

COVARIATE EFFECTS IN MARGINAL AND CONDITIONAL EXTREMES

Philip Jonathan, David Randell, Kevin Ewans, Graham Feld Shell Statistics and Chemometrics

Motivation: extremes in met-ocean

- Rational and consistent design an assessment of marine structures:
 - Reduce bias and uncertainty in estimation of return values
- Non-stationary marginal and conditional extremes:
 - Multiple locations, multiple variables, time-series
 - Multidimensional covariates
- Improved understanding and communication of risk:
 - Incorporation within well-established engineering design practices
 - "Knock-on" effects of "improved" inference
 - New and existing structures
- Other current applications in Shell:
 - Geophysics: seismic hazard assessment
 - Asset integrity: corrosion & fouling

Extremes in met-ocean: univariate challenges

- Covariates and non-stationarity:
 - Location, direction, season, time, water depth, ...
 - Multiple / multidimensional covariates in practice
- Cluster dependence:
 - Same events observed at many locations (pooling)
 - Dependence in time (Chavez-Demoulin and Davison 2012)
- **Scale** effects:
 - Modelling X or f(X)? (Harris 2004)
- Threshold estimation:
 - Scarrott and MacDonald [2012]
- Parameter estimation
- Measurement issues:
 - Field measurement uncertainty greatest for extreme values
 - Hindcast data are simulations based on pragmatic physics, calibrated to historical observation

Extremes in met-ocean: multivariate challenges

■ Componentwise maxima:

- ⇔ max-stability ⇔ multivariate regular variation
- Assumes all components extreme
- ⇒ Perfect independence or asymptotic dependence **only**
- Composite likelihood for spatial extremes (Davison et al. 2012)
- Point process / multivariate GP process

■ Extremal dependence: (Ledford and Tawn 1997)

- Assumes regular variation of joint survivor function
- Yields more general forms of extremal dependence
- ⇒ Asymptotic dependence, asymptotic independence (with +ve, -ve association), "hidden regular variation"
- "Ray" extensions
- Hybrid spatial dependence model (Wadsworth and Tawn 2012)

■ Conditional extremes: (Heffernan and Tawn 2004)

- Assumes, given one variable being extreme, convergence of distribution of remaining variables
- Allows some variables not to be extreme
- Extensions

Extremes in met-ocean: illustrations

- This talk is about statistical modelling
- Illustration 1: Marginal directional-seasonal (with a twist)
- Illustration 2: Marginal spatio-directional
- Illustration 3: Directional conditional

Illustration 1: directional-seasonal

- Marginal model for single North Sea location
- \blacksquare Response is **storm peak significant wave height**, H_S^{sp}
- Wave climate is dominated by **extra-tropical storms**
- Directional and seasonal variability in extremes present:
 - Fetch variability (Atlantic, Norwegian Sea, North Sea)
 - Land shadows (Norway, UK)
 - Winter storms more energetic
- Within-storm evolution of significant wave height, H_S in time given H_S^{sp}
- Distributions for extreme wave height, crest elevation and surge given H_S
- Sample of **hindcast** storms for period of \approx 50 years
- Animation: Link

Directional variability

Figure: Fetch and land shadows

Storm peak significant wave height, H_s^{sp}

Figure: Storm peak significant wave height H_S^{sp} on storm direction θ^{sp} (upper panel) and storm season ϕ^{sp} (lower panel)

SuSTaln, Bristol

8 / 53

Quantiles of H_s^{sp}

Figure: Empirical quantiles of storm peak significant wave height, H_S^{sp} by storm direction, θ^{sp} , and storm season, θ^{sp} . Empty bins are coloured white

9 / 53

Storm model zoals Johan

Figure: $H_S \approx 4 \times$ standard deviation of ocean surface profile at a location corresponding to a specified period (typically three hours)

Storm trajectories of significant wave height, H_S

Figure: Storm trajectories of significant wave height, H_S on wave direction θ for 30 randomly-chosen storm events (in different colours). A circle marks the start of each intra-storm trajectory.

