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Abstract

Contemporaneous occurrences of extreme seas at multiple locations in a neighbourhood can cause greater structural
reliability and human safety concerns than extremes at a single location. Understanding spatial dependence of extreme
seas is important therefore in metocean design, yet has received little rigorous attention in the offshore engineering
literature. We characterise the spatial dependence of storm peak significant wave height using three models motivated
by max-stable processes for locations in the northern North Sea. Models for marginal extremes per location, and
dependence of extremes between locations, are estimated using Bayesian inference with composite spatial likelihoods.
We show that, in addition to marginal directional non-stationarity of extreme seas per location, all three models
indicate spatial anisotropy in extremal dependence quantified by the spatial covariance matrix of the corresponding
max-stable process. Estimates suggest that extreme seas show greater extremal dependence from West to East than
from North to South.
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1. Introduction

Extreme value analysis is a framework to characterise and quantify extreme phenomena. Using extreme value analysis,
we estimate the marginal tail distribution of a single random variable, or the joint tail distribution of two or more
random variables. Compared with marginal analysis, multivariate extreme value analysis is more challenging, less
developed theoretically, and less used in practice.

One approach to multivariate extreme value analysis of oceanographic and engineering interest uses spatial processes
to describe the behaviour of spatially-distributed extremes. Consider significant wave height (HS) from wind-driven
sea states over a spatial lattice of locations for intervals of time corresponding to storm events. We observe maxima
of HS per location per storm, referred to as storm peaks, and assume these to be independent in time. We are
interested in characterising the spatial distribution of storm peak HS . If the lattice consists of locations 1, 2, ..., p,
and the continuous random variables and values observed are respectively Xj , xj , for j = 1, 2, ..., p, then the joint
spatial density of storm peak HS might be written f(x1, x2, ..., xp) = ∂pF/∂x1∂x2...∂xp evaluated at (x1, x2, ..., xp),
where F (x1, x2, ..., xp) = Pr [X1 ≤ x1, X2 ≤ x2, ..., Xp ≤ xp] is the joint cumulative distribution function. Assume now
that HS achieves a large maximum value (exceeding some threshold uk) at some location k on the lattice. Then the
conditional density

f(x1, x2, ..., xp|Xk = xk > uk)

describes the “spatial shape” of dependence for a typical extreme storm. We might expect that spatial shape is
dependent on characteristics of the environment: location (fetch, water depth, bathymetry) and wind field (central
pressure, speed, direction, gradients, wind field spatial extent). We know from the literature (e.g. Mendez et al. 2008,
Sartini et al. 2015) that marginal extreme value characteristics of HS are non-stationary with respect to covariates such
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as wave direction and season. We might surmise therefore that storm shape varies with storm direction and season, as
well as varying between ocean basins. When the data sample is sufficiently large, statistical models whose parameters
are functions of covariates are generally necessary. In practical application, there may be insufficient evidence in the
sample to identify and hence justify incorporating non-stationarity, especially for the spatial dependence structure.
Ascertaining whether a typical North Sea hindcast sample shows evidence for non-stationarity of spatial dependence
structure is the main objective of this work.

We can write the joint density f(x1, x2, ..., xp) as the product of marginal densities f(x1), f(x2), ..., f(xp) and a
dependence function C(x1, x2, ..., xp)

f(x1, x2, ..., xp) = [f(x1)f(x2)...f(xp)] C(x1, x2, ..., xp).

Estimating the marginal densities is familiar territory: for each k, the tail Xk > uk can be estimated using a marginal
extreme value model, and the density below uk estimated empirically. Estimating the dependence function C is
more problematic, especially when the values of one or more variables is extreme: spatial extreme value methods are
needed. Note that spatial dependence is characterised by C only: if we transform each variable Xj to Yj , such that
{Yj} has a common marginal distribution, the corresponding transformed dependence function CY (y1, y2, ..., yp) is a
copula function. There is a large number of copula functions available to describe multivariate distributions, but only
so-called extreme value copulas are appropriate to describe multivariate extreme value distributions (see Section 3).

From an engineering perspective, improved quantification of spatial dependence of extreme storms would allow better
estimation of uncertainties in return values from analysis of spatially-pooled data; this is particularly relevant for
ocean basins where storm events (hurricanes, tropical cyclones) have relatively low rates of occurrence over a spatial
neighbourhood. The work of Heideman and Mitchell (2009) provides a valuable introduction to approaches used by
practising metocean engineers for hurricane-type applications, including site averaging, grid point pooling and track
shifting. The usual approach to uncertainty quantification of return values from spatially-pooled data is to assume
(wrongly) that data from different locations are mutually independent; this is called the “independence likelihood”
assumption (e.g. Chandler and Bate 2007) leading to a joint density

f(x1, x2, ..., xp) ≈ f(x1)f(x2)...f(xp),

which ignores dependence function C. We effectively assume that there are more independent observations than is
actually the case, and therefore underestimate uncertainties during maximum likelihood estimation. To correct this,
we then need to inflate uncertainty bands using a spatial “block bootstrapping” scheme (e.g. Chavez-Demoulin and
Davison 2005). Adopting a sample likelihood which more adequately represents extremal dependence would avoid
the need to make the independence likelihood assumption. An approximation for the sample likelihood with captures
spatial dependence of extremes is essential if Bayesian inference is to be used, since bootstrapping makes little sense in
a Bayesian context. A better description of spatial shape would also improve our ability to quantify the consequences
of extreme seas impacting multiple locations at the same time.

Max-stable process (MSP) models (following from the work of de Haan and Resnick 1977) represent the most reason-
able statistical approach currently available to inference for spatial extremes. MSPs can be thought of as extensions of
multivariate extreme value distributions to continuous space, as summarised in Section 3. Their finite p-dimensional
distributions provide a description of dependence function C above for a lattice of locations. Ribatet (2013) provides
a review of MSPs, outlining the so-called Smith (Smith 1990), Schlather (Schlather 2002) and Brown-Resnick (Brown
and Resnick 1977) models which have found some application in the environmental science literature. These models
are described further in Section 3.2 and the Appendix, and will be applied in Section 5. Ribatet (2013) also provides
an overview of methods for simulating from MSPs. Since the multivariate likelihood characterising extremal depen-
dence cannot be written in closed form except in the bivariate case, approximate likelihoods are necessary for inference
using maximum likelihood estimation. Padoan et al. (2010) presents a composite likelihood-based approximation for
fitting MSPs, evaluates its performance using simulated data, and applies it to spatial extremes of daily precipitation.
The composite likelihood framework used in this work is outlined in Section 4.

