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Basin-wide spatial conditional extremes for severe ocean storms
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Abstract Physical considerations and previous studies suggest that extremal dependence between ocean storm severity at
two locations exhibits near asymptotic dependence at short inter-location distances, leading to asymptotic independence and
perfect independence with increasing distance. We present a spatial conditional extremes (SCE) model for storm severity,
characterising extremal spatial dependence of severe storms by distance and direction. The model is an extension of Shooter
et al. (2019) and Wadsworth and Tawn (2019), incorporating piecewise linear representations for SCE model parameters with
distance and direction; model variants including parametric representations of some SCE model parameters are also considered.
The SCE residual process is assumed to follow the delta-Laplace form marginally, with distance-dependent parameter. Residual
dependence of remote locations given conditioning location is characterised by a conditional Gaussian covariance dependent
on the distances between remote locations, and distances of remote locations to the conditioning location. We apply the model
using Bayesian inference to estimates extremal spatial dependence of storm peak significant wave height on a neighbourhood
of 150 locations covering over 200,000 km2 in the North Sea.
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1 Introduction

A key issue in modelling spatial extremes is assessing the nature of dependence between extreme events. If we observe an
extreme event at a location, we are interested in the information provided by this event about the probability of observing
extreme events simultaneously at other locations. We expect that over short distances, an extreme event being observed at
one location may be related to an extreme observation at another. However extremes observed at distant locations are likely
to be less related to each other. To describe extremal dependence, Coles et al. (1999) introduce the measures χ and χ, most
easily calculated through their sub-asymptotic forms χ(u) and χ(u), where u ∈ [0, 1]. For bivariate uniform random variables
(U, V ) these are defined as χ(u) = 2− logP(U < u, V < v)/ logP(U < u) and χ(u) = 2 logP(U > u)/ logP(U > u, V > v)− 1.
χ and χ may be obtained by taking the respective limits of these functions, as u → 1. The nature of extremal dependence
between U and V may then be described by considering χ and χ together. If χ = 0 and −1 ≤ χ < 1, the random variables are
asymptotically independent, and the value of χ signifies the level of dependence. On the other hand, if χ = 1 and 0 < χ ≤ 1,
then the pair (U, V ) exhibit asymptotic dependence, with χ providing a measure of this. For a full description of extremal
dependence types, we refer the reader to Ledford and Tawn (1996) and Coles et al. (1999). Spatial extensions of these measures
are discussed in Tawn et al. (2018).

Models for spatial extremes typically require that the type of extremal dependence exhibited be decided before model
fitting. Here, we describe a spatial conditional extremes (SCE) model able to capture different types of asymptotic behaviour
without prior assumption of dependence class. The SCE framework is useful to assess the risk involved in the construction
of coastal and marine structures, enabling improved description of extremal dependence between variables characterising the
meteorological-oceanographic (“metocean”) environment, and better joint quantification of risk for severe ocean storms.

The current study involves characterisation of extremal spatial dependence of ocean storm severity, quantified for a storm
event using storm peak significant wave height (HS). For two sampling locations a short distance apart (relative to the size of a
storm), we expect that an extreme value of HS arises at each location from the same storm event, characteristic of asymptotic
dependence. In contrast, since it is unlikely that extremes occurring at two distant locations would be simultaneously large, we
expect observations from distant locations to exhibit asymptotic independence. Previous studies (Kereszturi et al., 2016 and
Ross et al., 2017a) have shown that the nature and extent of extremal dependence in an ocean basin changes with distance
between locations, and also potentially with their orientation.

The traditional approach to spatial extremes is to consider max-stable processes, as introduced by Brown and Resnick
(1977), Smith (1990) and Schlather (2002). Max-stable process models typically make the assumption that the spatial process
is asymptotically dependent, and hence such models may be inappropriate for modelling HS over an ocean basin. Other
asymptotically dependent spatial extremes models have been proposed, such as the hierarchical max-stable model of Reich and
Shaby (2012) and the Pareto process approach of Ferreira and de Haan (2014) or de Fondeville and Davison (2020), a method
motivated by peaks-over-threshold analysis. The link between Pareto processes and the SCE model is described by Tawn et al.
(2018); in particular, these processes exhibit asymptotic dependence. More recently, a number of models able to describe either
class of extremal dependence have been proposed, including Wadsworth and Tawn (2012), Wadsworth et al. (2017) and Huser
and Wadsworth (2019). These models suffer from the restriction that either the fitted model must assume a certain type of
extremal dependence across the entire spatial domain in which it is fitted (Huser and Wadsworth 2019), or the model is rather
computationally challenging to fit (Wadsworth and Tawn 2012). More detailed overviews of spatial extremes modelling may
be found in Davison et al. (2012), Ribatet (2013) and Tawn et al. (2018), for example.

The SCE model presented here overcomes these issues. Careful parameterisation of distance and directional effects enables
the spatial extremes problem to be described parsimoniously, even when the number of measurement locations is large. This
reduces computational burden when fitting across hundreds of sampling locations compared to broadly equivalent max-stable
proceses, although Pareto processes are less computationally expensive than max-stable processes. Moreover, the model admits
both asymptotic dependence and asymptotic independence, evolving with distance and direction on the spatial domain.

The model builds upon the work of Wadsworth and Tawn (2019) and Shooter et al. (2019), adopting functional forms for
SCE parameters. Shooter et al. (2019) found that assuming a simple two-parameter for the decay of SCE slope parameter,
α with distance was adequate to capture parameter behaviour adequately whilst reducing computational time for parameter
estimation, since α would otherwise need to be estimated separately for pair of conditioning and remote locations. We build
upon this idea by imposing either parametric or piecewise-linear forms for SCE parameters with distance and direction,
motivated by theoretical considerations and evidence from preliminary analysis. The model is applied using Bayesian inference
to a neighbourhood of 150 locations, to describe the joint extremal dependence of 149 remote locations on a central conditioning
location. Such an analysis would be computationally demanding in the max-stable process framework. The current SCE model
also adopts a delta-Laplace (or generalised Gaussian) form for the marginal distribution of model residuals, coupled to a spatial
conditional Gaussian copula for residual dependence.

