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ABSTRACT
Careful modelling of covariate effects is critical to reliable

specification of design criteria. We present a spline based method-
ology to incorporate spatial, directional, temporal and other co-
variate effects in extreme value models for environmental vari-
ables such as storm severity. For storm peak significant wave
height events, the approach uses quantile regression to estimate a
suitable extremal threshold, a Poisson process model for the rate
of occurrence of threshold exceedances, and a generalised Pareto
model for size of threshold . Multidimensional covariate effects
are incorporated at each stage using penalised tensor products of
B-splines to give smooth model parameter variation as a function
of multiple covariates. Optimal smoothing penalties are selected
using cross-validation, and model uncertainty is quantified using
a bootstrap resampling procedure. The method is applied to esti-
mate return values for a large spatial neighbourhood of locations
off the North West Shelf of Australia, incorporating spatial and
directional effects.

1 Introduction
The availability of comprehensive metocean data allows the

effect of the heterogeneity of extremes with respect to direction,
season and location to be accommodated in estimation of design
criteria. Jonathan and Ewans [2013] review statistical modelling

∗Address all correspondence to this author.

of extremes for marine design.

Capturing covariate effects of extreme sea states is important
when developing design criteria. In previous work (e.g Jonathan
and Ewans [2007a], Ewans and Jonathan [2008]) it has been
shown that omni-Design criteria derived from a model that ad-
equately incorporates covariate effects can be materially differ-
ent from a model which ignores those effects(e.g. Jonathan et al.
[2008]). Directional storm peaks HS100 derived from a direc-
tional model can be heavier tailed than that derived from a direc-
tion independent approach, indicating that large values of storm
peak HS are more likely than we might anticipate were we to
base our beliefs on estimates which ignore directionality. Sim-
ilar effects have been demonstrated for seasonal covariates (e.g.
Anderson et al. [2001], Jonathan et al. [2008]).

There is a large body of statistics literature regarding mod-
elling of covariate effects in extreme value analysis; see, e.g.,
Davison and Smith [1990] or Robinson and Tawn [1997]. The
case for adopting an extreme value model incorporating covari-
ate effects is clear, unless it can be demonstrated statistically that
a model ignoring covariate effects is no less appropriate. Chavez-
Demoulin and Davison [2005] and Coles [2001] provide straight-
forward descriptions of a non-homogeneous Poisson model in
which occurrence rates and extremal properties are modelled as
functions of covariates. Scotto and Guedes-Soares [2000] de-
scribe modelling using non-linear thresholds. A Bayesian ap-
proach is adopted Coles and Powell [1996] using data from mul-
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tiple locations, and by Scotto and Guedes-Soares [2007]. Spa-
tial models for extremes (Coles and Casson [1998], Casson and
Coles [1999]) have also been used, as have models (Coles and
Tawn [1996, 2005]) for estimation of predictive distributions,
which incorporate uncertainties in model parameters. Ledford
and Tawn [1997] and Heffernan and Tawn [2004] discuss the
modelling of dependent joint extremes. Chavez-Demoulin and
Davison [2005] also describe the application of a block boot-
strap approach to estimate parameter uncertainty and the preci-
sion of extreme quantile estimates, applicable when dependent
data from neighbouring locations are used. Jonathan and Ewans
[2007b] use block bootstrapping to evaluate uncertainties associ-
ated with extremes in storm peak significant wave heights in the
Gulf of Mexico.

Guedes-Soares and Scotto [2001] discuss the estimation of
quantile uncertainty. Eastoe [2007] and Eastoe and Tawn [2009]
illustrate an approach to removing covariate effects from extremes
data prior to model estimation.

