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Background
In the design of offshore facilities, e.g. oil platforms or vessels, it
is crucial - both for safety and reliability reasons - that they can
survive the most extreme storms. Thus, we need accurate
models describing the time evolution of the ocean environment
during extreme events.

We focus on modelling significant wave height HS and wind
speed Ws jointly over time.

Vector autoregression
In multivariate time-series, it is common to use a VAR model for
a d -dimensional time series X t with t ∈ Z≥0. The VAR(p) is
given by

Xt =
p∑

i=1
AiXt−i + εt,

where Ai ∈ Rd×d and εt is a d -dimensional random variable that
is independent of Xt−1 and independent of εt−k for k ≥ 1.

NB: this model is not necessarily stationary for any collection of
matrices Ai , i = 1, . . . , p.

Markov-Extremal model
Winter and Tawn (2016, 2017) define MEM(k): a model that
captures the extremes of a stationary kth order Markov chain.

Assume that for any t, Xt:t+k = (Xt, . . . ,Xt+k) are identically
distributed random variables with standard Laplace margins.
They then model

Xt+1:t+k | (Xt > u) = α1:kXt + X β1:k
t Z1:k (1)

with u large, |αi |, βi ≤ 1 for i = 1, . . . , k , and Z1:k a k
dimensional random variable independent of Xt.

From stationarity, they derive the distribution of the next value
conditional on the previous by integrating out all but the last
term in model (1). In particular, for j ≥ 1,
Xt+k+j | (Xt+j > u,Xt+j+1:t+j+k−1) = αkXt+j + X βk

t+jZk|1:k−1. (2)

Multivariate Markov Extremal Model
The bivariate extension MMEM(k) of the MEM(k) for (Xt,Yt)
with t ∈ Z≥0 describes the dependence via

(Xt+1:t+k,Yt:t+k) | (Xt > u) = α1:2k+1Xt + X β1:2k+1
t Z1:2k+1.

Our Time-Series Models
Our idea is to combine VAR and MEM to an Extremal Vector
Autoregressive (EVAR) model. In particular, let (Xt,Yt) be a
time-series with t ∈ Z≥0 on standard Laplace margins.

Then EVAR(1,1) is(
Xt+1
Yt+1

)
| (Xt > u,Yt) =

(
α11 α12
α21 α22

)(
Xt
Yt

)
+ X β1:2

t Z1:2.

Similar techniques to those in equation (2) are used to describe
the distribution of the next value conditional on the past.

In general, EVAR(p,1) extends EVAR(1,1) using p previous terms
on the right-hand side:(

Xt+p
Yt+p

)
=

p∑
i=1

(
α11,i α12,i
α21,i α22,i

)(
Xt+p−i
Yt+p−i

)
+ X β1:2

t Z1:2

and EVAR(1,k) extends EVAR(1,1) using k terms on the
left-hand side(

Xt+1:t+k
Yt+1:t+k

)
=

 α11 α12
... ...

α2k,1 α2k,2


(

Xt
Yt

)
+ X β1:2k

t Z1:2k.

EVAR presents a number of practical difficulties:
Estimating the distribution of Z2k|1:2k−1 non-parametrically is
hard;
Comparing EVAR(p,1) with EVAR(q,1) for p 6= q is not as
trivial as comparing VAR(p) with VAR(q) since the
conditioning sets are not the same.

Findings, Simulations and more
For the latest set of information, scan
the QR code. Here, you can find:
(1) discussion on model selection;
(2) which model performs best
for data observed in the North Sea;
(3) a grid of plots containing data
of real storms and simulated storms.
Can you tell which one is which?
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