The article is presented as follows. In Section 2, we discuss the conditional extremes model of Heffernan and Tawn (2004)
and the spatial extension of Wadsworth and Tawn (2019). Section 3 summarises the inferential scheme used for parameter
estimation. Section 4 outlines the performance of our model in application North Sea storm severity. Discussion and conclusions
are given in Section 5. An outline of the Markov chain Monte Carlo (MCMC) scheme used for inference, and the conditional
quantile constraints of Keef et al. (2013), is given in the Appendix.
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2 Model

2.1 Multivariate conditional extremes

Suppose we have a vector of random variables (X0,X), where X0 and X = (X1, . . . , Xp) have Gumbel marginal distributions,
and random variables Z defined by

Z =
X− a(X0)

b(X0)

for functions a : R → R
p and b : R → R

p, where all operations are taken to be component-wise. Heffernan and Tawn (2004)
assume the existence of a and b such that, for x > 0,

lim
u→∞

P(Z ≤ z, X0 − u > x|X0 > u) = G(z) exp(−x) (1)

where G is a joint distribution with non-degenerate margins. This form for the conditional extremes model is asymptotically
justified; see Heffernan and Tawn (2004) and Heffernan and Resnick (2007) for details. Keef et al. (2013) show that if the
margins of X are assumed to be Laplace-distributed (achievable using the probability integral transform), then canonical
functional forms for a(·) and b(·) are a(x) = αx and b(x) = xβ (for x > 0), where α = (α1, . . . , αp) and β = (β1, . . . , βp). In
this representation, each αi ∈ [−1, 1] and βi ∈ (−∞, 1], with different parameter values corresponding to different classes of
extremal dependence. In the present spatial context, we assume positive dependence and restrict αi ∈ [0, 1], βi ∈ [0, 1] for all
i ∈ {1, . . . , p}. Motivated by Equation (1), for some high threshold u and all x0 > u, we assume the model form

X|{X0 = x0} = αx0 + xβ
0Z (2)

where Z ∼ G is independent of X0.

2.2 Spatial conditional extremes

We extend the model described in Equation (2) to a spatial context, as described by Tawn et al. (2018) and Wadsworth
and Tawn (2019). Consider a stationary spatial process X(·), on a domain S, which has Laplace marginal distributions and
locations r, r0 ∈ S. Then for distance d ∈ R≥0 and heading θ ∈ [0, 2π) between sites, assuming positive dependence between
variables, we have in general that, for all x0 > u,

X(r) | {X(r0) = x0} = α(d, θ)x0 + x
β(d,θ)
0 Z(r − r0)

where α : R>0× [0, 2π) → [0, 1], β : R>0× [0, 2π) → [0, 1] and Z(·) is a residual process independent of X(·). For inference on a
sample of spatial data (X0,X) observed at a finite set of locations r0, r1, . . . , rp, X(·) is treated as a finite-dimensional process.
We set dj = dist(rj , r0) for j = 1, 2, . . . , p and θj = head(rj , r0), for distance and heading metrics dist(·, ·) and head(·, ·). Then
θ describes the relative heading of a remote location from the conditioning site; note that θ is defined using the mathematical
convention, anti-clockwise from due East, for which θ = 0. We then set αj = α(dj , θj) and βj = β(dj , θj).

We follow Wadsworth and Tawn (2019) and suppose that process Z(·) has delta-Laplace margins with parameters µ, σ and
δ dependent on d and θ. That is, the marginal density fZj

of Z at distance dj is

fZj
(zj) =

δj

2κjσjΓ
(

1
δj

) exp

{

−
∣

∣

∣

∣

z − µj

κjσj

∣

∣

∣

∣

δj
}

for j = 1, 2, . . . , p, δj , σj , κj ∈ R>0, µj ∈ R, zj ∈ R, where κ2
j = Γ (1/δj) /Γ (3/δj) and Γ (·) represents the gamma function.

The mean and variance of this distribution are respectively µj and σ2
j , regardless of the choice of δj , and we denote the

distribution as DL(µj , σ
2
j , δj). With this notation, δj = 2 corresponds to a Gaussian distribution, whereas δj = 1 yields a

Laplace distribution; the standard Laplace distribution with variance 2 corresponds to σ2
j = 2 in our notation. Of particular

importance is the requirement that as d → ∞, we approach perfect independence between X(r) and X(r0). Inspection of
the equations above suggests that we should simply be left with standard Laplace random variables; i.e., limd→∞ δ(d, θ) = 1,
limd→∞ α(d, θ) = limd→∞ β(d, θ) = limd→∞ µ(d, θ) = 0, limd→∞ σ(d, θ) =

√
2. The model is not informative for δ and ρ and

d = 0.
Now consider the vector of random variables (X0,X) corresponding to p + 1 spatial locations, with standard Laplace

marginal distributions, i.e., Xj ∼ DL(0, 2, 1) for j = 0, 1, . . . , p. We assume, conditional on X0 = x0, for x0 > u, that X follows
a multivariate extension of the delta-Laplace distribution

(X1, . . . , Xp)|{X0 = x0} = αx0 + xβ
0Z
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where Z ∼ DLp(µ,σ
2, δ;Σ). Σ is the correlation matrix for a Gaussian dependence structure between residual components,

discussed further in Section 2.4, such that

FZ(z) = Φp

(

Φ−1(FZ1
(z1)), Φ

−1(FZ2
(z2)), . . . , Φ

−1(FZp
(zp));0,Σ

)

(3)

where F represents a cumulative distribution function and Φ is the cumulative distribution function of a standard Gaussian
distribution. Φp(0,Σ) is the cumulative distribution function of a p-dimensional Gaussian distribution with mean 0 and
covariance matrix Σ. Hence marginally, Zj ∼ DL(µj , σ

2
j , δj), so that Zj = Z∗

j σj + µj , where Z∗
j ∼ DL(0, 1, δj). Writing Xc

j to

represent Xj |{X0 = x0}, we have Xc
j = αjx0 + x

βj

0 Zj ∼ DL(mj , s
2
j , δj), for conditional means mj and standard deviations sj

given by

mj = αjx0 + x
βj

0 µj and sj = x
βj

0 σj (4)

for j = 1, 2, . . . , p. Hence

Xc = (X|{X0 = x0}) ∼ DLp(m, s2, δ;Σ), (5)

a p-dimensional delta-Laplace distribution with mean m = (m1,m2, . . . ,mp), variance s2 = (s21, s
2
2, . . . , s

2
p), δ = (δ1, δ2, . . . , δp)

and (standard Gaussian-scale) covariance Σ.
The model in Equation (5) describes different types of extremal dependence, inferred from the values of parameters (αj , βj)

for j ∈ {1, . . . , p}. If (αj , βj) = (1, 0), then random variables X0 and Xj are asymptotically dependent, whereas if αj < 1, the
random variables exhibit asymptotic independence. Further discussion of this can be found in Tawn et al. (2018).