One of the first examinations of the spatial characteristics
of extreme wave heights was reported by Haring and Heideman
[1978] for the Gulf of Mexico. They performed extremal analysis
of the ODGP hurricane hindcast data base (Ward et al. [1978]) at
a number of continental shelf locations from Mexico to Florida,
and concluded that there was not practical difference between the
sites, but they did observe a gradual reduction in extreme wave
heights with decreasing water depth. Chouinard et al. [1997]
took the opportunity to re-examine the spatial behaviour of ex-
tremes in the Gulf of Mexico, when the GUMSHOE hindcast
data base became available. Jonathan and Ewans [2011] used
thin-plate splines to model the spatial characteristics of events in
the Gulf of Mexico. The problem with the thin plate splines ap-
proach is that it is difficult to extend to included other covariate
effects such as direction or season and therefore data need to be
pre-processed prior to modelling.

Here we introduce a spatio directional model for extremes
and apply it to data from the North West continental shelf of
Western Australia. The model incorporates non-parametric model
of extremes using P-splines formulation to characterise the smooth
variation of extreme value parameters in space and directionally.

2 Data
The data used in the modelling covers 6156 hindcast storm

events over a 9x9 grid of locations on the North West continental
shelf of Western Australia during the period 1970-2007. The cli-
mate of the area is monsoonal, and displays two distinct seasons,
“winter” from April to September and “summer” from October
to March, with very rapid transition seasons, generally in April
and September/October between the two main seasons. The win-
ter “dry” is the result of a steady easterly air flow (North East -
South East) originating from over the Australian mainland and
travelling over the Timor Sea (known as the South East Trade

Winds). The summer “wet” is the result of the North West mon-
soon, a steady, moist predominantly West-South West and to a
lesser extent North West wind. Tropical cyclones occur dur-
ing these months and are clearly the most important for extreme
metocean criteria. Tropical cyclones originate from South of the
equator in the eastern Indian Ocean and in the Timor and Ara-
fura Seas. The most severe cyclones most often occur in the
months of December and March-April, when sea-surface tem-
peratures are warmest. In the area under consideration, most of
the storms are tropical lows or developing storms, but they can be
very severe, such as tropical cyclones Thelma (1998) and Neville
(1992). Most of the storms pass through this area head in a West
or South West direction before turning southwards.

FIGURE 1. MARGINAL PLOT OF STORM PEAK HS AGAINST
DIRECTION. THERE IS CLEAR VARIABILITY WITH DIRECTION
WITH THE MOST SEVERE STORMS SEEN FROM 90 − 130O.
THERE ARE ALSO A LARGE NUMBER OF SMALL EVENTS
FROM 250−290O.

In terms of the wave climate, which is the subject of this
paper, the prevailing wave climate comprises contributions from
Indian Ocean swell, winter easterly swell, westerly monsoonal
swell, tropical cyclone swell, and locally generated wind-sea.
The Indian Ocean Swell is a perennial feature typically, prop-
agating from the South-West through North-West. The largest
sea states are wind generated sea states associated with Tropical
Cyclones.

Figure 1 shows marginal plot of storm peak Hs against di-
rection. There is clear variability with direction with the largest
waves seen from 90− 130o. There are also a large number of
small events from 250− 290o. This difference in the rate of oc-
currence of events can also been seen in figure 2 which shows
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FIGURE 2. DIRECTIONAL ROSE HISTOGRAM PLOTS OF
STORM PEAK HS. THE COLOUR OF EACH BIN SHOWS PRO-
PORTION OF DIFFERENT SIZED EVENTS WITHIN THAT BIN.
LEFT-HAND PLOT SHOWS ROSE FOR ALL SITES POOLED.
RIGHT-HAND PLOTS SHOW DIRECTION HISTOGRAMS FOR
(FROM LEFT TO RIGHT FROM TOP) NW, N, NE, W, CENTRAL,
E, SW, S AND SE LOCATIONS RESPECTIVELY.

FIGURE 3. EMPIRICAL QUANTILES OF STORM PEAK HS
OVER SPATIAL DOMAIN OF DATA. CLEAR SPATIAL VARIABIL-
ITY, MOST SEVERE STORMS IN THE W TO SW. SMALLER
EVENTS IN THE SE AND NE.

directional histograms of wave direction in different spatial loca-
tions. It can be seen that the vast majority of data comes from
around 250−290o however, these are associated with swell and
not the big events, which are associated with intense local storms.
Figure 3 shows empirical quantiles of storm peak Hs over spatial
domain of data. There is clear spatial variability over spatial do-
main the biggest waves seen general in the West to South West
and smaller events in the South East and North East.