Model components

- Sample $\{\dot{z}_i\}_{i=1}^{\dot{n}}$ of \dot{n} storm peak significant wave heights observed with storm peak directions $\{\dot{\theta}_i\}_{i=1}^{\dot{n}}$ and storm peak seasons $\{\dot{\phi}_i\}_{i=1}^{\dot{n}}$
- Model components (all non-stationary w.r.t θ , ϕ):
 - 1. Threshold function ψ above which observations \dot{z} are assumed to be extreme estimated using quantile regression
 - 2. Rate of occurrence of threshold exceedances modelled using Poisson model with rate ρ
 - 3. Size of occurrence of threshold exceedance using generalised Pareto (GP) model with shape and scale parameters ξ and σ

(Drop sp superscripts where convenient)

Model components

- Rate of occurrence and size of threshold exceedance functionally independent: (Chavez-Demoulin and Davison 2005)
 - Equivalent to non-homogeneous Poisson point process model
- Smooth functions of covariates estimated using penalised B-splines (Eilers and Marx 2010)
- Large number of parameters to estimate:
 - Slick linear algebra (c.f. generalised linear array models, Currie et al. 2006)
 - Efficient optimisation

Penalised B-splines

- Physical considerations suggest model parameters ψ, ρ, ξ and σ vary smoothly with covariates θ, ϕ
- Values of $(\eta =)\psi, \rho, \xi$ and σ all take the form:

$$\eta = B\beta_{\eta}$$

for **B-spline** basis matrix B (defined on index set of covariate values) and some β_n to be estimated

Multidimensional basis matrix B formulated using Kronecker products of marginal basis matrices:

$$B=B_{\theta}\otimes B_{\phi}$$

(exact operations calculated without explicit evaluation)

■ Roughness R_n defined as:

$$R_{\eta} = \beta'_{\eta} P \beta_{\eta}$$

where effect of P is to difference neighbouring values of β_{η}

Penalised B-splines

- Wrapped bases for periodic covariates (seasonal, direction)
- Multidimensional bases easily constructed. Problem size sometimes prohibitive
- Parameter smoothness controlled by roughness coefficient λ: cross validation or similar chooses λ optimally
- Alternatives: random fields, Gaussian processes, ...

SuSTaln, Bristol

Quantile regression model for extreme value threshold

■ Estimate smooth quantile $\psi(\theta, \phi; \tau)$ for non-exceedance probability τ of z (storm peak H_S) using quantile regression by minimising **penalised** criterion ℓ_{ψ}^* with respect to basis parameters:

$$\ell_{\psi}^{*} = \ell_{\psi} + \lambda_{\psi} R_{\psi}$$

$$\ell_{\psi} = \{\tau \sum_{r_{i} \geq 0}^{n} |r_{i}| + (1 - \tau) \sum_{r_{i} < 0}^{n} |r_{i}| \}$$

for $r_i = z_i - \psi(\theta_i, \phi_i; \tau)$ for i = 1, 2, ..., n, and **roughness** R_{ψ} controlled by roughness coefficient λ_{ψ}

- (Non-crossing) quantile regression formulated as linear programme (Bollaerts et al. 2006)
- lacksquare λ_{ψ} estimated using cross validation or similar

Directional-seasonal threshold, ψ

Figure: LHS: bootstrap median. RHS: 12 monthly directional

17 / 53

Poisson model for rate of threshold exceedance

Poisson model for rate of occurrence of threshold exceedance estimated by minimising roughness penalised log likelihood:

$$\ell_{\rho}^* = \ell_{\rho} + \lambda_{\rho} R_{\rho}$$

(Negative) penalised Poisson log-likelihood (and approximation):

$$\ell_{\rho} = -\sum_{i=1}^{n} \log \rho(\theta_{i}, \phi_{i}) + \int \rho(\theta, \phi) d\theta dx dy$$

$$\hat{\ell}_{\rho} = -\sum_{j=1}^{m} c_{j} \log \rho(j\Delta) + \Delta \sum_{j=1}^{m} \rho(j\Delta)$$

- $\{c_j\}_{j=1}^m$ counts of threshold exceedances on index set of m (>> 1) bins partitioning covariate domain into intervals of volume Δ
- lacksquare $\lambda_{
 ho}$ estimated using cross validation or similar

Directional-seasonal exceedance rate, ρ

Figure: LHS: bootstrap median. RHS: 12 monthly directional

GP model for size of threshold exceedance

 Generalise Pareto model for size of threshold exceedance estimated by minimising roughness penalised log-likelihood:

$$\ell_{\xi,\sigma}^* = \ell_{\xi,\sigma} + \lambda_{\xi} R_{\xi} + \lambda_{\sigma} R_{\sigma}$$