2.3 Model parameter variation with distance and direction

The p + 1 measurement locations are assumed to have coordinates rj , j = 0, 1, . . . , p. Parameters α, β, µ, σ, δ are assumed to
be continuous functions of distance with dj = dist(rj , r0) and heading θj = head(rj , r0) for remote location rj , j = 1, 2, . . . , p
given conditioning location r0, defined using a local Cartesian frame discussed further in Section 2.5. Two specific forms for the
distance and directional dependence of SCE model parameters are considered. The first representation is piecewise linear in d
and θ. The second representation, adopted to reduce model size and improve computational performance, assumes parametric
variation of α and β with d.

For the piecewise linear representation, we specify a set of nd equally-spaced nodes dk, k = 1, 2, . . . , nd, covering the domain
radially from r0, and a corresponding set of nθ directions θℓ ∈ [0, 2π), ℓ = 1, 2, . . . , nθ to codify angular variation. The value of
any SCE model parameter η(d, θ) on the spatial domain can then be expressed in terms of the set of values {ηk,l} as

η(d, θ) =
∆d

Lηk∗,1 +∆d
Uηk∗+1,1

∆d
F

for nθ = 1

=
∆d

L∆
θ
Lηk∗,ℓ∗ +∆d

U∆
θ
Lηk∗+1,ℓ∗ +∆d

L∆
θ
Uηk∗,ℓ∗+1 +∆d

U∆
θ
Uηk∗+1,ℓ∗+1

∆d
F∆

θ
F

for nθ = 2, 3, . . .

with η ∈ {α, β, µ, σ, δ}, where k∗ = argmax
k

{dk : dk < d} and ℓ∗ = argmax
ℓ

{θℓ : θℓ < θ}. Further ∆d
L = d−dk∗ , ∆d

U = dk∗+1−d

and ∆d
F = dk∗+1 − dk∗ , with analogous definitions for ∆θ terms. The values of ηk,l, k = 1, 2, . . . , nd, ℓ = 1, 2, . . . , nθ are

estimated during inference. We also consider parametric representations of α and β with d for each θℓ, ℓ = 1, 2, . . . , nθ, taking
the forms

α(d, θℓ) = exp

{

−
(

d

A1ℓ

)A2ℓ

}

for A1ℓ, A2ℓ ∈ R>0, and

β(d, θℓ) =
B1ℓd

B2ℓ exp
(

− d
B3ℓ

)

maxd>0

{

dB2ℓ exp
(

− d
B3ℓ

)} for B1ℓ ∈ (0, 1), B2ℓ, B3ℓ ∈ R>0.

These choices were motivated by previous application studies including Shooter et al. (2019), together with the known theo-
retical behaviours of α and β for d = 0 and d → ∞. This parametric form does not admit asymptotic dependence, however,
since α(d, θt) 6= 1 for d > 0, although for suitably large A1ℓ and A2ℓ ≥ 2 then α(d, θt) ≈ 1 for d ≈ 0; a possible parametric
form for α(d, θt) which permits asymptotic dependence is given by Wadsworth and Tawn (2019). Angular effects continue to
be parameterised using piecewise linear forms analogous to that in the equation above. Using these parametric forms, the full
behaviour of α and β with distance and direction can be inferred by estimating just 5nθ parameters rather than 2ndnθ for the
piecewise linear representation. With nd = 7 and nθ = 6, this corresponds to a reduction of (2nd − 5)nθ = 54 in the number
of model parameters to be estimated, improving the computational efficiency of inference.
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2.4 Gaussian residual correlation matrix with distance

The j, j′ element Σjj′ of residual correlation matrix Σ, j, j′ = 1, 2, . . . , p quantifies the dependence between SCE residuals (on
standard Gaussian-scale) at locations rj and rj′ given conditioning on location r0. It is reasonable to expect that the value of
Σjj′ depends on both the distance dist(rj , rj′) between remote locations, and distances dist(rj , r0) and dist(rj′ , r0) from remote
locations to conditioning site. When dist(rj , r0) and dist(rj′ , r0) are large relative to dist(rj , rj′), the conditional correlation
between remote locations will be similar to the unconditional correlation. However, when dist(rj , r0) and dist(rj′ , r0) are of
comparable size to dist(rj , rj′), we expect conditioning to influence correlation considerably.

We adopt a parameterisation for Σ equivalent to the correlation function for a standard Gaussian field evaluated at p+ 1
locations conditioned on its value at one location, with powered exponential dependence. With Σ∗ representing the correlation
matrix of the unconditioned field (and matrix indexing starting from zero for convenience), the correlation matrix Σ for the
conditional field has elements given by

Σjj′ =
Σ∗

jj′ −Σ∗
j0Σ

∗
j′0

(1−Σ∗2
j0 )

1/2(1−Σ∗2
j′0)

1/2
(6)

for j, j′ = 1, 2, . . . , p with conditioning location indexed by zero (see e.g. Mardia et al. 1979, page 63). Further, it is reasonable
to assume that the correlation between observations at different locations in the unconstrained field reduces as a function of
the distance between the locations. For this reason, we adopt an isotropic powered exponential form for the correlation of the
unconditional field, given by

Σ∗
jj′ = ρ(dist(rj , rj′)) = exp

(

−
(

dist(rj , rj′)

R1

)R2

)

for R1, R2 ∈ R>0

and j, j′ = 0, 1, 2, . . . , p. Parameters R1 and R2 are to be estimated.