3 Model
The objective is to estimate design criteria for individual lo-

cations within a spatial neighbourhood, accounting for spatial
and storm directional variability of extremal characteristics.

3.1 Model components
Following the work of Jonathan and Ewans [2008] & Jonathan

and Ewans [2011], summarised in Jonathan and Ewans [2013],
we model storm peak significant wave height, namely the largest
value of significant wave height observed at each location during
the period of a storm event. We assume that each storm event is
observed at all locations within the neighbourhood under consid-
eration. For a sample {żi}ṅ

i=1 of ṅ storm peak significant wave
heights observed at locations {ẋi, ẏi}ṅ

i=1 with storm peak direc-
tions {θ̇i}ṅ

i=1 (henceforth together referred to as covariates), we
proceed using the peaks over threshold approach as follows.

Threshold: We first estimate a threshold function φ above which
observations ż are assumed to be extreme. The threshold varies
smoothly as a function of covariates (φ M

= φ(θ ,x,y)) and is esti-
mated using quantile regression. We retain the set of n threshold
exceedances {zi}n

i=1 observed at locations {xi,yi}n
i=1 with storm

peak directions {θi}n
i=1 for further modelling.

Rate of occurrence of threshold exceedance: We next estimate
the rate of occurrence ρ of threshold exceedance using a Poisson
process model with Poisson rate ρ(

M
= ρ(θ ,x,y)).

Size of occurrence of threshold exceedance: We estimate the size
of occurrence of threshold exceedance using a generalised Pareto
(henceforth GP for brevity) model. The GP shape and scale pa-
rameters ξ and σ are also assumed to vary smoothly as functions
of covariates.

This approach to extreme value modelling follows that of Chavez-
Demoulin and Davison [2005] and is equivalent to direct estima-
tion of a non-homogeneous Poisson point process model (see,
e.g., Dixon et al. 1998, Jonathan and Ewans [2013]).

3.2 Parameter estimation
For quantile regression, we seek a smooth function φ of co-

variates corresponding to non-exceedance probability τ of storm
peak HS for any combination of θ ,x,y. We estimate φ by min-
imising the quantile regression lack of fit criterion

`φ = {τ
n

∑
i,ri≥0
|ri|+(1− τ)

n

∑
i,ri<0
|ri|}

for residuals ri = zi−φ(θi,xi,yi;τ). We regulate the smoothness
of the quantile function by penalising lack of fit for parameter
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roughness Rφ (with respect to all covariates), by minimising the
penalised criterion

`∗φ = `φ +λφ Rφ

where the value of roughness coefficient λφ is selected using
cross-validation to provide good predictive performance.

For Poisson modelling, we use penalised likelihood estima-
tion. The rate ρ of threshold exceedance is estimated by min-
imising the roughness-penalised (negative log) likelihood

`∗ρ = `ρ +λρ Rρ

where Rρ is parameter roughness with respect to all covariates,
λρ is again evaluated using cross-validation, and Poisson (nega-
tive log) likelihood is given by

`ρ =−
n

∑
i=1

logρ(θi,xi,yi)+
∫

ρ(θ ,x,y)dθdxdy

The generalised Pareto model of size of threshold exceedance
is estimated in a similar manner by minimising the roughness pe-
nalised (negative log) GP likelihood

`∗
ξ ,σ = `ξ ,σ +λξ Rξ +λσ Rσ

where Rξ and Rσ are parameter roughnesses with respect to all
covariates, λξ and λσ are evaluated using cross-validation, and
GP (negative log) likelihood is given by

`ξ ,σ =
n

∑
i=1

logσi +
1
ξi

log(1+
ξi

σi
(zi−φi))

where φi = φ(θi,xi,yi), ξi = ξ (θi,xi,yi) and σi =σ(θi,xi,yi), and
a similar expression is used when ξi = 0 (see Jonathan and Ewans
2013). In practice, we set λξ = κλσ for prespecified constant κ ,
so that only one cross-validation loop is necessary. The value of
κ is estimated by inspection of the relative smoothness of ξ and
σ with respect to covariates.

