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ABSTRACT

Characterising the joint distribution of extremes of signifi-
cant wave height and wind speed is critical for reliable design
and assessment of marine structures. The extremal dependence
of pairs of oceanographic variables can be characterised using
one of a number of summary statistics, which describe two dif-
ferent types of extremal dependence. Quantifying the type of
extremal dependence is an essential pre-requisite to joint or spa-
tial extreme value modelling, and ensures that appropriate model
forms are employed for extreme value analysis.

We estimate extremal dependence between storm peak sig-
nificant wave height and storm peak wind speed (Hs, WS) for
locations in a region of the northern North Sea. The extremal
dependence itself may vary with storm direction. As a result, we
introduce new covariate-dependent forms of the extremal depen-
dence measures that account for the direction of the storm.

We discuss the implications of all of the estimates for ma-
rine design, including specification of joint design criteria for
extended spatial domains, and statistical downscaling to incor-
porate the effects of climate change on design specification.

Keywords: covariate effect, extremal dependence, extreme
waves, North Sea, statistical model, statistical downscaling and
WAM hindcast

1 INTRODUCTION
In standard analysis of environmental data the dependence

between two variables can be determined by calculating their
correlation, which gives a measure of the dependence of the vari-
ables for their entire distribution. However, when interest is in
the extreme events, we are no longer interested in the entire joint
distribution of a pair of variables. Instead we need to use an al-
ternative dependence measure, which gives us a description of
the extremal dependence structure of the two variables. For ex-
ample in the case of storm severity, we would be interested in the
relationship between extreme significant wave height and wind
speed [1].

The occurrence of extreme storm peak significant wave
height and the simultaneous occurrence of extreme wind speed
has had devastating effects. For example, in 1982, the Ocean
Ranger semi-submersible drilling rig sank due to the joint oc-
currence of wave heights reaching 20m combined with 100-knot
winds. This incident led to loss of all of the crew members on the
rig [2]. As a result, trying to understand the relationship between
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extreme (significant) wave height and wind speed is of utmost
importance.

North Sea winter storm waves are generated by wind forc-
ing, itself a result of differences in atmospheric pressure in the
prevailing pressure field. In this paper we look at the relationship
between extreme storm peak significant wave height (Hs) and
negative surface level pressure (NSLP) as well as the relationship
between extreme significant wave height and wind speed (WS).
We consider a wave hindcast dataset for the northern North Sea
with the relationship between significant wave height and surface
level pressure shown in Figure 1(a) and the relationship between
extreme significant wave height and wind speed shown in Figure
1(b). The extremal dependence structure of these data sets is hard
to see on their original scale. To better visualise this dependence
structure, the data set is transformed to have common marginal
distributions, here Fréchet margins. The transformation of two
variables (S,T) onto Fréchet margins (X,Y) is made by using the
probability integral transform and is given as follows,

X = − 1
log [FS(S)]

and Y = − 1
log [FT (T )]

, (1)

whereby FS(S) and FT (T ) are the cumulative distribution func-
tions of the variables S and T respectively. The choice of Fréchet
marginal transformation enables us to solely investigate any de-
pendence between (X,Y) as they both have common heavy tail
marginal distributions [3].

The difference in extremal dependence, which was difficult
to see on the original margins in Figure 1(a) and 1(b), is now
much clearer. In the case of Figure 1(c) there is weak depen-
dence in the extremes, whereas in the case of Figure 1(d) it is
clear that stronger dependence exists in the extremes of WS and
Hs as the transformed data no longer lie close to the axes suggest-
ing that the largest values of WS can occur simultaneously with
the largest values of Hs. The two measures χ̄ and χ , which are
introduced in Section 2, are a way of quantifying different levels
of extremal dependence. In Section 5, it is found that the rele-
vant measure to relate the extremal dependence between NSLP
and Hs is χ̄ , however in the case of WS and Hs the appropriate
measure to consider is χ .