■ (Negative) conditional generalised Pareto log-likelihood:

$$\ell_{\xi,\sigma} = \sum_{i=1}^{n} \log \sigma_i + \frac{1}{\xi_i} \log(1 + \frac{\xi_i}{\sigma_i} (z_i - \psi_i))$$

- Parameters: **shape** ξ , **scale** σ
- lacktriangle Threshold ψ set prior to estimation
- λ_{ξ} and λ_{σ} estimated using cross validation or similar. In practice set $\lambda_{\xi} = \kappa \lambda_{\sigma}$ for fixed κ

Directional-seasonal parameter plot for GP shape, ξ

Figure: LHS: bootstrap median. RHS: 12 monthly directional

Directional-seasonal parameter plot for GP scale, σ

Figure: LHS: bootstrap median. RHS: 12 monthly directional

Return values

- Estimation of return values by simulation under the model
 - Number of events in period
 - Directions and seasons of each event
 - Size (or magnitude) of each event
 - H_{S100} is the maximum value of H_S^{sp} in a simulation period of 100–years
- Alternative: closed form function of parameters
 - Return value z_T of storm peak significant wave height corresponding to return period T (years) evaluated from estimates for ψ, ρ, ξ and σ :

$$z_T = \psi - \frac{\sigma}{\xi} (1 + \frac{1}{\rho} (\log(1 - \frac{1}{T}))^{-\xi})$$

■ Implementation and interpretation **problematic**

CDFs for H_{S100}

Figure: CDFs incorporating bootstrap uncertainty

Directional-seasonal return value plot for H_{S100}

Figure: LHS: directional omni-seasonal return values. RHS: directional return values for calendar months

Directional-seasonal return value plot for H_{S100}

Figure: LHS: seasonal omni-directional return values. RHS: seasonal return values for directional octants

Within-storm variability

Figure: Cormorant Alpha platform in North Sea

Within-storm variability

Critical environmental variables:

- Storm peak significant wave height:
 - (Sea state) significant wave height
 - Maximum wave height
 - Maximum crest elevation
 - Peak total water level (\approx wave + surge + tide)
- "Associated" values of wind speed and direction corresponding to peak significant wave height:
 - Maximum conditional structural loads and responses
 - Conditional extremes

Estimating within-storm variability

- **E**xtreme value model allows simulation of H_s^{sp} , θ^{sp} and ϕ^{sp}
- Matching procedure used to estimate storm evolution $(H_S(t), \bar{\theta}(t), \phi(t))|(H_S^{sp}, \theta^{sp}, \phi^{sp})$ for sea state t
 - Essential in estimating return values for covariate bins other than that containing the storm peak
 - Opportunity for empirical modelling
- Empirical (physics-motivated) literature models for $H(t)|H_S(t)$ and $H_{max}(t)|H_S(t)$

The cumulative distribution function for the maximum wave height H_{max} in a sea-state of n_s waves with significant wave height $H_S = h_S$ is taken (see, for example, Forristall 2000, Prevosto et al. 2000) to be given by:

$$P(H_{max} \leq h_{max} | H_S = h_s, M = n_s) = (1 - \exp(-\frac{1}{\beta} (\frac{h_{max}}{h_s/4})^{\alpha}))^{n_S}$$

with $\alpha=2.13$ and $\beta=8.42$. The number of waves $n_{\rm S}$ in a particular sea state is estimated by dividing the length of the sea-state (in seconds) by its zero-crossing period, T_7

Directional-seasonal return value plot for H_{max100}

Figure: LHS: directional omni-seasonal return values. RHS: directional return values for calendar months

Validation of model for (within-storm) H_S

Figure: CDFs for H_S for original sample and for 1000 sample realisations under the model corresponding to the same time period as the original sample

Illustration 2: **spatio-directional** (briefly)

Figure: Katrina

Illustration 2: spatio-directional

- Longitude, latitude and direction as covariates
 - Physics: direction and season correlated
 - Gulf of Mexico (GoM), North West Shelf of Australia (NWS) applications here
- Marginal per location
- Estimation of spatial smoothness
 - Sample is spatially dependent
 - Vertical adjustment / sandwich estimator
 - Bootstrap

GoM spatio-directional H_s^{sp}

Figure: \approx 17000 locations \times 32 directional bins for Gulf of Mexico. Plot for quantile (withheld) of 100-year maximum storm peak significant wave height, H_5^{sp}