2.5 Calculating distances and directions

Locations of points on the surface of the Earth are typically specified in terms of longitude-latitude coordinates. Temporarily
adopting oceanographic notation, the shortest distance (e.g. in metres) on the surface of a spherical Earth between locations
with longitude-latitude coordinates (λ, ϕ) and (λ′, ϕ′) can be calculated using the spherical law of cosines. For calculations of
local distances and directions between locations, it is convenient to adopt a local Cartesian description of displacement on the
surface of a sphere, (see e.g. Vallis 2017, page 69). For locations with longitude-latitude coordinates r = (λ, ϕ) and r′ = (λ′, ϕ′),
we locate the local origin of coordinates at

(

λ̄, ϕ̄
)

= ((λ+ λ′)/2, (ϕ+ ϕ′)/2), with x axis running West-East (in the Northern
Hemisphere) and y axis poleward. Then, to a good approximation when |λ′ − λ| and |ϕ′ − ϕ| are small, the local Cartesian
displacement d between the points can be written

d = (a cos(ϕ̄)(λ′ − λ), a(ϕ′ − ϕ))

where a is the radius of the spherical Earth. We adopt this model to estimate distances and directions for all pairs of locations
considered, with dist(r, r′) = ||d|| and head(r, r′) = arg(d).

3 Inference

3.1 Sample likelihood

Differentiating Equation (3), the joint density fXc(x) = P(X = x|X0 = x0), with marginal distributions fXc
j
can be written

fXc(x) = φp (w1, w2, . . . , wp;0,Σ)

p
∏

j=1

fXc
j
(xj)

φ(wj)
(7)

where φ denotes the standard Gaussian density, φp represents the p-dimensional Gaussian density with given mean vector and
correlation matrix, and wj = Φ−1{FXc

j
(xj)} with xj ∈ R for j = 1, 2, . . . , p. From (7) above, the negative log-density is

− log{fXc(x)} = − log φp(w;0,Σ)−
p
∑

j=1

log fXc
j
(xj) +

p
∑

j=1

log φ(wj)
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where w′ = (w1, w2, . . . , wp). Hence, the sample negative log-likelihood given a sample {xij}n,pi=1,j=0 is

np

2
log(2π) +

n

2
log |Σ|+

p
∑

j=1

log

(

2sjκΓ

[

1

δj

])

− n

p
∑

j=1

log δj

+

n
∑

i=1







w′
iΣ

−1wi +

p
∑

j=1

∣

∣

∣

∣

xij −mj

κjsj

∣

∣

∣

∣

δj

+

p
∑

j=1

log φ(wij)







(8)

where κ2
j = Γ (1/δj)/Γ (3/δj) for each j and w′

i = (wi1, wi2, . . . , wip).

3.2 Parameter estimation

We use Bayesian inference to estimate the joint posterior distribution of SCE model parameters, with sample negative log-
likelihood as defined above. In practice we find that allowing directional variation of SCE residual parameters µ, σ and δ
cannot be justified given data examined to date. Similarly, we assume that the residual process depends on distances between
locations only. Any directional effects in the Laplace-scale data can be accommodated by parameterisation of SCE parameters
α and β as described below. Prior marginal transformation of data per location to Laplace scale using directional extreme
value models estimates marginal directional variation of the original sample on physical scale.

For SCE models with non-parametric representations for α and β terms (henceforth ‘ABN’ models), the parameter set Ω
is {{{αk,ℓ, βk,ℓ}nθ

ℓ=1, µk, σk, δk}nd

k , R1, R2}, consisting of 2ndnθ + 3nd + 2 parameters. In this case, a grouped adaptive MCMC
algorithm based on Roberts and Rosenthal (2009) is used for parameter inference, described in Shooter et al. (2019). Briefly,
random search is used to find a reasonable starting solution. Then a Metropolis-within-Gibbs algorithm is used iteratively to
sample each of the elements of Ω in turn for a total of nMiG iterations. Subsequently we use the grouped adaptive Gaussian
random walk Metropolis within-Gibbs algorithm iteratively for a further nGA iterations. Within the grouped adaptive algorithm,
we jointly update groups {{αkℓ, βkℓ, µkℓ, σkℓ}nθ

ℓ=1} of parameters (for each d = 1, 2, . . . , nd) following the adaptive Metropolis
scheme of Roberts and Rosenthal (2009). Parameters {δkℓ}nd,nθ

k,ℓ=1,R1 andR2 are updated using Gaussian random walk Metropolis
within-Gibbs, with automatic proposal step-size adjustment to achieve proposal acceptance rates near 0.25. Uniform prior
distributions on plausible domains are used for model parameters. Chain convergence is judged to have occurred when trace
plots for parameters and their dependence stabilise. Typically, prior MCMC analyses on multiple chains is performed for
burn-in and to identify “hot” starting solutions for subsequent analysis; it was ensured that the number of MCMC iterations
after burn-in was at least 30,000. Mean effective sample size (across all parameters) was approximately 400, with a minimum
effective sample size in excess of 200. A summary of the MCMC scheme and prior specification are given in the Appendix.

For SCE models with parametric representations for α and β terms (henceforth ‘ABP’ models), the parameter set Ω
is {{A1ℓ, A2ℓ, B1ℓ, B2ℓ, B3ℓ}nθ

ℓ=1, {µk, σk, δk}nd

k , R1, R2}, consisting of 5nθ + 3nd + 2 parameters. In this case, we apply the
adaptive Metropolis scheme of Roberts and Rosenthal (2009) directly on the full set of parameters. Uniform prior distributions
on plausible domains are used for model parameters; details are given in the Appendix.

We further optionally restrict the space of feasible sets of SCE parameters using the conditional extremes model constraints
of Keef et al. (2013). The constraints are motivated by the fact that conditional quantiles (of one variable given a large value
of another) under any form of asymptotic independence (α < 1) cannot be larger than under asymptotic positive dependence
(α = 1). Details of the constraints applied in a spatial setting are given in the supplementary material of Shooter et al. (2019),
and summarised here in the Appendix.