As MSPs arise as the limit distribution of componentwise maxima, they should be applied to samples of (contempo-
raneous) maxima (per location per time interval) for a lattice of spatial locations. However, extreme value inference
using temporal peaks over threshold exploits the sample more efficiently. Following the ideas of Smith et al. (1997),
Huser and Davison (2014) presents an approximate censored likelihood scheme for spatial modelling of peaks over
threshold, used in this work also, as outlined in Section 4.
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Different forms of extremal dependence exist, as outlined by Eastoe et al. (2013). Models based on consideration of
componentwise maxima typically assume a particular form of extremal dependence, known as asymptotic dependence,
as discussed e.g. by Kereszturi et al. (2016) for a sample of significant wave heights similar to that used in this work.
This amounts to the assumption limy→∞ Pr [Yl > y|Yk > y] > 0 at all pairs k, l of locations with Yk, Yl on common
marginal scale (unless Yk, Yl are perfectly independent in which case the limit is 0). However, it is usually very
difficult if not impossible to identify the form of extremal dependence present in a typical sample of limited size, with
covariate effects also in play. Kereszturi et al. (2016) seek to refine the way diagnostics for extremal dependence are
used in practice to improve their interpretability. For relatively large samples of sea state HS , they find some evidence
for asymptotic independence of extreme values between locations; for smaller samples of storm peak HS , diagnostics
are inconclusive. For this reason, we choose here to report applications of asymptotic dependent models (Section
5), whilst referring to related work (Kereszturi 2016) for models exhibiting asymptotic independence yielding very
similar results.

Estimation of spatial extremes models for samples of non-stationary peaks over threshold is complicated by at
least three effects. Firstly, spatial extremes models are usually defined for block maxima not peaks over threshold;
yet statistical inference is more efficient using peaks over threshold, and inference using peaks over threshold is
commonplace in ocean engineering. Fortunately, for exceedances of a high threshold, likelihoods for block maxima
and peaks over threshold can be shown to be approximately equal, so that the spatial extremes model can also be
applied to peaks over threshold. However, we also need to model whole samples; we therefore apply a censored
likelihood argument to construct approximate whole sample likelihoods for spatial extremes of peaks over threshold.
Secondly, full joint distributions for spatial extremes are not available in closed form, but expressions for bivariate
cumulative distribution functions and densities typically are. Using these, we need to construct composite likelihood
approximations to the full likelihood for parameter estimation. Thirdly, spatial extremes models are defined assuming
common standard Fréchet marginal distributions. In reality, marginal distributions are non-stationary with respect
to covariates. We therefore need to fit non-stationary marginal models and transform marginally to standard Fréchet
scale under these models. The spatial extremes model may of course also be sensitive to covariates.

The MSP is by far the most popular approach in the statistics literature to characterise extreme spatial processes.
However, the conditional extremes model of Heffernan and Tawn (2004) provides an alternative modelling framework
motivated by extreme value theory, advantageous in that it admits both asymptotic dependence and asymptotic
independence within the same model. It also provides a relatively straightforward means for estimation on spatial
grids, as illustrated e.g. by Eastoe et al. (2013).

Outline of paper

The motivation for this work is to consider (a) the feasibility and (b) the usefulness of applying multivariate extreme
value models to real-world ocean engineering design problems. We assess the extent to which there is evidence, in
typical samples of (storm peak) significant wave height where marginal non-stationarity has already been accommo-
dated, for non-stationarity or anisotropy in spatial dependence structures: how sophisticated a dependence model
can typically be justified? As discussed in the next section, storm peak significant wave height data for a lattice of
locations in the northern North Sea, similar to that previously presented by Kereszturi et al. (2016), is considered.

The article proceeds as follows. Following a description of the motivating North Sea application in Section 2, Sec-
tion 3 provides an introduction to modelling spatial extremes using max-stable processes, and gives the cumulative
distribution functions corresponding to the Smith, Schlather and Brown-Resnick models considered in this work.
Complimenting Section 3, the Appendix gives an overview of the constructive representation of max-stable processes,
and describes how sample realisations from the difference processes may be simulated. Section 4 provides an overview
of the inference procedure used in this work, and addresses the majority of the complicating effects mentioned in
the paragraph preceding this outline. In Section 5, we apply the spatial extremes models to the North Sea data.
Conclusions are drawn in Section 6.

2. Data

2.1. Locations

We consider winter storm data from the NEXTRA hindcast (Oceanweather 2002) for a lattice of 150 locations in
the northern North Sea as shown in Figure 1. Storm intervals for a total of 1680 storms (occurring in winter months
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Figure 1: Map of geographic locations examined. Panel (a) shows central transects for which extremal spatial dependence is estimated,
colour-coded by orientation. Panel (b) shows the central red transect (with approximate West-East orientation) together with one (of a
number) of its parallel transects. A set of parallel transects exists for each orientation. Note that the colour coding of transects in panel
(a) corresponds to that of box-whisker plots in Figures 6-8.

October-March, common to all locations) during the period 1 Oct 1964 to 31 Mar 1995 were isolated from up- and
down-crossings of a sea state significant wave height threshold for the central location. Storm peak significant wave
height for each storm interval at each location provided a sample of 1680× 150 observations for further analysis. For
each storm-location combination, the direction (from which waves emanate, measured clockwise from North) at the
time of the storm peak, referred to as the storm direction, was also retained. A plot of storm peak HS on storm
direction for the central location is shown in Figure 2(a).

Figure 1(a) shows the “bicycle wheel” of central transects through a common centre location, each (coloured) transect
with a different spatial orientation. In Section 5, we will seek to quantify whether the spatial dependence of storm peak
HS along a transect varies systematically with the transect’s orientation φ. Figure 1(b) highlights the central transects
with approximate West-East orientation, together with one of its parallel transects (with the same orientation). In
Section 5 we will also examine whether the location of a transect of given orientation affects the spatial dependence
of extreme storm severity along it.

2.2. Preprocessing

A key step in estimating an extremal dependence model is marginal modelling and subsequent transformation of data
for each location to a standard scale. This is achieved, independently per location, by estimating a non-stationary
marginal directional model following the approach of Ross et al. (2017), as described further in Section 4. Transformed
data then follow the standard Fréchet distribution for each location. A plot of standardised storm peak HS on storm
direction for the central location is shown in Figure 2(b). The effect of the land shadow of Norway for directions
≈ (30, 70) is relatively clear. There is some evidence for increased rate of occurrence of storm seas from approximately
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Figure 2: Storm peak HS on direction for central location (a) before and (b) after standardisation to Fréchet scale.

the South (for directions ≈ (180, 220)) and North (≈ (340, 20)).

2.3. Dependence

Figure 3 illustrates the spatial variation of storm peak HS for 8 typical events from the sample. White discs indicate
spatial maxima in each case, and the colour scheme indicates reduction in HS to the spatial minimum, a black disc
in each panel, as described in the figure caption. Panel (a) shows an event centred approximately in the middle of
the grid from Figure 1, decaying radially. The peak value for the event illustrated in panel (b) is probably actually
outside the grid considered to the West. Panels (d) and (e) show events which are spatially more spread than that
in panel (a). There appear to be two different storm processes contributing the panel (g), one from the North-West
and one from the South-East; there may also be different storm processes contributing to each of panels (c) and (d).