NWS spatio-directional H_s^{sp}

Figure: North West Shelf of Australia. See Jonathan et al. [2014]

Illustration 3: directional conditional

Figure: Floating LNG tanker

Floating LNG tanker

Illustration 3: directional **conditional**

Problem structure:

- Bivariate sample $\{\dot{x}_{ij}\}_{i=1,i=1}^{n,2}$ of random variables \dot{X}_1, \dot{X}_2
- lacksquare Covariate values $\{ heta_{ij}\}_{i=1,i=1}^{n,2}$ associated with each individual
- For some choices of variables \dot{X} , e.g. $\dot{X}_1 = H_S$, $\dot{X}_2 = T_P$, $\theta_{i1} \triangleq \theta_{i2}$
- For other choices, e.g. $\dot{X}_1 = H_S$, $\dot{X}_2 = \text{WindSpeed}$, $\theta_{i1} \neq \theta_{i2}$ in general
- We will assume $\theta_{i1} = \theta_{i2} = \theta_i$

Objective:

lacktriangle Objective: model the joint distribution of extremes of X_1 and X_2 as a function of θ

(Drop subscripts wherever possible for convenience)

Inference: outline

- Follows conditional extremes (Heffernan and Tawn 2004)
- Model \dot{X}_1 and \dot{X}_2 marginally as a function of θ :
 - Quantile regression (QR) below threshold
 - Generalised Pareto (GP) above threshold
- Transform to standard Gumbel variates X_1 and X_2
- Model X_2 given large values of X_1 using non-stationary extension of conditional extremes model (incorporating θ)
- Simulate for long return periods:
 - Generate samples of joint extremes on Gumbel scale
 - Transform to original scale
- Simulate structure variables $f(\dot{X}_1, \dot{X}_2)$ as needed

Non-stationary conditional extremes

On Gumbel scale, by analogy with Heffernan and Tawn [2004] we propose the following conditional extremes model:

$$(X_k|X_j=x_j,\theta)=\alpha_\theta x_j+x_j^{\beta_\theta}(\mu_\theta+\sigma_\theta Z) \text{ for } x_j>\phi_{j\tau'}^{\mathsf{G}}(\theta)$$

where:

- $\phi_{j\tau'}^G(\theta)$ is a high directional quantile of X_j on Gumbel scale, above which the model fits well
- $\alpha_{\theta} \in [0,1], \beta_{\theta} \in (-\infty,1], \sigma_{\theta} \in [0,\infty)$
- Z is a random variable with unknown distribution G
- Z will be assumed to be approximately Normally distributed for the purposes of parameter estimation

 α_{θ} , β_{θ} , μ_{θ} and σ_{θ} are functions of direction with B-spline parameterisations

Jon's example

Figure: Physics / covariates to identify dependence structure?

Met-ocean analogy

Figure: Wind-sea and (multiple) swell phenomena for offshore Brazil. T_P is spectral peak period, $1/T_P$ is that frequency at which most energy in propagated by the ocean surface

Simulation study

 Bivariate distribution with Normal dependence transformed marginally to standard Gumbel:

$$(X_1(\theta), X_2(\theta)) = -\log(-\log(\Phi_{\Sigma(\theta)}(X_{1N}, X_{2N})))$$

■ For large x:

$$(X_2(\theta)|X_1(\theta) = x) \approx \rho^2(\theta)x + x^{1/2}W(\theta)$$

 $W(\theta) \sim \text{Normal}$

- 6 directional intervals: $\rho^2 = 0.6, 0.9, 0.5, 0.1, 0.7, 0.3$
- Sample size 1000×6
- Marginal forms known, estimate conditional model only
- Parameter estimates: $\alpha=\rho^2$ and $\beta=1/2$.