4 Application

4.1 North Sea storm peak significant wave height

We apply the SCE model to data for ocean storm severity from a spatial lattice (see Figure 1) consisting of 150 locations in
the North Sea. The sample corresponds to hindcast values of winter storm peak significant wave height from the NEXTRA
hindcast (Oceanweather 2002). Storm intervals for a total of 1680 storms during the period 1 Oct 1964 to 31 Mar 1995 were
isolated from up- and down-crossings of a sea state significant wave height threshold for a central conditioning location, using
the procedure outlined in Ewans and Jonathan (2008). Storm peak significant wave height for each storm interval at each
location provided a sample of 1680× 150 observations for further analysis. For each storm-location combination, the direction
(from which waves emanate, measured clockwise from North) at the time of the storm peak, referred to as the storm direction,
was also retained. The spatial extremal characteristics of this sample have been examined previously in Ross et al. (2017a) and
Shooter et al. (2019). At each location, marginal directional extreme value analysis of storm peak values was performed, and
storm peak data transformed to standard Laplace marginal scale (see Ross et al. 2017b). The central location was adopted as
the conditioning site, an SCE model is estimated to describe the joint characteristics of the remaining 149 locations given a
large value at the conditioning site.
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Fig. 1 Map of the 150 locations in the North Sea ocean. The larger disc represents the conditioning location. The neighbourhood extends approxi-
mately ±150 km West-East, and ±300 km North-South relative to the conditioning location. UK and Norway land masses also shown.

In the metocean community, extreme value analysis is typically conducted on “storm peak” events, taken to be temporally
independent. Storm peak events are isolated from (temporally dependent) time-series of storm severity at a location using
physical considerations. The fundamental motivation is that storm peak events are temporally sufficiently separated that the
causative physical processes responsible for them are reasonably taken to be independent. Therefore the storm peak significant
wave heights are assumed independent; storm peak events are typically separated by at least a day (see Ewans and Jonathan
2008). The characteristics of the ocean environment within storm (including the evolution of sea-state significant wave height,
and the dependence between it and other oceanographic and structural loading variables of interest) are then inferred conditional
on storm peak characteristics. In other applications, when a physical basis for declustering of time-series of extremes is not
available, Ferro and Segers (2003) provides one possible approach to characterising that dependence. Covariates also potentially
play a role in the selection of storm periods and storm peaks, and are critical to reasonable transformation of storm peak data
to standard marginal scale. Scatter plots of Laplace-scale data for selected locations on West-East and South-North transects
are given in Figure 2. For locations within 50 kilometres (km) of the conditioning site, scatter plots suggest that values of α
near unity are expected, decaying with increasing distance.



8 Rob Shooter et al.

Fig. 2 Scatter plots for Laplace-scale storm peak significant wave height HS ; HS at the conditioning location is plotted on the x-axis in each case.
Panels represent different locations on West-East transect (top) and South-North transect (bottom) at different distances from the conditioning site.

4.2 Results

For the sample of storm peak significant wave height data transformed to standard Laplace margins, the SCE model was
estimated as follows.

Using a threshold u at the conditioning location with marginal non-exceedance probability of 0.95, joint posterior distri-
butions of SCE model parameters were estimated based on both the ABN and ABP parameter representations. For the ABN
model, a distance-direction lattice of nd × nθ = 7 × 6 was adopted to estimate the distance-direction evolution of α and β
parameters, with nd nodes used to characterise the evolution of residual parameters µ, σ and δ. The Gaussian-scale residual
correlation was estimated in terms of two parameters R1, R2. The ABP model is similarly parameterised, except that evolution
of α and β with distance is described parametrically for each of nθ directions. Results illustrated here were obtained with
the conditional quantile constraints of Keef et al. (2013) active. A discussion of the corresponding results obtained without
conditional quantile constraints is given in Section 4.3, together with an outline of results for different conditioning locations,
and different choices of conditioning threshold u.

Marginal summaries of posterior distributions of SCE model parameters with distance and direction are shown in Figures 3-
5 for both the ABN and ABP models. In each figure, solid lines indicate the variation of posterior medians with distance in km,
with 95% credible intervals shown by dashed lines. Black lines indicate estimates from the ABN representation, and orange
lines from the ABP model.
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Fig. 3 Estimates for α with distance d (km) for each of nθ = 6 directions 0, π/3, 2π/3, . . . defined in the normal mathematical sense (anticlockwise,
with 0 equivalent to East). Solid lines represent posterior medians, with dashed lines representing the upper and lower limits of empirical 95%
posterior credible intervals. ABN model in black, ABP model in orange (grey in greyscale).

Fig. 4 Estimates for β with distance d (km) for each of nθ = 6 directions 0, π/3, 2π/3, . . .. Solid lines represent posterior medians, with dashed lines
representing the upper and lower limits of empirical 95% posterior credible intervals. ABN model in black, ABP model in orange (grey in greyscale).
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Fig. 5 Estimates for SCE residual parameters µ, σ, δ and ρ with distance d (km). Solid lines represent posterior medians, with dashed lines
representing upper and lower limits of empirical 95% posterior credible intervals. ABN model in black, ABP model in orange (grey in greyscale).

There is generally good agreement between estimates for the distance-direction behaviour of SCE model parameters using
the ABN and ABP parameterisations. Both show decay of α with distance (Figure 3), and that the rate of decay reduced
with increasing distance. At distances between 150km and 250km, the parametric form for α from the ABP parameterisation
suggests smaller values; this is accompanied by correspondingly larger values of µ (Figure 5). There is little evidence for
directional variation in the decay of α with distance. For α•ℓ, ℓ = 1, 2, 3, 4, the estimate reverts to the prior Unif(0, 1) at
distances larger than 250km, since there are no remote locations present at these distance-direction combinations. Figure 4
suggests that the parametric form for β with distance is also generally appropriate. Estimates of β around 0.4 are prevalent
for intermediate distances. There is some support for β approaching zero with decreasing distance. Estimates for β•2(d) and
β•5(d) in particular appear somewhat different to the others. Estimates for σ and δ, and powered-exponential ρ with distance
in Figure 5 show good agreement between ABN and ABP parameterisations. That σ(d = 0) is greater than zero suggests it
may be playing the role of a “nugget effect” at zero distance; the same might be true for β(d = 0). It is noteworthy that δ
is near unity (corresponding to a standard Laplace distribution) for both small and large distances, increasing to around 1.5
at intermediate distances; that is, marginal residual distributions appear more Laplace-like (δ = 1) than Gaussian (δ = 2)
for the current application. Since the pair of values (α•ℓ(d), β•ℓ(d)) = (1, 0), for ℓ = 1, . . . , 6, is not observed for any d 6= 0
then the data do not exhibit asymptotic dependence, and Pareto process models would be inappropriate here (Tawn et al.,
2018). Achieved sample negative log-likelihoods for ABN and ABP parameterisations were similar relative to the variation
in negative log-likelihood MCMC traces, with ABN providing a somewhat lower value. In terms of the deviance information
criterion (DIC, Spiegelhalter et al. 2002), the ABP model provided somewhat lower values. A table of DIC values for different
comparable models is given in the Appendix.

