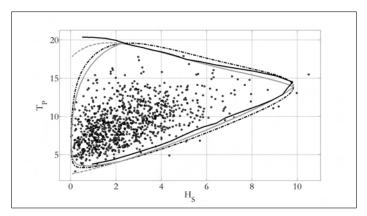
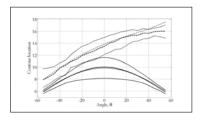


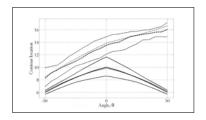
Figure: Contours C1-C4 corresponding to the H_{S} - T_P model of Haver & Nyhus (equivalent to a 1 in 1000 event of H_S marginally): C1 (dashed black), C2 (solid grey), C3 (dashed grey) and C4 (solid black).

• Haver-Nyhus model: $H_S \sim Weibull$, $T_P | H_S \sim log-Normal$

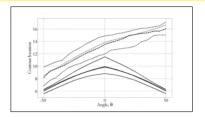
Confidence limits



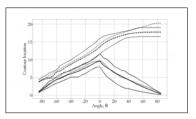
C1: Constant probability density, standard normal scale



C2: Constant exceedence probability, standard normal scale



C3: Constant 1-sided exceedence probability, standard normal scale



C4: Constant 1-sided exceedence probability, original scale

<ロ> <四> <四> <日> <日> <日</p>

3

• Grey: truth. Black: estimated with 95% bands. Dashed: T_P . Solid: H_S .

・ 同 ト ・ ヨ ト ・ ヨ ト

)ata

- Storm peak (H_S, T_P) samples from 4 sources
- Northern North Sea measured
 - Laser: 620 storm peak events (March 1973 December 2006)
- Northern North Sea hindcast
 - 827 storm peak events (November 1964 April 1998)
- Gulf of Mexico measured
 - NDBC buoy 42002: 505 storm peak events (January 1980 -December 2007)
- North West Shelf of Australia hindcast.
 - 145 storm peak events (February 1970 April 2006)
- > All samples exhibit positive dependence between H_S and T_P

< 同 > < 三 > < 三 >

NNS measured

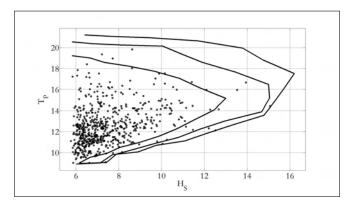


Figure: C4 contours of constant exceedence probability, 1-sided in H_S , (equivalent to 10-, 100- and 1000-year $H_{\rm S}$ marginally), for measured Northern North Sea data. Also shown is the sample.

Contour is not closed since it is 1-sided

・ 同 ト ・ ヨ ト ・ ヨ

NNS hindcast

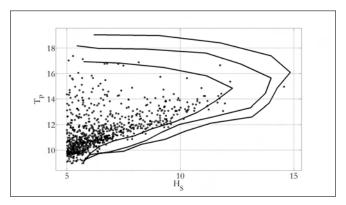


Figure: C4 contours, one-sided in H_S , (equivalent to 10-, 100- and 1000-year $H_{\rm S}$ marginally), for hindcast Northern North Sea data. Also shown is sample.

Contours are qualitatively similar to those of measured NNS data

< 回 > < 三 > < 三 >

GoM measured

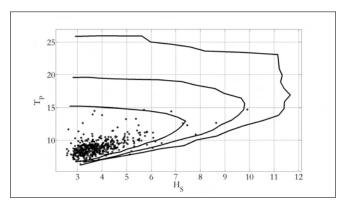


Figure: C4 contours, one-sided in H_S , (equivalent to 10-, 100- and 1000-year $H_{\rm S}$ marginally), for measured Gulf of Mexico data. Also shown is sample.

 \blacktriangleright T_P has a longer tail than for NNS

∃→ < ∃→</p>

NWS hindcast

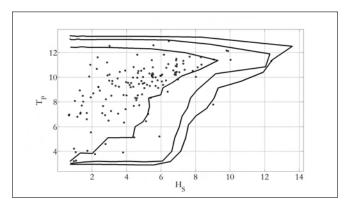
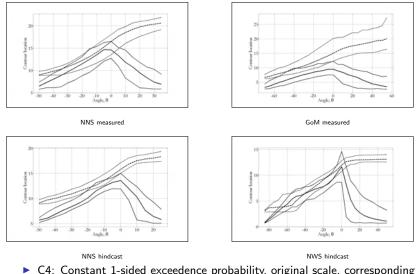


Figure: C4 contours, one-sided in H_S , (equivalent to 10-, 100- and 1000-year H_S marginally), for hindcast North West Shelf data. Also shown is sample.

- T_P not obviously increasing with H_S
- Clear lack of symmetry with respect to T_P

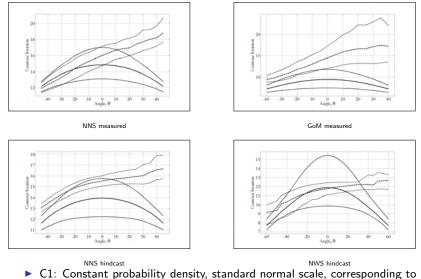
C4 confidence limits



► C4: Constant 1-sided exceedence probability, original scale, corresponding to 100-year H_S marginally <ロ> <同> <同> < 回> < 回> э

Jonathan, Ewans & Flynn, OMAE 2011 (Rotterdam)

Estimating C1 contours



100-year H_S marginally

Jonathan, Ewans & Flynn, OMAE 2011 (Rotterdam)

<ロ> <同> <同> < 回> < 回>

э

Conclusions

- Conditional extremes model:
 - Applicable to all contour estimation provided conditioning variate is large
 - Provides quantification of uncertainty in contour location
- Method has been generalised to p (p > 2) dimensions
 - Difficult using FORM
- Failure probability can be estimated directly
 - Rather than using a 'design point' as in FORM
- Further work on incorporating covariate effects (e.g. seasonality, directionality) within conditional extremes model is in progress

Thanks

Thanks for listening.

jan.flynn@shell.com

philip.jonathan@shell.com kevin.ewans@shell.com

<ロ> <同> <同> < 回> < 回>

æ