We might expect that the dependence between pairs of standardised values for storm peak HS for the same storm at
two different locations would vary with the displacement of the locations. Figure 4 shows that this is indeed the case.
For neighbouring locations on the transects with angles φ = 4.6 and −72.2 in panels (a) and (c) respectively, there is
high dependence between standardised storm peak values of HS as might be expected. Dependence is considerably
lower when comparing standardised storm peak HS values for the most distant pair of locations on each of those
transects in panels (b) and (d).

3. Models

We consider three models for the spatial dependence of storm peak significant wave height. These are the Smith,
Schlather and Brown-Resnick models. All have corresponding max-stable process (MSP) formulations exhibiting
asymptotic dependence. In this section, we provide a brief introduction to max-stable processes, and describe the
bivariate cumulative distribution functions corresponding to the three models.

3.1. Max-stable processes and distributions

The max-stable process (MSP) Y (s) defined continuously on some spatial domain S (⊆ R2 in our case, indexed
by longitude and latitude) emerges as the limiting form of the maximum of independent and identically distributed
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Figure 3: Observations of the spatial distribution of storm peak HS over the grid shown in Figure 1 for 8 typical events (a)-(h). The spatial
maximum for each event is given as a white disc, and the spatial minimum as a black disc (with white outline). The white → yellow →
red → black colour scheme indicates the spatial variation of relative magnitude of storm peak HS .

Figure 4: Scatter plots of standardised storm peak HS for different pairs of locations. Panel (a) for the central location and its nearest
neighbour to the West along the approximate West-East transect with angle φ = 4.6; panel (b) for the end locations of the same transect.
Panel (c) for the central location and its nearest neighbour to the North along the approximate North-South transect with angle φ = −72.2;
panel (d) for the end locations of the same transect.
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random processes Ỹi(s), i = 1, 2, ..., n, defined on S, as described e.g. by Wadsworth and Tawn (2012) or Davison
et al. (2012). For some sequence of continuous functions {an(s) > 0} and {bn(s)},

maxni=1{Ỹi(s)} − bn(s)

an(s)
→ Y (s) as n→∞, for all s ∈ S

provided the limit exists, and Y (s) has non-degenerate finite-dimensional distributions. Specifically, at any fixed
location in S (indexed by k, say), the univariate distribution FYk of Yk is max-stable in the sense that FnYk(b′kn +
a′knyk) = FYk(yk) for some sequences {a′kn > 0} and {b′kn}. Remarkably, the only possible choice for FYk with this
max-stable property is the generalized extreme-value (GEV) distribution

FYk(yk) = exp[− exp{(yk − η)/τ}] for ξ = 0,

= exp[−{1 + ξ(yk − η)/τ}−1/ξ
+ ] otherwise,

with parameters: shape ξ, scale τ and location η. Moreover, the joint p-dimensional distribution FY for a lattice
of p locations in S is max-stable with FnY (b′1n + a′1ny1, b

′
2n + a′2ny2, ..., b

′
pn + a′pnyp) = FY (y1, y2, ..., yp) for sequences

{a′jn > 0} and {b′jn}.
MSPs can thus be thought of as theoretical justification for a means of extending the GEV distribution for modelling
of maxima at one location, to multivariate extreme value distributions for modelling of component-wise maxima
observed on a grid of locations. At each location k, it is often convenient to transform Yk to Zk = {1+ξ(Yk−η)/τ}1/ξ
so that Zk has a marginal unit Fréchet distribution FZk

(zk) = exp(−1/zk), for zk > 0. With this transformation, the
joint distribution (or copula) FZ now has the special homogeneity property that

FZ(z1, z2, ..., zp) = Pr [Z1 ≤ z1, Z2 ≤ z2, ..., Zp ≤ zp]

= Pr

[
Z1

n
≤ z1,

Z2

n
≤ z2, ...,

Zp
n
≤ zp

]n
by homogeneity

= FZ(nz1, nz2, ..., nzp)
n .

Only choices of FZ exhibiting this homogeneity correspond to finite-dimensional distributions from MSPs, and are
hence valid for spatial extreme value modelling.

Exponent measure: It is conventional to express the joint distribution FZ(z1, z2, ..., zp) in terms of an exponent
measure VZ(z1, z2, ..., zp) such that

FZ(z1, z2, ..., zp) = exp{−VZ(z1, z2, ..., zp)}

with marginal identities VZ(z,∞,∞, ...,∞) = VZ(∞, z,∞, ...,∞) = ... = VZ(∞,∞, ...,∞, z) = 1/z and homogeneity
VZ(tz1, tz2, ..., tzp) = t−1VZ(z1, z2, ..., zp) for t > 0. The MSP models examined in Section 3.2 correspond to different
choices of exponent measure.

Extremal coefficient: The exponent measure evaluated at zk = 1 for all k provides a useful univariate summary of
the dependence structure since

FZ(z, z, ..., z) = exp (−VZ(z, z, ..., z))

= exp
(
−z−1VZ(1, 1, ..., 1)

)
from the homogeneity property

= exp (−θp/z)

where θp = VZ(1, 1, ..., 1) is called the extremal coefficient. Upper and lower bounds for θp are p and 1 as outlined
in the Appendix. The value of θp between p and unity indicates the extent of extremal dependence. For any pair of
locations indexed by k, l, the extremal coefficient θkl also has a natural interpretation in terms of conditional bivariate
exceedances and the asymptotic dependence diagnostic χkl, namely

lim
z→∞

Pr [Zl > z|Zk > z] = 2− θkl = χkl ,

as outlined in the Appendix. For the Smith, Schlather and Brown-Resnick MSP models used in this work, the
bivariate exponent measure Vkl for all pairs of locations is available in closed form for Fréchet margins, facilitating
maximum likelihood inference using a composite likelihood, as discussed in Section 4. We estimate the extremal
coefficient of significant wave height for pairs of North Sea locations in Section 5 corresponding to different choices
of MSP models.
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3.2. Exponent measures

The bivariate exponent measures for the Smith, Schlather and Brown-Resnick MSPs, available in closed form, are
described next. The constructive representation of MSPs, useful for simulating from the Smith, Schlather and Brown-
Resnick models, is outlined in the Appendix.

Smith process: For any two locations sk, sl in S, the exponent measure Vkl for the Smith process is given by

Vkl(zk, zl;h(Σ)) =
1

zk
Φ(
m(h)

2
+

log(zl/zk)

m(h)
) +

1

zl
Φ(
m(h)

2
+

log(zk/zl)

m(h)
) ,

where vector h = sl − sk, and m(h) is the Mahalanobis distance between sk and sl, given by

m(h) = (h′Σ−1h)1/2 ,

and Σ is a 2 × 2 covariance matrix. The value of Vkl(1, 1;h(Σ)) can be seen from its definition to be equivalent to
2Φ(m(h)/2), providing a useful diagnostic check for simulations and assessment of dependence in exploratory analysis
of data.