In previous analysis, it has been assumed that the extremal
dependence structure for a pair of variables is stationary. Pre-
vious work by [4] showed that storm direction influenced the
marginal extremes of Hs. As a result, we want to determine
whether storm direction affects the extremal dependence struc-
ture of Hs and either NSLP or WS.

The relationship between pressure differences and Hs may
be considered to be of more importance than the relationship be-
tween SLP and Hs. However, the latter relationship is of more
interest to us, as we wish to use this methodology to analyse
projections from a global climate model. For the global climate

(a) NSLP vs Hs (b) WS vs Hs

(c) NSLP vs Hs (d) WS vs Hs

FIGURE 1. Storm peak significant wave Height (Hs), negative surface
level pressure (NSLP) and storm peak significant wave Height (Hs) and
wind speed (WS) on original (top) and Fréchet margins (bottom) at a
typical location in the region

models currently available, the projections of SLP are currently
much more accurate than the equivalent projections of pressure
differences of SLP. Furthermore, the pressure differences are an
approximation to wind speed and for this particular application
the wind speed data are available.

2 DEPENDENCE MEASURES FOR BIVARIATE EX-
TREMES
The following section derives the two measures of extremal

dependence, χ̄ and χ . For the case of asymptotic independence
when two extreme events are unlikely to occur simultaneously,
we consider the measure χ̄ . For the case of asymptotic depen-
dence, when two extreme events are likely to occur simultane-
ously, we consider the measure χ . The measures χ̄ and χ are
interlinked and allow us to determine whether a bivariate data set
is asymptotically independent or asymptotically dependent.

Given a random vector (X ,Y ) with X and Y having com-
mon unit Fréchet margins and joint cumulative distribution func-
tion F(X ,Y ), our interest lies in the tail behaviour of F(X ,Y ). The
following model for the joint survivor function was derived in
Ledford and Tawn [5]. Interest lies in the joint tail where the
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components of the random vector (X ,Y ) exceed their respective
(1− p)th quantiles which are xp = −1/ log(1− p). As p→ 0,
this can be approximated by,

P
{

X > xp , Y > xp
}
∼ L

(
1
p

)
p1/η , (2)

where the function L is slowly varying at infinity 1. We adopt
the same approach as [5] and assume that the slowly varying
function L ( 1

p ) = c, where c is a constant and for p sufficiently
close to 0. The other parameter η is defined over the range
0 < η ≤ 1 and is termed the coefficient of tail dependence. The
coefficient of tail dependence η is the key feature that determines
the joint tail behaviour of the random vector (X ,Y ).

Extremal dependence can be classed as being either asymp-
totically independent or asymptotically dependent. The former
means that extreme events of (X ,Y ) are very unlikely to occur
simultaneously and results in a value of η < 1. If asymptotic
dependence is observed it means that if X is extreme then it is
also possible for Y to be simultaneously extreme and results in a
value of η = 1. The following reparameterisation of η is used to
characterise the level of asymptotic independence,

χ̄ = 2η−1. (3)

Since η ∈ (0,1], it follows that −1 < χ̄ ≤ 1. Different values of
χ̄ determine the level of asymptotic independence,

χ̄ =



1 if asymptotically dependent;

(0,1)
if asymptotically independent

with positive association;
0 if independent;

(−1,0)
if asymptotically independent

with negative association;

(4)

If the estimate of χ̄ is found to be not equal to one, then
χ̄ is sufficient in describing the extremal dependence. However
for the case where χ̄ ≈ 1, there is a second measure χ , which
determines the strength of extremal dependence [5].

For the random vector (X ,Y ), the asymptotic dependence
measure χ is defined to be,

χ = lim
p→0

P
{

X > xp
∣∣Y > xp

}
.

1In order for a function ` to be slowly varying at infinity, the following con-
vergence limit has to hold for t > 0

`(tr)
`(r)

→ 1 as r→ ∞.