For practical purposes of simulation, it is useful to examine distance-direction variation of conditional means and standard
deviations (Equation (4)) for the ABN and ABP parameterisations. For a conditioning value x0 at the conditioning site with
non-exceedance probability 0.95, these are shown by distance and direction in Figures 6 and 7. There is again good agreement
between the two parameterisations. The narrow width of credible intervals for conditional means and standard deviations,
for a given distance, using the ABP model reflects the constraining influence of the parametric forms assumed; this is also
clear in Figures 3-5 for the underlying model parameters. As previously mentioned, the ABP model has 53 degrees of freedom
compared with 107 for the ABN model.
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Fig. 6 Estimates for conditional means m with distance d (km) for each of nθ = 6 directions 0, π/3, 2π/3, . . . for conditioning x0 with non-exceedance
probability 0.95. Solid lines represent posterior medians, with dashed lines representing the upper and lower limits of empirical 95% posterior credible
intervals. ABN model in black, ABP model in orange (grey in greyscale).

Fig. 7 Estimates for conditional standard deviations s with distance d (km) for each of nθ = 6 directions 0, π/3, 2π/3, . . . for conditioning x0 with
non-exceedance probability 0.95. Solid black lines represent posterior medians, with dashed lines representing the upper and lower limits of empirical
95% posterior credible intervals. ABN model in black, ABP model in orange (grey in greyscale).
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Comparison of observed spatial trajectories with those generated by simulation under the fitted model is illustrated in
Figure 8. The figure shows conditional quantiles with non-exceedance probabilities as described in the figure caption, for con-
ditioning values x0 with non-exceedance probability ∈ (0.95, 0.96] at the conditioning site, for two specific transect directions,
using the ABN model. The left hand transect emanates from the conditioning site to the North-East; the right hand transect
emanates from the conditioning site to the North-West. The number of observed trajectories available for estimation of con-
ditional quantiles is small (22 and 20 respectively); 1000 realisations were used to estimate simulated conditional quantiles.
Agreement between observation and simulation is good. Figure A1 plots the observed trajectories together with 100 simulated
trajectories for each transect. Visual inspection of similar plots generated using the ABP model indicated a similar level of
agreement.

Fig. 8 Quantiles of observed trajectories (black) and corresponding simulated trajectories (red; grey in greyscale) from the fitted ABN model, for
conditioning values x0 with non-exceedance probabilities ∈ (0.95, 0.96]. Quantile probabilities shown are 0.025, 0.25, 0.5, 0.75, 0.975. Left: transect
emanating from conditioning site to North-East; right: transect emanating from conditioning site to North-West. Numbers of observed trajectories
are 22 (NE) and 20 (NW); 1000 simulated trajectories used in each case to estimate trajectory quantiles.

Figure 9 provides scatter plots of the correlation of residuals at pairs of remote locations falling within different distance
intervals with from the conditioning site. The x-coordinate in each panel gives the value of residual correlation, on standard
Gaussian scale, calculated using the estimated parameters R1 and R2, and Equation (6). The y-coordinate shows the residual
correlation estimated empirically by (a) calculating fit residuals on delta-Laplace scale using rDL

ij = (xij − mj)/sj (for ith

observation xij at location j, see Equation (4)), (b) transforming to standard Gaussian scale residuals rNij using the probability
integral transform and the appropriate estimated marginal delta-Laplace model (see Section 2.2) and (c) estimating the
correlation of samples rNij and rNij′ for appropriate choices of j and j′. Again, the correspondence between residual correlations
is good for all distances from the conditioning site. The characteristics of estimated residual correlation structure are illustrated
further in Figure A2.
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Fig. 9 Observed and estimated residuals, on standard Gaussian scale, for pairs of remote location with distances d from the conditioning site falling
within the interval indicated in each panel title. See 4.2 for further discussion.

4.3 Sensitivity studies

The ABN analysis above was repeated for different conditioning threshold choices (corresponding to non-exceedance proba-
bilities of 0.90, 0.95 and 0.975). Estimated characteristics of SCE parameters with distance and direction were very similar
to those reported above. The main distinguishing features for the three thresholds examined is the anticipated increase in
estimated parameter uncertainty with increasing threshold.

The ABN and ABP models were also estimated without imposition of the conditional quantile constraints. In this case, the
decay of α with distance was considerably slower, decreasing to approximately 0.7 at 200 km, than for the constrained analysis.
However, the peak value of β at around 100 km to 200 km was larger, at around 0.7. However, these changes were compensated
for by smaller estimates for µ very close for zero, and more gradual growth of σ with distance. Therefore overall, conditional
means and standard deviations for both ABN and ABP models with and without constraints were found to be very similar.
Removal of conditional quantile constraints reduces the negative log-likelihood for posterior median parameters, as might be
expected. However, there was little difference in the performance of ABN and ABP models, with or without constraints, in
terms of agreement with observed trajectories.

The ABN model was also used with each of a number of different conditioning sites. The general characteristics of parameter
estimates with distance are similar to those reported above. Again, there was no evidence for systematic directional variation
of α. Other models for the residual correlation were considered. We found that the conditional Gaussian correlation adopted
above performed better, in terms of negative log-likelihood for models of similar complexity, and better trajectory simulation.