Schlather process: For any two locations sk, sl in S, the exponent measure Vkl for the Schlather process is given
by

Vkl(zk, zl;h(Σ)) =
1

2
(

1

zk
+

1

zl
)(1 +

[
1− 2

(τ(h) + 1)(zkzl)

(zk + zl)2

]1/2

) ,

where we choose to use the squared exponential correlation function τ(h) = exp(−h′Σ−1h) for covariance matrix

Σ. The extremal coefficient V (1, 1;h(Σ)) is given by 1 + [(1− τ(h))/2]1/2, again useful as a diagnostic. Note that
the extremal coefficient cannot reach 2 because τ(h) > 0, so that the Schlather process cannot describe perfect
independence for increasing h.

Brown-Resnick process: For any two locations sk, sl in S, the exponent measure Vkl for the Brown-Resnick process
takes the same form as that of the Smith process, with

m(h) = σ(h) = (h′Σ−1h)H/2 ,

for Hurst parameter H ∈ [0, 1]. The Brown-Resnick process accommodates the whole range of values for the extremal
coefficient (Davison et al. 2012). The Hurst parameter (or more generally the Hurst exponent) is a measure of long-
term memory in stochastic processes, widely used in different branches of mathematics and physics. It is named
after Harold Edwin Hurst (e.g. Sutcliffe (1979)), the British hydrologist who studied the characteristics of time series
for the Nile basin’s rain and drought conditions. A value of H ∈ (0.5, 1) indicates long-range positive dependence,
expected of the spatial characteristics of North Sea storm severity. H ∈ (0, 0.5) indicates a tendency for long-term
switching between high and low values for adjacent pairs.

3.3. Densities

Probability density functions fkl corresponding to the exponent measures Vkl are required to construct likelihood
expressions. These are obtained by straightforward but laborious differentiation

fkl(zk, zl;h(Σ)) = exp(−Vkl)
(
∂Vkl
∂zk

∂Vkl
∂zl
− ∂2Vkl
∂zk∂zl

)
where Vkl = Vkl(zk, zl;h(Σ)). Expressions for the Smith, Schlather and Brown-Resnick forms of fkl are given in the
Appendix.

3.4. Illustrations

Figure 5 illustrates typical realisations from each of the Smith, Schlather and Brown-Resnick processes for different
specifications of spatial covariance Σ (and Hurst parameter H for the Brown-Resnick processes). The realisations
were generated using MATLAB algorithms written using the constructive representation and algorithms given in the
Appendix. Parameter settings for Σ are specified in terms of the triplet (Σ11,Σ22,Σ12). For larger values of Σ11,Σ22

on the top row, realisations are generally smoother spatially, and obvious features are spatially more extensive.
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Figure 5: Illustrative realisations of Smith (a,e), Schlather (b,f), and Brown-Resnick (c,d,g,h) processes for different parameter choices.
The first row corresponds to parameter settings (Σ11,Σ22,Σ12) = (300, 300, 0) for all processes, and the second row to (30,20,15). For
Brown-Resnick processes (c,g), Hurst parameter H = 0.95. For Brown-Resnick processes (d,h), H = 0.65. Each panel can be considered
to show a possible spatial realisation of storm peak HS , similar to those shown in Figure 3. The colour scheme is the same as that used
in Figure 3.

Reducing the Hurst parameter (final column) clearly also has an effect. Realisations of the Smith and Schlather
process look more idealised, whereas the Brown-Resnick process appears to be producing realisations which are more
plausible representations in general of physical processes. Comparison of the panels of Figure 5 with those of Figure
3 would suggest, assuming the spatial scales of the figures to be comparable, that panels (a)-(c) of Figure 5 provide
more realistic representations of the current sample. We also note that a higher value of Hurst parameter appears
more plausible on this scale.

4. Estimation

This section explains the estimation procedure used. We start by outlining a composite likelihood for the spatial
extremes model, assuming observations of peaks over threshold with standard Fréchet margins. Next we explain
how to censor the bivariate distribution for block maxima on standard Fréchet margins, for which we have closed
form expressions, so that it is also applicable to peaks over threshold on standard Fréchet margins. Then we give
a brief description of the marginal analysis performed independently per location to transform samples to standard
Fréchet scale. Finally, we give a step-by-step protocol for the Markov chain Monte Carlo estimation procedure used
to estimate spatial extremes covariance matrix Σ, for each of the Smith, Schlather and Brown-Resnick models.

4.1. Composite likelihood

Suppose we have observations of peaks over threshold {yj} on standard Fréchet marginal scale at locations {sj} ∈ S.
Since joint distributions for more than two locations are not available in closed form, we adopt a composite log
likelihood

`C(Σ; {yj}) =
∑
{k,l}∈N

wkl log fkl(yk, yl;h(Σ))

for covariance matrix Σ to be estimated, where {k, l} ∈ N indicates that locations sk and sl are neighbours, {wkl}
are arbitrary weights, and fkl is the corresponding bivariate density for peaks over threshold. Maximum likelihood
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estimates for Σ maximise `C(Σ; {yj}). In practice, all weights were set to unity, so that likelihood contributions from
all pairs of locations were included.

4.2. Censored likelihood for peaks over threshold

The joint distribution of peaks over some high threshold u on standard Fréchet margins, Yk, Yl, can be related to the
joint distribution of the corresponding block maxima on standard Fréchet margins, Zk, Zl, and hence the exponent
measure. Following Huser and Davison (2014)

Pr [Yk ≤ yk, Yl ≤ yl] =
(

(Pr [Yk ≤ yk, Yl ≤ yl])2
)1/2

= (Pr [max (Yk, Yl) ≤ yk,max (Yk, Yl) ≤ yl])1/2

≈ exp
(
−Vkl

(yk
2
,
yl
2

;h(Σ)
))1/2

if yk, yl > u for some high threshold u

= exp

(
−1

2
Vkl

(yk
2
,
yl
2

;h(Σ)
))

= exp (−Vkl (yk, yl;h(Σ))) since V is homogeneous of order −1.

= Pr [Zk ≤ yk, Zl ≤ yl] .