3.3 Parameter smoothness
Physical considerations suggest that we should expect the

model parameters φ ,ρ,ξ and σ to vary smoothly with respect
to covariates θ ,x,y. For estimation, this can be achieved by ex-
pressing each parameter in terms of an appropriate basis for the
domain D of covariates, where D = Dθ ×Dx×Dy. Dθ = [0,360)

FIGURE 4. MARGINAL PLOTS OF STORM PEAK HS AGAINST
DIRECTION, RELATIVE LONGITUDE AND RELATIVE LATI-
TUDE. A NON-EXCEEDANCE THRESHOLD PROBABILITY OF
0.5 WAS USED AND φ WAS ESTIMATED USING QUANTILE RE-
GRESSION. THE TOP PLOT SHOWS THE 50% QUANTILE AS
A FUNCTION OF DIRECTION FOR THE SW (RED), CENTRE
(GREEN) AND NE (BLUE) RESPECTIVLY. THE MIDDLE PLOT
SHOWS THE 50% QUANTILE AS A FUNCTION OF LONGITUDE
FOR 0O AT THE MINIMUM LATITUDE (RED), FOR 120O FOR
THE CENTRAL LATITUDE (GREEN) AND 270O FOR THE MAXI-
MUM LATITUDE (BLUE). THE BOTTOM PLOT SHOWS THE 50%
QUANTILE AS A FUNCTION OF LATITUDE FOR 0O AT THE MIN-
IMUM LONGITUDE (RED), FOR 120O FOR THE CENTRAL LON-
GITUDE (GREEN) AND 270O FOR THE MAXIMUM LONGITUDE
(BLUE).

is the (marginal) domain of storm peak directions, and Dx,Dy are
the domains of x- and y-values (e.g. longitudes and latitudes)
under consideration. For each marginal domain, we calculate a
B-spline basis matrix for an index set of m(< n) combinations of
covariate values (potentially we could calculate the basis matrix
for each of the n observations, but usually avoid the case m = n
for computation efficiency). Specifically, for Dθ , we calculate
basis matrix Bθ (m× pθ ) such that the value of any function η

at each point in the index set can be expressed as η = Bθ β for
some vector β (pθ ×1) of basis coefficients.

Note that periodic marginal bases can be specified if appro-
priate (e.g. for Dθ ). Moreover, we can define a basis matrix for
the three dimensional domain D using Kronecker products of the
marginal basis matrices. Thus

B = Bθ ⊗Bx⊗By

provides a (m× p) basis matrix (where p = pθ px py) for mod-
elling each of φ ,ρ,ξ and σ , any of which can be expressed in
the form Bβ for some (p×1) vector of basis coefficients. Model
estimation therefore reduces to estimating appropriate sets of ba-
sis coefficients for each of φ ,ρ,ξ and σ .
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FIGURE 5. SPATIO-DIRECTIONAL PLOT FOR QUANTILE EX-
CEEDANCE THRESHOLD, φ . THE 8 RIGHT-HAND PLOTS SHOW
THE 50% THRESHOLD VALUES OF φ FOR EACH LOCATION
FOR 8 DIRECTIONS. THE LEFT-HAND PLOT SHOWS THE DI-
RECTION FROM WHICH φ IS LARGEST.

The roughness R of any function can be easily evaluated on
the index set (at which η = Bβ ). Following the approach of
Eilers and Marx (e.g. Eilers and Marx 2010, Eilers and Marx
[1996]), we define roughness using

R = β
′Pβ

where P can be easily evaluated for the marginal and three di-
mensional domains. The form of P is motivated by taking dif-
ferences of neighbouring values of β , thereby penalising lack of
local smoothness. The values of pθ , px, py are functions of the
number of spline knots for each marginal domain, and also de-
pend on whether spline bases are specified as periodic (e.g Dθ )
or not (e.g Dx and Dy).