Copyright of Shell

Study 1: sample

Study 1: partitioned

Figure: Simulation Case 1. Scatter plot per covariate interval. Values for intervals for covariate θ , parameter ρ^2 and sample size n are shown in each pane

Study 1: parameter estimates

Figure: Simulation Case 1. Sample, bootstrap and true conditional extremes parameters with covariate. Sample estimate are given in solid grey. Median bootstrap estimates are given in solid black, with 95% bootstrap uncertainty bands in dashed black. True values of α and β in dashed grey

Study 1: return values

Figure: Simulation Case 1. Conditional return values of the associated variate \dot{X}_2 , corresponding to values of the conditioning variate \dot{X}_1 with non-exceedance probabilities (for period of sample) of (a) 0.99 and (b) 0.999. Bootstrap median (solid) and 95% uncertainty band (dashed) in black. Estimate using actual sample in solid grey. True values in dashed grey

North Sea directional parameter estimates

Figure: Northern North Sea. Non-stationary estimates for parameters α , β , μ and σ and their uncertainties (in black) as functions of covariate θ in terms of bootstrap median (solid) and 95% bootstrap uncertainty bands (dashed). Corresponding stationary estimates in grey

North Sea directional return values (closed-form)

Figure: Northern North Sea. Estimates for (a) marginal return values of associated storm peak period with non-exceedance probabilities (for period of sample) of 0.999, and (b) conditional return value of associated storm peak period given a value of storm peak significant wave height with non-exceedance probabilities (for period of sample) of 0.999. Estimates as functions of covariate θ (black) in terms of median bootstrap value (solid) and 95% bootstrap uncertainty band (dashed). Corresponding estimates assuming no directional dependence in grey

North Sea marginal return values for T_P (simulation)

Figure: Omni-directional and sector marginal distributions of 100-year T_P^{sp}

North Sea conditional return values (simulation)

Figure: Omni-directional and sector conditional distributions of storm peak period, T_P^{sp} given 100-year H_S^{sp} using extension of model of Heffernan & Tawn incorporating non-stationarity

Non-stationary extremes: current developments

- Marginal models:
 - Other covariate representations
 - Extension to higher-dimensional covariates
- Computational efficiency:
 - More sparse and slick matrix manipulations, optimisation
 - Parallel implementation
- Bayesian formulation
- Spatial model:
 - Composite likelihood: model componentwise maxima
 - Non-stationary dependence
 - lacktriangle Censored likelihood: block maxima o threshold exceedances
 - Hybrid model: mix AD and AI?
- Non-stationary conditional extremes:
 - Multidimensional covariates
 - Multivariate response
- Incorporation within structural design framework

References

- K Bollaerts, P H C Eilers, and M Aerts. Quantile regression with monotonicity restrictions using P-splines and the L1 norm. Statistical Modelling, 6:189–207, 2006.
- V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample extremes. J. Roy. Statist. Soc. Series C: Applied Statistics, 54:207, 2005.
- V. Chavez-Demoulin and A.C. Davison. Modelling time series extremes. REVSTAT Statistical Journal, 10: 109–133, 2012.
- D. Currie, M. Durban, and P. H. C. Eilers. Generalized linear array models with applications to multidimensional smoothing. J. Roy. Statist. Soc. B, 68:259

 –280, 2006.
- A. C. Davison, S. A. Padoan, and M. Ribatet. Statistical modelling of spatial extremes. Statistical Science, 27: 161–186, 2012.
- P H C Eilers and B D Marx. Splines, knots and penalties. Wiley Interscience Reviews: Computational Statistics, 2: 637–653, 2010.
- G. Z. Forristall. Wave crest distributions: Observations and second-order theory. *Journal of Physical Oceanography*, 30:1931–1943, 2000.
- R. I. Harris. Extreme value analysis of epoch maxima-convergence, and choice of asymptote. *Journal of Wind Engineering and Industrial Aerodynamics*, 92:897–918, 2004.
- J. E. Heffernan and J. A. Tawn. A conditional approach for multivariate extreme values. J. R. Statist. Soc. B, 66: 497–546, 2004.
- P. Jonathan, D. Randell, Y. Wu, and K. Ewans. Return level estimation from non-stationary spatial data exhibiting multidimensional covariate effects. (Accepted by Ocean Engineering July 2014, draft at www.lancs.ac.uk/~jonathan), 2014.
- A. W. Ledford and J. A. Tawn. Modelling dependence within joint tail regions. J. R. Statist. Soc. B, 59:475–499, 1997
- M. Prevosto, H. E. Krogstad, and A. Robin. Probability distributions for maximum wave and crest heights. Coastal Engineering, 40:329–360, 2000.
- C. Scarrott and A. MacDonald. A review of extreme value threshold estimation and uncertainty quantification. REVSTAT - Statistical Journal, 10:33–60, 2012.
- J.L. Wadsworth and J.A. Tawn. Dependence modelling for spatial extremes. Biometrika, 99:253-272, 2012.