That is, if both yk and yl are large, we can approximate the joint distribution of peaks over threshold by the
corresponding distribution of block maxima, and use the densities from Section 3.3 directly to construct likelihoods
for peaks over threshold modelling. However, we still need to construct an approximate likelihood for the case when
one or both of zk, zl does not exceed u. For this purpose, we follow Huser and Davison (2014) in constructing a
censored likelihood approximation for peaks over threshold defined as

fkl(yk, yl;h(Σ)) =


∂2

∂yk∂yl
exp{−Vkl(yk, yl;h(Σ))}, yk, yl > u,

∂
∂yk

exp{−Vkl(yk, u;h(Σ))} yk > u, yl ≤ u,
∂
∂yl

exp{−Vkl(u, yl;h(Σ))} yk ≤ u, yl > u, and

exp{−Vkl(u, u;h(Σ))} yk, yl ≤ u.

(1)

Adopting this expression in the composite likelihood allows estimation of spatial extremes covariance matrix Σ,
provided that the sample is available on standard Fréchet margins. We note, as discussed further in the Section
6, that the pairwise composite likelihood is an approximation to the full likelihood. It is not equivalent to the
full likelihood, and there is loss of information from adopting the pairwise composite likelihood approximation.
Nevertheless, composite likelihood methods provide useful inferential tools when the full likelihood may not be
available. An overview of composite likelihood methods is given by Varin et al. (2011).

4.3. Marginal analysis

Non-stationary marginal extreme value analysis using the piecewise gamma-generalised Pareto model of Ross et al.
(2017), independently per location, is used to characterise the distribution of peaks over threshold of storm peak
significant wave height with storm direction as a covariate. Quantile regression (for a fixed quantile threshold prob-
ability) is used to partition the sample prior to independent gamma (body) and generalised Pareto (tail) estimation.
An ensemble of independent models, each member of which corresponds to a choice of quantile probability from a
wide interval of quantile threshold probabilities, is estimated. Diagnostic tools are then used to select an interval of
quantile threshold probabilities corresponding to reasonable model performance, for subsequent inference of extreme
quantiles incorporating threshold uncertainty. The joint posterior distribution fM (βM ) of parameter estimates βM is
used to transform the original sample, independently per location, to standard Fréchet scale.

4.4. MCMC estimation

Markov chain Monte Carlo (MCMC) inference is used to estimate the joint distribution of the elements of spatial
covariance matrix Σ. The adaptive Metropolis algorithm of Haario et al. (2001) discussed by Roberts and Rosenthal
(2009), which automatically tunes the Markov chain parameters during execution, is adopted to propose parameters
jointly. We proceed according to the algorithm below for each MCMC iteration r. From the marginal analysis
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Algorithm MCMC iteration for spatial covariance Σ.

Input: Current state Σr−1, marginal posterior fM (βM ), original sample D of storm peak HS .
Output: Updated state Σr.

1: Draw a set of marginal parameters βMr from fM , independently per location.
2: Use βMr to transform D to standard Fréchet scale, independently per location, obtaining sample DFr.
3: Execute adaptive MCMC step from state Σr−1 with sample DFr as input, obtain Σr.
4: return Σr.

per location, samples of 10000 points from the posterior distribution fM (βM ) of parameters βM are available. For
estimation of dependence covariance Σ, we use small perturbations of the maximum likelihood estimate as starting
points for adaptive MCMC. Writing Ω for the triplet [Σ11,Σ22,Σ12], a starting value for each element ω of Ω is
sampled from a uniform distribution centred at the corresponding maximum likelihood estimate ω0 with half width
0.03 ω0. Starting triplets corresponding to non-positive definite Σ are rejected. We then evolve multiple MCMC
chains, one for each perturbation of the maximum likelihood estimate, and then compare trajectories post burn-in to
confirm reasonable chain convergence.

Trajectories evolve as follows. At MCMC iteration r, candidates Ωc
r are sampled according to

Ωc
r = Ωr−1 + γε1 + (1− γ)ε2

where γ ∈ [0, 1], ε1 ∼ N(0, δ2
1I3/3), ε2 ∼ N(0, δ2

2SΩr−1/3), I3 is the three-dimensional identity matrix and SΩr−1 is an
estimate for the covariance matrix of Ω based on the values Ω1,Ω2, ...,Ωr−1. Following Roberts and Rosenthal (2009)
we set δ1 = 0.1 and δ2 = 2.38. We found it useful to use a value of γ = 0.2, larger than that recommended by Roberts
and Rosenthal (2009), to produce candidates which explore the space of elements of Σ more freely. For the first few
iterations, we use γ = 1. A Wishart prior is assumed for Σ, and parallel chains used to check MCMC convergence.

5. Application

The methods and procedures given in Sections 3 and 4 were used to estimate the spatial covariance Σ of storm
peak HS at the northern North Sea locations for the Smith, Schlather and Brown-Resnick models, using Bayesian
inference. Estimates are illustrated for each model in turn in Figures 6-8 in terms of the spatial dependence σ(φ)
exhibited along transects with different orientations. For the Smith model, Figure 6 shows both one-dimensional and
two-dimensional estimates for σ(φ) along each of the transects illustrated in Figure 1. Box-whisker plots illustrate
95% credible intervals for estimates for the (scalar) covariance Σ obtained by applying the one-dimensional Smith
model to data from all transects with particular orientation only. Transect orientation is shown on the x-axis.
Since inferences may be sensitive to the choice of the marginal extreme value threshold, and the censoring threshold
for spatial modelling, estimates are presented for two choices of marginal threshold non-exceedance probability on
rows 1 and 2, and two choices of censoring threshold non-exceedance probability in columns 1 and 2. Note that a
larger set of combinations of marginal and censoring thresholds were examined, but results for only two threshold
choices are illustrated in the text. Each panel also gives the corresponding estimate of spatial dependence obtained
from estimating a two-dimensional Smith model for all locations. The spatial dependence σ(φ) along transect with
orientation φ is estimated using

σ2(φ) = [cos(φ) sin(φ)] Σ [cos(φ) sin(φ)]T .

It can be seen that 95% credible intervals from the two-dimensional model are narrower than from the one-dimensional
model, but that the general characteristics of the one- and two-dimensional estimates for σ(φ) are in excellent
agreement for all combinations of thresholds. Corresponding estimates for the Schlather and Brown-Resnick models
are given in Figures 7 and 8, showing excellent agreement with Figure 6 in terms of general trends with orientation
φ. A prior sensitivity study suggested that a choice of Hurst parameter H = 0.75 was appropriate. In this study, we
evaluated the profile likelihood for the negative log composite likelihood as a function of H for the 2-D Brown-Resnick
model using the full sample with marginal and dependence thresholds corresponding to non-exceedance probabilities
of 0.65. A minimum log likelihood for H ≈ 0.75 was observed. The choice of marginal and dependence model
censoring thresholds clearly influences the estimates of σ(φ), with higher thresholds yielding weaker dependence. We
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Figure 6: Estimated extremal spatial dependence parameter σ̂(φ) for all transects with a given orientation φ estimated using 1-D (box-
whisker) and 2-D (black) Smith processes. φ is quantified as the transect angle anticlockwise from a line of constant latitude, as is apparent
from comparison with Figure 2. The first (second) row corresponds to a choice of marginal threshold with non-exceedance probability
0.5 (0.8). The first (second) column corresponds to a choice of censoring threshold with non-exceedance probability 0.5 (0.8). For 1-D
estimates with a given φ, box centres corresponds to the median estimate, and box edges to the 0.25 and 0.75 quantiles across all parallel
transects; whisker edges correspond to the 0.025 and 0.975 quantiles. For 2-D estimates, the 0.025, 0.5 and 0.975 quantiles are shown as a
function of φ. Note that the colour coding of box-whisker plots corresponds to that of transect orientation in Figure 1.