3.4 Algorithms
Quantile regression estimation is performed by direct min-

imisation of the criterion `∗
φ

from a good starting solution. The
starting solution is estimated by fitting a smoothing spline to es-
timates of the spatio-directional quantile with non-exceedance
probability τ at each of the m covariate combinations in the in-
dex set. Poisson and generalised Pareto estimation was achieved
using iterative back-fitting (see, e.g., Davison 2003). Good start-
ing solutions were found to be essential for GP minimisation in
particular. These were achieved by estimating local GP models
at each of the m members of the index set (or combinations of
neighbours thereof to increase sample size), then fitting smooth-
ing spline models for each of GP shape ξ and scale σ .

3.5 Return values
The return value zT of storm peak significant wave height

corresponding to some return period T , expressed in years, can

FIGURE 6. MARGINAL PLOTS OF RATE OF OCCURRENCE
OF THRESHOLD EXCEEDANCE ρ AGAINST DIRECTION, REL-
ATIVE LONGITUDE AND RELATIVE LATITUDE. THE TOP PLOT
SHOWS THE RATE OF OCCURRENCE AS A FUNCTION OF
DIRECTION FOR THE SW (RED), CENTRE (GREEN) AND NE
(BLUE) RESPECTIVELY. THE MIDDLE PLOT SHOWS THE RATE
OF OCCURRENCE AS A FUNCTION OF LONGITUDE FOR 0O AT
THE MINIMUM LATITUDE (RED), FOR 120O FOR THE CENTRAL
LATITUDE (GREEN) AND 270O FOR THE MAXIMUM LATITUDE
(BLUE). THE BOTTOM PLOT SHOWS THE RATE OF OCCUR-
RENCE AS A FUNCTION OF LATITUDE FOR 0O AT THE MINI-
MUM LONGITUDE (RED), FOR 120O FOR THE CENTRAL LON-
GITUDE (GREEN) AND 270O FOR THE MAXIMUM LONGITUDE
(BLUE).

be evaluated in terms of estimates for model parameters φ , ρ , ξ

and σ . For any choice of covariates θ ,x,y, the return value is
given by

zT = φ − σ

ξ
(1+

1
ρ
(log(1− 1

T
))−ξ )

where all of φ ,ρ,ξ and σ are understood to be functions of θ ,x,y,
and ρ is expressed as an annual rate of threshold exceedance.
Thus, z100 corresponds to the 100–year return value, often de-
noted by HS100.

4 Application
We now fit the spatio-directional spline model for a 9 x 9

spatial grid of locations on the North West continental shelf of
Australia. A basis matrix B of 25× 13× 13 knot locations (di-
rection, longitude and latitude) for 6156 observations of storm
peak HS.

4.1 Threshold
We first estimate a threshold function φ using quantile re-

gression spline above which observations ż of storm peak HS are
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FIGURE 7. SPATIO-DIRECTIONAL PLOT FOR POISSON RATE
OF OCCURRENCE ρ . THE 8 RIGHT-HAND PLOTS SHOW THE
RATE OF OCCURRENCE ρ FOR EACH LOCATION FOR 8 DIREC-
TIONS. THE LEFT-HAND PLOT SHOWS THE DIRECTION FROM
WHICH THE RATE OF OCCURRENCE ρ IS LARGEST.

assumed to be extreme. A non-exceedance threshold probability
of 0.5 was used to estimate φ . Figure 4 shows marginal plots
of φ against direction, relative longitude and relative latitude.
The highest thresholds can be seen from storms from the North
and lowest threshold from storms from the West to South West
which is consistent with the raw data. Figure 5 shows a spatio-
directional plot for exceedance threshold, φ . The 8 right-hand
plots show the 50% threshold values of φ for each location for
8 directions. Spatially the smallest thresholds occur in the South
Eastern locations which is nearest land whereas larger thresholds
are seen in the North and East further in more open ocean. The
left-hand plot shows the direction from which φ is largest. The
largest thresholds predominately come from either the North of
South East.