Choice of number nd of distance nodes and nθ of directional nodes was based on preliminary analyses, and physical
considerations. For example, the minimum distance between locations on the lattice is approximately 30 km, but physically
we do not expect large changes in extremal dependence over such short distances. The maximum distance between a remote
location and conditioning site is just over 300 km. With nd = 7, an inter-distance node interval of 56 km provides a reasonably
smooth description. Similarly, nθ = 6 corresponds to directional nodes at π/3 or 60◦ intervals, sufficient from a physical
perspective to characterise any directional variability. A non-directional (nθ = 1) ABN model was also estimated (with and
without conditional quantile constraints) yielding values of negative log-likelihood and DIC considerably higher than for nθ = 6.
Truncated zero-mean Gaussian priors for µ (on domain [−1, 1]) and σ (on domain (0,

√
2)) were also evaluated, for different

choices of Gaussian standard deviation, for the ABN model; no appreciable influence on parameter estimates was observed for
reasonable choices of standard deviation.



14 Rob Shooter et al.

5 Discussion

In this paper we develop a two-dimensional spatial conditional extremes model incorporating distance-directional variation of
model parameters, with parametric and non-parametric model parameter representations. The SCE model allow asymptotic
dependence at short inter-location distances, leading to asymptotic independence, and eventually perfect independence, as
distance increases. The SCE residual process is given delta-Laplace (generalised Gaussian) marginal distributions, and a
(Gaussian-scale) conditional Gaussian correlation structure with powered exponential correlation function. The model is applied
to estimate the conditional extremal dependence of a sample of hindcast storm peak significant wave height data for a lattice of
150 locations in the North Sea. The model fit is found to be reasonable with or without applied conditional quantile constraints,
and is relatively insensitive to conditioning threshold choice, within the interval considered. Prior transformation of data to
standard Laplace marginal scale is achieved using non-stationarity directional marginal extreme value analysis.

For the current analysis, an occurrence of a large extra-tropical cyclone would cover the entire spatial domain considered.
We therefore expect to find some dependence of extreme values of significant wave height over the whole domain. The nature
of that dependence is less clear a priori. The importance of allowing for different forms of extremal dependence with distance
is illustrated in Figure 2, for example, which shows that SCE parameter α decays from approximately unity to zero over
approximately 300 km for North Sea storm peak significant wave height. The current analysis suggests that there is little
directional variation of extremal dependence of storm peak significant wave height for the lattice considered. There is some
evidence supporting relatively large values of β for direction π/3 and small values at 4π/3. There are a number of physical
features of the North Sea environment which might explain such differences, including prevailing wind and storm directions,
and bathymetric effects.

In the absence of conditional quantile constraints, the values of α parameter estimates are generally higher than when then
constraints are applied. The values of parameter estimates for µ are near zero in the absence of conditional quantile constraints,
but positive when constraints are applied. The net result of these competing effects is that conditional means and standard
deviations are very similar for lower conditioning values x0 (x0 > u) at the conditioning site. Nevertheless, for conditioning
values x0 corresponding to large non-exceedance probabilities, we might expect that parameter estimates from unconstrained
models would provide larger values for conditional means, since αx0 for α ∈ [0, 1] increases more quickly with x0 ∈ R>0 than

µxβ
0 , µ ∈ [0, 1] and β ∈ [0, 1). However, no obvious evidence for this difference was observed for the current sample.
One source of uncertainty not explored in the current work is the effect of uncertainty in marginal fitting of directional

generalised Pareto models for the 150 locations. Transformation to standard Laplace marginals was performed using posterior
median estimates. Exploratory analysis (and plots such as Figure 2) suggest that marginal fitting is reasonable. It would be
interesting however to propagate uncertainty from marginal fitting through to SCE estimation, or better to jointly estimate
marginal and SCE models.

Our results suggest a number of potential avenues for further method development and application. From a physical
perspective, we are keen to ensure that the SCE model provides an adequate representation of the conditional spatial structure
of large ocean storms. For the sizes of spatial domains examined here (and in Shooter et al. 2019, Shooter 2020), this would
appear to be the case. Current work is considering yet larger spatial domains. The approach would appear to be ideally suited
for characterisation of spatial ocean surface roughness, e.g. as measured by satellite altimetry (Young and Ribal, 2019).

The SCE model allows multiple different classes of extremal dependence. Our results indicate that α ≈ 1 occurs for small
distances d, but that α < 1 otherwise. This suggests that a modelling strategy admitting both asymptotic dependence and
asymptotic independence is essential to characterise large ocean storms. In particular, competitor approaches involving max-
stable and Pareto process models, which admit only asymptotic dependence, are not appropriate. Further, the SCE model
is computationally relatively efficient to estimate, and does not require the adoption of composite likelihoods for tractable
inference. We believe that the model proposed in this work is a flexible and practical approach, with some obvious advantages
to estimation of max-stable and Pareto processes for relatively large neighbourhoods of spatial locations.
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Appendices

A Grouped adaptive MCMC

Under the ABN model (with piecewise linear distance-direction representations for α and β) the parameter set Ω to be
estimated is {{{αkℓ, βkℓ}nθ

ℓ=1, µk, σk, δk}nd

k , R1, R2} with nP = 2ndnθ + 3nd + 2 parameters.
Prior specification: Impose uniform prior distributions for each parameter. Explicitly, αkℓ ∼ Unif(0, 1), βkℓ ∼ Unif(0, 1),
µk ∼ Unif(−1, 1), σk ∼ Unif(0,

√
2+0.1) and δk ∼ Unif(0.5, 2.5) for all k = 1, 2, . . . , nd, ℓ = 1, 2, . . . , nθ, and R1 ∼ Unif(0, 100),

R2 ∼ Unif(0, 2),
Starting solution: We obtain a random starting solution Ω(0) by sampling the elements of Ω from their prior distributions,
verifying that the starting solution has a valid likelihood (satisfying the conditional quantile constraints if applied).

Metropolis-within-Gibbs for nMiG iterations: Writing Ω
(i)
k as the value of the kth parameter of Ω at the ith iteration,

use adaptive random walk Metropolis-within-Gibbs scheme for nMiG (> 2nP ) iterations. That is, for i = 2, . . . , nMiG, update

each Ω
(i)
k in turn, proposing candidate value Ω

(i)c
k from distribution

QMiG = N(Ω
(i−1)
k , 0.12).