emphasise that we estimated σ(φ) for all combinations of marginal and dependence thresholds ∈ {0.5, 0.65, 0.8}, and
found that the general trends in σ(φ) to be similar throughout; for brevity, we chose to report results for only some
of those combinations here. There is evidence from all figures that the estimate for spatial dependence σ(φ) is largest
in an approximately West-East direction, and least in an approximately North-South direction. That is, the spatial
similarity between extremes of storm peak significant wave height at these locations is greater from West to East
than from North to South. This observation can be interpreted in terms of a model storm system propagating in
a predominantly North-South (or South-North) direction, such that locations on the storm front (perpendicular to
direction of propagation) exhibit higher spatial dependence of storm peak HS than locations lying along the storm
trajectory. This is at least physically plausible given the bathymetry of the northern North Sea. However, storm
systems propagating predominantly West-East, such that locations on the storm front (perpendicular to direction
of propagation) exhibit lower spatial dependence of storm peak HS than locations lying along the storm trajectory,
would also produce similar dependence structure.

The spatial dependence shown in Figures 6-8 can also be illustrated in terms of the extremal coefficient θ2 defined
in Section 3. This is particularly convenient because it allows direct comparison of the competing models. Results
are given in Figure 9 for the same four combinations of thresholds. For clarity, only one-dimensional estimates are
reported; good correspondence between one- and two-dimensional estimates has already been established. Agreement
between the Smith and Schlather estimates is excellent, with Brown-Resnick estimates somewhat higher. All estimates
are in the region of 1.7, but estimates are lower for transects with orientations near zero. Recalling that θ2 has domain
[1, 2], with 1 indicating perfect dependence and 2 perfect independence, we infer that transects with orientations near
zero exhibit stronger dependence.

Next we examine the variability in spatial dependence for sets of parallel transects with a given orientation. The
left-hand panel of Figure 10 illustrates the five transects with different orientations φ, each considered as the first
transect of a set with common orientation. As we move from the first transect (s = 1) with some orientation φ to
its nearest parallel neighbour transect (s = 2) with the same orientation φ, the value of spatial dependence σ(φ, s) is
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Figure 7: Estimated extremal spatial dependence parameter σ̂(φ) for all transects with a given orientation φ estimated using 1-D (box-
whisker) and 2-D (black) Schlather processes. φ is quantified as the transect angle anticlockwise from a line of constant latitude, as
is apparent from comparison with Figure 2. The first (second) row corresponds to a choice of marginal threshold with non-exceedance
probability 0.5 (0.8). The first (second) column corresponds to a choice of censoring threshold with non-exceedance probability 0.5 (0.8).
Other details as for Figure 6.

Figure 8: Estimated extremal spatial dependence parameter σ̂(φ) for all transects with a given orientation φ estimated using 1-D (box-
whisker) and 2-D (black) Brown-Resnick processes with H = 0.75. φ is quantified as the transect angle anticlockwise from a line of
constant latitude, as is apparent from comparison with Figure 2. The first (second) row corresponds to a choice of marginal threshold
with non-exceedance probability 0.5 (0.8). The first (second) column corresponds to a choice of censoring threshold with non-exceedance
probability 0.5 (0.8). Other details as for Figure 6.
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Figure 9: Estimated extremal coefficient θ̂(φ) for all transects with a given orientation φ, estimated using 1-D Smith (black), Schlather
(dark grey) and Brown-Resnick (light grey) processes. The first (second) row corresponds to a choice of marginal threshold with non-
exceedance probability 0.5 (0.8). The first (second) column corresponds to a choice of censoring threshold with non-exceedance probability
0.5 (0.8). For 1-D estimates with a given φ, box centres corresponds to the median estimate, and box edges to the 0.25 and 0.75 quantiles
across all parallel transects; whisker edges correspond to the 0.025 and 0.975 quantiles.

illustrated in the right-hand panels. It appears that σ(φ, s) is lower for small s, namely transects near the Shetland
Isles and Scotland, suggesting that spatial dependence between locations decays more quickly with distance here.
Transects with moderate values for s, in the centre of the region explored, show higher values of σ(φ, s) in general,
and hence higher spatial dependence between locations. These observations suggest a model with non-stationary Σ
parameterised in terms of absolute location may provide an improved description of extremal spatial dependence.

6. Discussion

In this work we provide clear evidence for anisotropy in spatial dependence of extreme seas. For a neighbourhood of
locations in the northern North Sea, we demonstrate that storm peak significant wave height varies with location and
direction. We use marginal directional extreme value models, estimated independently per location, to characterise
marginal non-stationarity. After accounting for marginal effects, there is still considerable remaining directional
non-stationarity in the spatial dependence between extreme seas at different locations. The extent of West-East
dependence is higher than that of North-South dependence.

Software in MATLAB and “R” was developed independently in parallel at Shell and Lancaster respectively to validate
inferences. The MATLAB code was further validated by repeating the analysis of maximum composite likelihood
estimation provided by Padoan et al. (2010). “R” code for the current analysis is available from the authors on
request.

Choice of extremal dependence class for multivariate spatial EV modelling of significant wave height is problematic,
due to the presence of covariate effects and typically limited sample size. Yet estimating the corresponding non-
stationary marginal behaviour is more straightforward due in large part to the existence of a unified (generalised
extreme value) framework for marginal extremes. We therefore avoid the need to use different marginal specifications
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Figure 10: Estimated extremal spatial dependence parameter σ̂(φ, s) for individual transects, using a Smith process with marginal and
censoring thresholds corresponding to a non-exceedance probability of 0.8. Each of panels (b)-(g) shows σ̂(φ, s) for fixed orientation φ
(given in the panel title) as a function of transect locator s. Panel (a) shows transects with s = 1 for different orientations φ. The sequence
of subsequent parallel transects (s = 2, 3, 4, ...) for each orientation is defined in the obvious way. In panels (b)-(g), abscissa values for
transect locators are scaled to physical perpendicular distances between parallel transects.

based on the value of the marginal shape parameter ξ (ξ = 0, Type I or Gumbel; ξ > 0, Type II or Fréchet; and ξ < 0,
Type III or Weibull). Physical considerations, suggesting that the value of shape parameter may well be zero for some
values of covariate, and negative or positive for others, make the unified framework highly advantageous in practical
application of non-stationary extremes. Similarly, it seems likely that useable multivariate models bridging different
extremal dependence classes, incorporating perfect dependence, asymptotic dependence, asymptotic independence
and perfect independence in terms of smooth variation of one or more model parameters, will emerge in the near
future. These would facilitate flexible non-stationary modelling of extremal dependence structure, and effectively
eliminate concerns about choice of dependence class. The work of Wadsworth et al. (2017) is a step in this direction.