By applying the Ledford & Tawn model in equation (2), it fol-
lows that,

χ =

{
c if limp→0 L ( 1

p ) = c > 0 and χ̄ = 1
0 if limp→0 L ( 1

p ) = 0 or χ̄ < 1
, (5)

where c is a constant and determines the strength of asymptotic
dependence of the random vector (X ,Y ). If χ is equal to 0, then
the variables are asymptotically independent and χ̄ is the relevant
measure of dependence.

3 EXISTING METHODOLOGY TO ESTIMATE χ̄ AND χ

We follow the methods in [5] to estimate χ̄ and χ . Consider
the variable Z, where Z = min(X ,Y ), otherwise known as the
structure variable. By the application of the Ledford & Tawn
model in equation (2), it follows for a high enough threshold u,
that for z > u, the distribution of Z is approximately,

P(Z > z) = P(min(X ,Y )> z)

= P(X > z , Y > z)

≈ cz−1/η . (6)

In order to make inferences about c and η using the distri-
bution in equation (6), the censored likelihood approach of [5]
is adopted. For a given data set (x1,y1), . . . ,(xn,yn), we calcu-
late the structure variables z1, . . . ,zn and let z(1), . . . ,z(nu) be the
nu values that are defined above the threshold u. The set of vari-
ables z1, . . . ,z(nu) have cumulative distribution function Fz and
corresponding probability density function fz. For a large enough
threshold u, the likelihood function is defined in terms of the con-
stant c and coefficient of tail dependence η , and is as follows,

L(z1, . . . ,zn;η ,c) =
n

∏
i=nu+1

Fz(u)
nu

∏
i=1

fz(z(i);η ,c)

= Fz(u)n−nu
nu

∏
i=1

fz(z(i);η ,c)

=

[
1− c

u
1
η

]n−nu nu

∏
i=1

[
c
η

z
−
(

1
η
+1
)

(i)

]
. (7)

By maximising equation (7), the maximum likelihood estimate
of χ̄ is obtained by substituting the maximum likelihood esti-
mate, η̂ into equation (3) to give,

3 Copyright © 2013 by ASME



ˆ̄χ =
2
nu

(
nu

∑
i=1

log
[ z(i)

u

])
−1.

The estimate ˆ̄χ has the following asymptotic variance,

var( ˆ̄χ) =
( ˆ̄χ +1)2

nu
.

Of course due to sampling variability, χ̄ is unlikely to be ex-
actly equal to one under asymptotic dependence, so to determine
whether χ̄ is significantly less than one [6], we can perform a
generalised likelihood ratio test χ̄ = 1 v χ̄ < 1 based on equa-
tion (3). In the case when χ̄ = 1 is not rejected then the data
are deemed to be asymptotically dependent and so χ is the ap-
propriate measure. To estimate χ the censored likelihood given
in equation (7), assuming that η = 1 is used. This produces a
likelihood for the constant c > 0,

L(z1, . . . ,zn;c) =
n

∏
i=nu+1

Fz(u)
nu

∏
i=1

fz(z(i);c)

=
n

∏
i=nu+1

[
1− c

u

] nu

∏
i=1

[
c

z2
(i)

]
. (8)

Through standard maximisation techniques and using equation
(5), the maximum likelihood estimate for χ is,

χ̂ =
unu

n
.

This estimate has asymptotic variance,

var(χ̂) =
u2nu(n−nu)

n3 .

These maximum likelihood estimates of χ̄ and χ and their
respective asymptotic variances are threshold dependent. There-
fore, careful consideration has to be given to the choice of thresh-
old [7].

4 ESTIMATION OF χ̄ AND χ WITH COVARIATES
In the previous sections it was assumed that the asymptotic

dependence between a single pair of concurrent observations
(Xi,Yi) was the same for all i. However for our data the level

of extremal dependence is expected to depend on storm direction
θ . We now discuss how to model χ̄ and χ in this case by assum-
ing that the covariate dependent estimates of χ̄ and χ vary as a
smooth function of direction.