Grouped adaptive Metropolis-within-Gibbs for nGA iterations: For i > nMiG, use a grouped adaptive random walk

Metropolis-within-Gibbs scheme, updating groups Ω
(i)
Gk

= {{αkℓ, βkℓ}nθ

ℓ=1, µk, σk} jointly for k = 1, 2, . . . , nd in turn, before
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updating {δk}nd

k=1, R1 and R2 separately as before. Propose candidate Ω
(i)c
Gk

from distribution

QGA = (1− β)N(Ω
(i−1)
Gk

, 2.382Ci) + βN(Ω
(i−1)
Gk

, 0.12/(4nθ))

where β = 0.05, as suggested by Roberts and Rosenthal (2009), and Ci is the empirical variance-covariance matrix of the

parameters Ω
(i)
Gk

from the previous i iterations.

Iteration to convergence: Throughout, a candidate state is accepted using the standard Metropolis-Hastings acceptance cri-
terion. Since prior distributions for parameters are uniform, and proposals symmetric, this is just a likelihood ratio. Candidates
lying outside their prior domains, or violating the conditional quantile constraints if applied, are rejected.

Under the ABP model (with parametric forms for α and β with distance only), the estimation scheme is simplified so that
the full set of parameters is updated at the grouped adaptive stage. The resulting procedure is the same as the original scheme
of Roberts and Rosenthal (2009). Uniform priors A1ℓ ∼ Unif(1, 20), A2ℓ ∼ Unif(0.1, 5), B1ℓ ∼ Unif(0.1, 1), B2ℓ ∼ Unif(1, 5)
and B3ℓ ∼ Unif(0, 20), ℓ = 1, 2, . . . , nθ were applied. The prior distributions for all other parameters under the ABN and ABP
models are the same.

B Conditional quantile constraints

We optionally restrict the space of feasible combinations of α and β to ensure that conditional quantiles from asymptotic
independent models do not exceed those from asymptotic dependent models, as proposed by Keef et al. (2013). For any pair
α and β corresponding to distance dk and direction θℓ, k = 1, 2, . . . , nd, ℓ = 1, 2, . . . , nθ on the distance-direction lattice, we
require either

α ≤ min{1, 1− βz(q)νβ−1, 1− νβ−1z(q) + ν−1z+(q)}

or

1− βz(q)vβ−1 < α ≤ 1, and

(1− β−1){βz(q)}1/(1−β)(1− α)−β/(1−β) + z+(q) > 0.

In the above, ν is a value of the conditioning variate (on standard Laplace scale) above the threshold level at which the
SCE model is applied. Further z+(q) is the quantile of the distribution of standardised residuals from the conditional extremes
model with non-exceedance probability q, and z+(q) is quantile of the distribution of standardised residuals from the conditional
extremes model assuming asymptotic positive dependence (i.e. by imposing α = 1, β = 0) with non-exceedance probability
q. In practice, as suggested by Keef et al. (2013), it is sufficient to satisfy the constraints above for q = 1 and ν equal to the
maximum observed value of the conditioning variate.

C Supporting diagnostic plots

Figure A1 supports the discussion in Section 4 around Figure 8 regarding agreement between simulated spatial trajectories
under the fitted SCE model, and observed trajectories. The figure shows 100 simulated trajectories for transects emanating
to the North-East and to the North-West, from the central conditioning location, in black. The trajectories all correspond
to a conditioning value x0 with non-exceedance probability in the interval (0.95, 0.96). Also shown are observed trajectories
available (22 and 20 in number respectively for the left and right hand cases), for the same conditioning, in red.

Figure A2 illustrates the fitted conditional Gaussian correlation function of Equation (6). Consider two remote locations,
equidistant from a third conditioning location. For each of the curves in the figure, the x-coordinate of the black disc indicates
the distance between the remote locations. The curve passing through each disc gives the value of conditional residual correlation
as a function of the (common) distance of the remote locations from the conditioning site. Thus, the leftmost curve pertains
to two remote locations approximately 30 km apart. When the distance of these locations to the conditioning site is large, the
remote locations have large residual correlation since conditioning has effectively no effect: the residual process is essentially
unconstrained, and the value of correlation determined by the powered exponential ρ. However, as distance to the conditioning
site is reduced, residual correlation decreases, since more sample variation is explained by the SCE model (as opposed to the
SCE conditional residual process). The minimum value of distance to conditioning site occurs when the three locations are
collinear, with the conditioning site mid-way between remote locations. For this arrangement, conditioning induces a small
negative residual correlation between remote locations. As the distance between remote locations increases, for different curves
left to right, the maximum conditional residual correlation is reduced.
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Fig. A1 Observed (black dashed) and simulated (red; grey in greyscale) trajectories from the fitted ABN model, for conditioning value x0 with
non-exceedance probabilities in the interval (0.95, 0.96]. Left: transect emanating from conditioning site to North-East; right: transect emanating
from conditioning site to North-West. Numbers of observed trajectories are 22 (NE) and 20 (NW); 100 simulated trajectories shown in each case.

Fig. A2 Illustration of the estimated Gaussian-scale residual correlation function. Consider a pair of remote locations with common distance to
conditioning site. Distance between remote locations is indicated by x-coordinate of black disc for each curve. Curve through disc indicates the
residual correlation between remote locations as a function of distance to the conditioning site.
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D Deviance and DIC

The table below provides MCMC deviance statistics and DIC values to support the discussion in Sections 4.

Model nθ Constraints D(Ω) sd(D) D(Ω̄) DIC
ABN 1 Y 1770 8 1740 1800
ABN 6 Y 1550 11 1490 1620
ABP 6 Y 1580 3 1570 1580
ABN 1 N 1730 7 1760 1760
ABN 6 N 1470 10 1422 1520
ABP 6 N 1510 4 1500 1510

Columns in the table are as follows: nθ is the number of directional parameters in the model, ‘Constraints’ indicates whether the
conditional quantile constraints of Keef et al. (2013) were imposed, D(Ω) is the posterior mean deviance, sd(D) is its standard
deviation and D(Ω̄) the deviance calculated using posterior mean parameters. In summary, there is evidence in favour of a
directional model, since lower values of deviance and DIC are obtained for nθ = 6 compared with nθ = 1 both with and without
application of conditional quantile constraints. DIC values for ABP are somewhat lower than for the corresponding ABN, but
differences are small.