We have only considered spatial models motivated by max-stable processes exhibiting asymptotic dependence. In
related work, Kereszturi (2016) also considered asymptotically independent spatial processes for the North Sea data
examined here, focussing again on estimation of the spatial covariance Σ. The characteristics of Σ observed using
asymptotic independent models are very similar indeed to those of the asymptotic dependent models considered here.

In terms of parameters estimation, the 2×2 covariance matrix Σ specifies all of the Smith and Schlather processes, the
Brown-Resnick process (for given Hurst parameterH), and all their asymptotically independent inverted counterparts.
Flexibility of choice of H makes the Brown-Resnick process more general than the Smith process (which corresponds to
H = 1.) The Brown-Resnick process also offers a greater range of asymptotic dependence than the Schlather process
as noted in Section 3.2. Ideally, we would like to be able to determine which of these processes, if any, provide adequate
descriptions of a typical metocean sample, and whether any of the descriptions is materially better than the others. It
seems that we can answer the first query positively, since all of Smith, Schlather and Brown-Resnick given reasonable
descriptions of the current sample, and provide estimates for Σ and functions thereof with similar characteristics.
Unfortunately, choosing the best description is difficult given the size of sample available here, and typically available
in metocean applications. Model comparisons via criteria such as CLIC (composite likelihood information criterion,
Padoan et al. 2010) have been considered by us, but these are generally not conclusive. Moreover, the elements of Σ
are probably non-stationary with respect to numerous covariates, complicating parameter estimation and fair model
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comparison further.

It is obviously beneficial to use the framework of max-stable processes to describe spatial extremes, particularly
in comparison to the assumption of spatial independence and adoption of an independence likelihood with block
bootstrapping to correct uncertainty estimates. It has however been shown that use of composite likelihoods for max-
stable models can lead to underestimation of uncertainties in spatial extremes models. Huser and Davison (2014)
propose the use of three-component and higher-order likelihood contributions instead of bivariate to reduce this effect.

Threshold specification is difficult, even for marginal extreme value analysis. To implement marginal extremes
inference reliably for offshore design, some of us recommend (as in Ross et al. 2017) that an ensemble of models
for different threshold choices (possibly corresponding to threshold non-exceedance probabilities sampled from some
“prior” distribution of plausible values) are used together for inference. Similarly, for reliable spatial extremes
applications, it is likely that employing an ensemble approach over plausible choices of marginal and censoring
thresholds will be useful. Reasonable choices of threshold combinations could be identified by examining the stability
of key responses with respect to arbitrary combinations of plausible thresholds, as in the current study.

The current work has demonstrated spatial anisotropy for extreme storm peak significant wave height consistent
with physical intuition. We have not investigated whether there is further evidence for non-stationarity of Σ with
respect to covariates such as storm direction; this is a topic for future investigation. Other future steps might include
simultaneous marginal and dependence inference, and simulation of spatial events under the fitted model. It would
also be of interest to investigate whether evidence for spatial anisotropy exists in measured (particularly satellite)
data for the North Sea, and in data for other ocean basins.
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Appendix

Bounds for the extremal coefficient

In the notation of Section 3.1, when components Zk are independently Fréchet distributed, we have FZ(z1, z2, ..., zp) =
FZ1(z1)FZ2(z2)...FZp(zp) and hence VZ(z1, z2, ..., zp) =

∑p
k=1 1/zk. Hence θp = VZ(1, 1, ..., 1) = p. When components

Zk are completely dependent, FZ(z1, z2, ..., zp) = FZk
(min(z1, z2, ..., zp)) = exp(−1/min(z1, z2, ..., zp)) and hence

θp = VZ(1, 1, ..., 1) = 1. We see therefore that the value of θp between p and unity indicates the extend of extremal
dependence.

Relating extremal coefficient and the χ statistic for asymptotic dependence

In the notation of Section 3.1, Pr [Zl > z|Zk > z] = Pr [Zl > z,Zk > z] /Pr [Zk > z]. But Pr [Zl > z,Zk > z] = 1 +
Pr [Zl ≤ z, Zk ≤ z] − Pr [Zk ≤ z] − Pr [Zl ≤ z] and Pr [Zk > z] = 1 − Pr [Zk ≤ z]. When z is large, Pr [Zk ≤ z] =
exp(−1/z) ≈ 1− 1/z and Pr [Zl ≤ z, Zk ≤ z] = exp (−θkl/z) ≈ 1− θkl/z so that

Pr [Zl > z|Zk > z] ≈ 1 + (1− θkl/z)− (1− 1/z)− (1− 1/z)

1− (1− 1/z)
= 2− θkl.

The constructive representation of MSPs

de Haan (1984) described MSPs using the so-called constructive representation, which provides a straightforward way
to simulate from MSPs with arbitrary numbers of components and standard Fréchet margins. Following Wadsworth
and Tawn (2012), an MSP is the maximum of multiple copies {Wi} (i ≥ 1) of a random function W , each copy
weighted using the value of a Poisson process {ρi} (i ≥ 1). The MSP Z(s) for s in spatial domain S is evaluated as

Z(s) = µ−1 max
i
{W+

i (s)/ρi}, where W+
i is max{Wi(s), 0}.

The Poisson process ρi gives values on (0,∞). Without loss of generality we assume it has unit intensity, and can be
constructed using standard exponential random variables (with distribution Exp(1)) as follows

ρi = ε1 where ε1 ∼ Exp(1) for i = 1,

= εi + ρi−1 where εi ∼ Exp(1) for i > 1.

The effect of the Poisson weighting is to make it increasingly unlikely that a value of Wi(s) at large i will contribute
to Z(s). This means that we can safely terminate the construction simulation after a number of iterations. The
random function W (s) gives real values, and the expected value E(W+(s)) of its positive part is µ, independent of
location s. Once the function W is specified, µ can usually be evaluated in closed form, although we find it useful
in general to use the empirical estimate µ̂ obtained directly from the simulation. In the current work, for all MSPs,
µ = 1 by construction. Different choices of W (s) give different MSPs.