4.2 Rate of occurrence of threshold exceedance
We next estimate the rate of occurrence ρ of threshold ex-

ceedance using a Poisson process model with Poisson rate ρ(
M
=

ρ(θ ,x,y)). Figure 6 shows marginal plots of rate of occurrence
threshold exceedances ρ against direction, relative longitude and
relative latitude. The rate of occurrence is relatively similar for
all longitudes and latitudes; however the rate of occurrence for
events from the West (250-290o) is much higher. This is con-
sistent with the directional histograms seen in figure 3. Similar
effects can be seen in figure 7, a spatio-directional plot for rate
of occurrence ρ .

4.3 Size of occurrence of threshold exceedance:
We estimate the size of occurrence of threshold exceedance

using the GP model. Figure 8 shows marginal plots of GP shape
ξ (left-hand plots) and GP scale, σ (right-hand plots) against

FIGURE 8. MARGINAL PLOTS OF GP SHAPE ξ (LEFT-HAND
PLOTS) AND GP SCALE, σ (RIGHT-HAND PLOTS) AGAINST DI-
RECTION, RELATIVE LONGITUDE AND RELATIVE LATITUDE.
THE TOP PLOTS SHOW THE SHAPE AND SCALE AS A FUNC-
TION OF DIRECTION FOR THE SW (RED), CENTRE (GREEN)
AND NE (BLUE) RESPECTIVELY. THE MIDDLE PLOTS SHOW
THE RATE OF SHAPE AND SCALE AS A FUNCTION OF LONGI-
TUDE FOR 0O AT THE MINIMUM LATITUDE (RED), FOR 120O

FROM THE CENTRAL LATITUDE (GREEN) AND 270O FOR THE
MAXIMUM LATITUDE (BLUE). THE BOTTOM PLOTS SHOW
THE SHAPE AND SCALE AS A FUNCTION OF LATITUDE FOR
0O AT THE MINIMUM LONGITUDE (RED), FOR 120O FROM THE
CENTRAL LONGITUDE (GREEN) AND 270O FOR THE MAXI-
MUM LONGITUDE (BLUE).

direction, relative longitude and relative latitude. The GP shape
parameter is largest for events from between 225−2800 whereas
the scale is higher for events from around 50− 130o. Trends
in longitude and latitude can also be seen. Figure 9 shows a
spatio-directional plot for generalised Pareto shape of occurrence
ξ . Generally the largest shape ξ is seen from the South West.
Figure 10 shows a spatio-directional plot the generalised Pareto
scale σ . The scale is largest for storms from the East.

4.4 Return value z100 estimation
100–year return values z100 are then estimated. Figure 12

shows marginal plots of 100 year return level, z100 of storm peak
HS against direction, relative longitude and relative latitude. Re-
turn values are generally higher further East and further South.
Lower return values can be seen for storms from around 2600

the highest return values are seen for events from the North to
East. Figure 11 spatio-directional plot of 100–year return level
z100 for storm peak HS. Generally lower return values are seen in
the South East corner nearest land. The highest return value in
most locations are generally from the North to North East. Re-
turn values are lower for storms from the West.
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FIGURE 9. SPATIO-DIRECTIONAL PLOT FOR GENERALISED
PARETO SHAPE OF OCCURRENCE ξ . THE 8 RIGHT-HAND
PLOTS SHOW THE GENERALISED PARETO SHAPE ρ FOR EACH
LOCATION FOR 8 DIRECTIONS. THE LEFT-HAND PLOT SHOWS
THE DIRECTION FROM WHICH THE GENERALISED PARETO
SHAPE ξ IS LARGEST.

FIGURE 10. SPATIO-DIRECTIONAL PLOT THE GENERALISED
PARETO SCALE σ . THE 8 RIGHT-HAND PLOTS SHOW THE
GENERALISED PARETO SCALE σ FOR EACH LOCATION FOR
8 DIRECTIONS. THE LEFT-HAND PLOT SHOWS THE DIREC-
TION FROM WHICH THE GENERALISED PARETO SCALE σ IS
LARGEST.

