

OTC-26668-MS

Consistent Design Criteria for South China Sea with a Large-Scale Extreme Value Model

Laks Raghupathi, Shell India Markets Pvt. Ltd. (Presenter) Philip Jonathan, David Randell, Shell Global Solutions (UK) Kevin C. Ewans, Sarawak Shell Bhd.

Why Model Environmental Extremes

Hurricane Katrina effect in the Gulf of Mexico (2005)

Goal: Rational design and assessment of marine structures to withstand environmental **extremes**

OFFSHORE TECHNOLOGY CONFERENCE ASIA

Summary of Talk

- Motivation and Challenges:
 - Consistent estimation of design criteria for offshore structures
 - First of its kind application to the South China Sea
- Proposed approach with a large-scale extreme model
 - SCEVA or Spatial Covariate Extreme Value Analysis
 - Address technical and computational challenges
 - Validation through robust diagnostics
- → Design criteria for large spatial domains estimated efficiently, consistently and with quantified uncertainty

Technical Challenges

- Motivated by asymptotic arguments:
 - Tail of distribution (above a large threshold) drives extremes
 - Hard to model behaviour with small sample size
- Site-specific analysis is current practice:
 - Analyse large-scale historical data with complex dependencies
 - Time-consuming and requires specialist expertise

Computationally challenging for **100-1000s of locations** with **multidimensional** covariates

South China Sea Challenges

- Inconsistent previous estimates using different data and procedures
- Validation of hindcast (historical database)
- Robust identification of spatially-consistent storm peak events
- Addressing seasonal and bathymetric variations

SEAFINE at **5x higher resolution** than earlier

SEAFINE has 5x extended period of data than earlier

→ Higher quality results expected from higher quality input data

Validation: Source of measured data

Platform measured data from 2008-2012 (Sarawak Shell Bhd.)

Validation: Addressing Peak Matching

Validation indicates good agreement omni-directionally

→ Some location-specific variations in certain sectors

OFFSHORE TECHNOLOGY CONFERENCE ASIA

Validation: Seasonal Analysis

Good overall agreement, different bias effects in winter and summer

OFFSHORE TECHNOLOGY CONFERENCE ASIA

Spatial Peak Picking Challenges

- Previous hindcast with specific storm period information across locations (GOMOS, NAMOS, etc.)
 - → Peak identification straightforward [Raghupathi et al. (2016).]
- SEAFINE is continuous hindcast with mixed meteorology (primarily monsoon and typhoons)
- Techniques developed after careful study of storm peak propagation over time and space

L. Raghupathi et al. Fast Computation of Large Scale Marginal Spatio-Directional Extremes. *Comp. Stat. Dat. Anal.*, 95C:243-258, 2016.

Spatial Peak Picking: Results

OFFSHORE CONFERENCE ASIA

L. Raghupathi et al. (2016), Spatial Identification of Storm Peaks for Large Scale Extreme Value Analysis. Under preparation Ocean Eng.
OTC-26668-MS • Consistent Design Criteria for South China Sea with a Large-Scale Extreme Value Model • Laks Raghupathi

OFFSHORE TECHNOLOGY CONFERENCE ASIA

L. Raghupathi et al. (2016), Spatial Identification of Storm Peaks for Large Scale Extreme Value Analysis. Under preparation *Ocean Eng.*

Ocean Eng.
OTC-26668-MS • Consistent Design Criteria for South China Sea with a Large-Scale Extreme Value Model • Laks Raghupathi

SCEVA Model

Sample $\{\dot{z}_i\}_{i=1}^{\dot{n}}$ storm peak significant wave heights Hs observed with storm peak directions $\{\dot{\theta}_i\}_{i=1}^{\dot{n}}$ and locations $\{\dot{x}_i,\dot{y}_i\}_{i=1}^{\dot{n}}$ Model components:

- 1. **Threshold** function φ above which observations \dot{z} are assumed to be extreme estimated using quantile regression
- 2. **Rate of occurrence** of *n* threshold exceedances modelled using Poisson model with rate $\rho \triangleq \rho(\theta, x, y)$
- 3. Size of occurrence of threshold exceedance using GP model with shape and scale parameters ξ and σ

Region of interest

Parameterising Covariates

Define a basis matrix for the three-dimensional domain *B* using tensor products of marginal basis matrices.

$$B = B_{\nu} \times B_{x} \times B_{\theta}$$

provides an $m \times p$ basis matrix (where $m = m_{\theta} m_x m_y$, and $p = p_{\theta} p_x p_y$) for modelling each of φ , ρ , ξ and σ on the corresponding "spatiodirectional" index set of size m.

→ Faster computation by avoiding explicit matrix storage and arithmetic and acceleration using parallel computing

OFFSHORE TECHNOLOGY CONFERENCE ASIA

(iii) GP Shape ξ (iv) GP Scale σ OTC-26668-MS • Consistent Design Criteria for South China Sea with a Large-Scale Extreme Value Model • Laks Raghupathi

100-Yr Hs Estimates (in meters)

→ Single model for design estimates of any spatial location and direction, generated by a thorough consistent approach

OFFSHORE TECHNOLOGY CONFERENCE ASIA

Method Validation

- Spatially-consistent design estimates available
- For period of data and a given spatial-location
 - Generate return value distribution from a site-specific model
 - Generate return value distribution from large-scale spatial model
 - Compare model diagnostics and establish equivalent goodness of fit

Model diagnostics: Comparison with site-specific model

OFFSHORE TECHNOLOGY CONFERENCE ASIA

Site-specific model diagnostics

Model diagnostics: Comparison with site-specific model

OFFSHORE TECHNOLOGY CONFERENCE ASIA Spatio-directional model → Equivalent goodness of fit

Summary of Talk

- Motivation and Challenges:
 - Consistent estimation of design criteria for offshore structures
 - First of its kind application to the South China Sea
- Proposed approach with a large-scale extreme model
 - SCEVA or Spatial Covariate Extreme Value Analysis
 - Address technical and computational challenges
 - Validation through robust diagnostics
- → Design criteria for large spatial domains estimated efficiently, consistently and with quantified uncertainty

Discussion

- Advantages of a single spatial model evident
 - Eliminates repeated site-specific analysis
 - Improved reliability of estimates due to efficient use of data
- Further improvements
 - Incorporate seasonal effects in the spatial context requiring improved parameterisation
 - Incorporating joint criteria with directional and seasonal effects
 - Improved hindcast by incorporating calibiration with measurements

References

- I. D. Currie, M. Durban, and P. H. C. Eilers. Generalized linear array models with applications to multidimensional smoothing. *J. Roy. Statist. Soc. B*, 68:259--280, 2006.
- P. Jonathan and K. C. Ewans. Statistical Modelling of Extreme Ocean Environments with Implications for Marine Design: A Review. *Ocean Eng.*, 62:91--109, 2013.
- L. Raghupathi, D. Randell, P. Jonathan, and K. Ewans. Fast Computation of Large Scale Marginal Spatio-Directional Extremes. *Comp. Stat. Dat. Anal.*, 95C:243--258, 2016.
- L. Raghupathi et al. (2016), Spatial Identification of Storm Peaks for Large Scale Extreme Value Analysis. Under preparation Ocean Eng.

Acknowledgements / Thank You / Questions

Vianney Koelman, Bertwim van Beest and team (Shell India Markets Pvt. Ltd.) Graham Feld, Fan Shejun (Shell Global Solutions) Vadim Anokhin and colleagues (Sarawak Shell Bhd.)