The Smith model: In one of the first models for spatial extremes, Smith (1990) proposed that Wi(s) be a Gaussian
density function centred at some si, with si sampled at random from a uniform distribution on S. More generally we
can sample si from any density fS defined on S, so that

Wi(s; si,Σ) = ϕ(s− si; Σ)/fS(si)

where ϕ is the density of the standard Gaussian random variable. In oceanographic terms in two dimensions (with
S = [s1min, s1max] × [s2min, s2max]), si could be the location of the centre of a storm, and fS the density of rate of
occurrence of storm events throughout S. Wi(s; si,Σ) would then characterise the influence of a storm centred at si
on location s. If we assume si to be uniformly sampled on S, Wi(s; si,Σ) is simply

Wi(s; si,Σ) =
1

2π|Σ|1/2
e−h

′Σ−1h/2

[s1max − s1min][s2max − s2min]

where h = s− si is the vector displacement of s from si, and Σ is a 2× 2 covariance matrix. The elements of Σ define
the “spatial shape of a storm event”. The corresponding exponent measure Vkl between two locations sk, sl is given
in the main text.
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Algorithm Simulating a realisation from a max-stable processes with unit Fréchet margins

Input: Upper bound B > 0 to terminate procedure. Function to sample from spatial process W . Finite set of
locations S ⊆ S at which to simulate.

Output: One realisation {Z(s)} of a max-stable process for s ∈ S.
1: for i=1,2,... do
2: ρ = ρ+ E, E ∼ Exp(1).
3: Wi(s) ∼W for all locations s ∈ S.
4: W+

i (s) = max (Wi(s), 0) for all s
5: for s ∈ S do
6: Z(s) = max(Z(s),Wi(s)/ρ) for all s.
7: end for
8: if B/ρ < min(Z(s)) then
9: exit loop.

10: end if
11: end for
12: Z(s) = µ−1Z(s) for all s.
13: return {Z(s)}.

The Schlather model: The Schlather MSP makes use of Gaussian processes (Rasmussen and Williams 2006); a
Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.
Each Wi(s) is now a random process rather than a deterministic function as in the Smith model. {Wi(s)} are taken to
be copies of a stationary standard Gaussian process W (s) on S, defined in terms of its correlation function τ(h) ∈ [0, 1]
given by τ(h) = E [W (s+ h)W (s)] for all s, s + h ∈ S. E [W (s)] = 0 and E

[
W 2(s)

]
= 1 for the standard Gaussian

process, and further τ(0) = 1, and τ depends only on the vector displacement h = sl − sk for two locations, rather
than the absolute locations themselves. It is conventional to write

W (s) ∼ GP (0, τ(h)) .

One suitable functional form for τ(h) is exp(−h′Σ−1h) for some covariance matrix Σ. For any pair of locations
sk, sl the joint distribution of W (sk),W (sb) is then bivariate normal: (W (sa),W (sb);h(Σ)) ∼ N(0,Ω(h)), where
Ω(h) = [1 τ(h); τ(h) 1]. Moreover, the joint distribution of W on any finite set of locations is multivariate
Gaussian with Ω defined analogously, providing a straightforward procedure to simulate copies Wi(s), and hence to
simulate the Schlather MSP.

The Brown-Resnick model: Simulation under the Brown-Resnick model is more complicated, and the literature
generally focuses on approximate simulation techniques. Here, we choose to follow the approach of Dieker and Mikosch
(2015) which provides exact simulations of Brown-Resnick random fields (developed from Brown and Resnick (1977))
at a finite number of locations. Each Wi(s) has the form

Wi(sj) =
exp (εi(sj)− γ(sj − Ui))

p−1
∑p

k=1 exp (εi(sk)− γ(sk − Ui))

on a grid of locations {sj}pj=1 ∈ S. {εi(s)} are independent copies of a centred Gaussian process ε(s) with stationary in-

crements, with variance var[ε(s)] = σ2(s) and semi-variogram γ(h) = (1/2)E
[
(ε(s+ h)− ε(s))2

]
. {Ui} are randomly

chosen locations on S. The assumption of stationary increments for ε(s) implies that the statistical characteristics
of ε(s + h) − ε(s) do not depend on s; the statistical properties of the Gaussian process are thus uniquely defined
by γ(h) alone. Since we can assume ε = 0 at the origin of coordinates almost surely, by definition we have γ(h) =
E
[
(ε(h))2

]
/2 = σ2(h)/2. We assume γ(h) = (1/2)(h′Σ−1h)H , for Hurst parameter H ∈ (0, 1]. When H = 0.5, ε(s) is

a Brownian motion (or Wiener process); when H = 1, the Brown-Resnick and Smith processes coincide. The corre-
sponding covariance function is given by τ(sk, sl; Σ, H) = 1

2

(
(sTk Σ−1sk)

H + (sTl Σ−1sl)
H − ((sl − sk)TΣ−1(sl − sk))H

)
.

An algorithm for simulation of one realisation from a Brown-Resnick process is provided below. We note in passing
that the geometric Gaussian process (Davison et al. 2012), a simplified form of the Brown-Resnick process using a
stationary standard Gaussian process in place of the centred Gaussian process with stationary increments, provides
much of the flexibility of the Brown-Resnick process without the computational concerns.
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Algorithm Exact method for simulation of realisation from Brown-Resnick random field.

Input: Fixed grid of locations {sj} on S. Covariance function τ(sk, sl; Σ, H).
Output: Realisation {Wi(sj)} of Brown-Resnick process on grid with Fréchet margins.

1: Draw index i of shift location si at random from 1, 2, ..., p.
2: Draw Gaussian realisation {zj} ∼ GP(0, τ(sk, sl; Σ, H)).
3: for j=1,2,...,p do

4: γj = (1/2)
(
(sj − si)′Σ−1(sj − si)

)H
.

5: Yj = Zj − γj .
6: W (sj) = exp(Yj)/(p

−1
∑

k exp(Yk)).
7: end for
8: return {Wi(sj)}.

Bivariate densities for MSPs

The Smith and Brown-Resnick models: Padoan et al. (2010) derives the bivariate density to be

fkl(zk, zl;h(Σ)) = exp

(
−Φ(w)

zk
− Φ(v)

zl

)[(
Φ(w)

z2
k

+
ϕ(w)

az2
k

− ϕ(v)

azizl

)(
Φ(v)

z2
l

+
ϕ(v)

az2
l

− ϕ(w)

azizl

)
+

(
vϕ(w)

a2z2
kzl

+
wϕ(v)

a2ziz2
l

)]
where ϕ is the standard Gaussian density, w = w(h) = m(h)/2 + log(zl/zk)/m(h), and v = v(h) = m(h)− w(h).

The Schlather model: The derivation of the Schlather derivative is more laborious. Eventually we obtain

fkl(zk, zl;h(Σ)) = A

[
2−W−1(τ(h) + 1)

(
zk − zl
zk + zl

)2
]

where W = 1− 2(τ(h) + 1)zkzl/(zk + zl)
2 and A = (1/2)W−

1
2 (τ(h) + 1)/(zk + zl)

3.
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