5 Discussion
In the paper, we introduce a marginal spatio directional model

for extreme storm peak significant wave height, applied to esti-
mation of spatio-directional design values for a neighbourhood
of locations off the North West shelf of Australia. The model
uses the peaks over threshold approach, incorporating estimation
of an extreme value threshold and the rate and size of thresh-
old exceedance. Model parameters are smooth spatio-directional
functions. Cross-validation is used to estimate appropriate pa-
rameter smoothness in each case (results shown in appendix 6).
Re-sampling techniques such as bootstrapping can be used to es-

FIGURE 11. SPATIO-DIRECTIONAL PLOT OF 100–YEAR RE-
TURN LEVEL Z100 FOR STORM PEAK HS. THE 8 RIGHT-
HAND PLOTS SHOW THE 100–YEAR RETURN LEVEL Z100 FOR
EACH LOCATION FOR 8 DIRECTIONS. THE LEFT-HAND PLOT
SHOWS THE DIRECTION FROM WHICH THE 100–YEAR RE-
TURN LEVEL Z100 IS LARGEST.

timate the uncertainty of model parameters. The model yields
parameter estimates and design values which are consistent with
physical intuition and previous estimates.

The main advantage of the approach is that marginal spatial
and directional variation of extreme value characteristics are in-
corporated in a rational manner eliminating the need for ad-hoc
procedures such as site pooling. In isolating storm peak events,
we also estimate the directional dissipation (see, e.g. Jonathan
and Ewans 2007a) of storms across locations. This allows us
also to estimate design criteria for arbitrary directional sectors
for a given location together with the omni-directional estimate,
in a consistent manner.

We are currently extending the model to incorporate multi-
variate spatial dependence, using composite likelihood methods,
so that joint characteristics of extremes of storm peak significant
wave height across multiple locations can also be estimated and
studied.
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Appendix
This appendix illustrates results of cross-validation to select

roughness coefficients in roughness-penalised quantile regres-
sion for threshold estimation, and estimation of rate and size of
occurrence of threshold exceedance using roughness-penalised
maximum likelihood. We select values of roughness coefficients
λφ (quantile regression), λρ (Poisson rate) and λξ (= κλσ ), λσ

(for generalised Pareto exceedance size) to maximise the pre-
dictive performance of the respective models, or minimise the
predictive lack of fit (LOF). The latter is quantified using the un-
penalised fit criterion (`) for the relevant model within the cross-
validation procedure. Plots of predictive lack of fit as a function
of roughness coefficient are given below in figures 13, 14 and 15.

FIGURE 13. PREDICTIVE LACK OF FIT (LOF) AS A FUNCTION
OF ROUGHNESS COEFFICIENT (λφ ) FOR QUANTILE REGRES-
SION.

FIGURE 14. PREDICTIVE LACK OF FIT (LOF) AS A FUNC-
TION OF ROUGHNESS COEFFICIENT (λρ ) FOR POISSON EX-
CEEDANCE RATE MODELLING.

FIGURE 15. PREDICTIVE LACK OF FIT (LOF) AS A FUNC-
TION OF ROUGHNESS COEFFICIENT (λξ = κλσ FOR PRE-
SPECIFIED CONSTANT κ) FOR GENERALISED PARETO EX-
CEEDANCE SIZE MODELLING. MISSING VALUES IN THE PLOT
INDICATE THAT FOR SOME VALUES OF ROUGHNESS COEFFI-
CIENT, THE ESTIMATED GP MODEL (ESTIMATED ON A TRAIN-
ING SUBSET OF THE ORIGINAL SAMPLE) IS INCONSISTENT
WITH THE REMAINDER OF THE SAMPLE, IN THAT SOME IN-
DIVIDUALS ARE PREDICTED TO LAY BEYOND THE UPPER
END POINT φ −σ/ξ OF THE CORRESPONDING GENERALISED
PARETO DISTRIBUTION, FOR WHICH THE LOG LIKELIHOOD
IS UNDEFINED. THE CORRESPONDING VALUES OF ROUGH-
NESS COEFFICIENT ARE THEREFORE REJECTED.
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