4.1 Non stationary estimation of χ̄

To incorporate covariates into c and η , we use a Fourier
based approach. The covariate forms of c and η given in equa-
tion (9) are modelled as a sum of the first d terms in a Fourier
series of direction,

c(θ) = exp

(
c0 +

d

∑
i=1

c1i cos(c2i + iθ)

)
,

η+(θ) = exp

(
α0 +

d

∑
i=1

α1i cos(α2i + iθ)

)
,

η(θ) = min{η+(θ),1} , (9)

with 0≤ c(θ) due to the using of the link function, θ ∈ [0,360◦)
and 0≤ η(θ)≤ 1.

The censored likelihood in equation (7) is extended to incor-
porate the covariates defined in equation (9) and the new covari-
ate dependent likelihood is given below,

L(z1, . . . ,zn,θ1, . . . ,θn;η ,c)

=
n

∏
i=nu+1

Fz(u;η(θ(i)),c(θ(i)))
nu

∏
i=1

fz(z(i);η(θ(i)),c(θ(i)))

=
n

∏
i=nu+1

[
1−

c(θ(i))

u
1

η(θ(i))

]
nu

∏
i=1

 c(θ(i))
η(θ(i))

z
−
(

1
η(θ(i))

+1
)

(i)

 ,
(10)

where θ(i) is the direction of z(i). The number of Fourier terms in
equation (9) is determined by using the AIC (Akaike’s Informa-
tion Criterion) [8].

4.2 Non stationary estimation of χ

In order to incorporate covariates into the measure of asymp-
totic dependence χ , the likelihood given in equation (10) is
adopted under the assumption that η(θ(i)) = 1 for all values of
θ . However we no longer fit the functional form of c(θ) given in
equation (9) but instead a logistic link function to relate c(θ) to
the linear predictor,

c(θ) =
exp
(
β0 +∑

d
i=1 β1i cos[β2i + iθ ]

)
1+ exp

(
β0 +∑

d
i=1 β1i cos [β2i + iθ ]

) ,
4 Copyright © 2013 by ASME



where θ ∈ [0,360◦). Using a logistic link function provides an
alternative way to ensure that the estimates of c(θ) lie between
0 and 1. Furthermore the chance of estimating c(θ) = 1 is very
unlikely as in reality the probability of observing perfect depen-
dence between two variables is very unlikely. If no directional
effect is present c(θ) = exp(β0)/[1+ exp(β0)] over all values of
θ . This result gives a constant level of asymptotic dependence
for all pairs of (Xi,Yi). Using the likelihood given in equation
(10) and assuming that η(θ) = 1, the likelihood for χ given in
terms of c is as follows,

L(z1, . . . ,zn,θ1, . . . ,θn;c) =
n

∏
i=nu+1

Fz(u)
nu

∏
i=1

fz(z(i);c(θ(i)))

=
n

∏
i=nu+1

[
1−

c(θ(i))
u

] nu

∏
i=1

[
c(θ(i))

z2
(i)

]
.

(11)

Then the estimate of χ(θ) is equal to ĉ(θ) for a sufficiently
large threshold u. To determine the number of Fourier terms
needed in the model, the AIC was used [8].

4.3 Uncertainty intervals for χ̄ and χ

Uncertainty in the estimates for χ̄ and χ can be determined
by using a non-parametric bootstrap. This non-parametric boot-
strap means that we first sample with replacement from our orig-
inal data set. When sampling, vectors (Xi,Yi,θi) are sampled to-
gether, to produce a bootstrap sample with the same dependence
structure as the original data set. From this sample, we then es-
timate the parameters given in either equation (10) or equation
(11). Then from these estimates, we calculate the estimate of
either χ̄(θ) or χ(θ) for all the possible values of θ .

We repeat this procedure m times to give us m estimates of
either χ̄(θ) or χ(θ). For each value of θ we determine the 2.5%
and 97.5% quantiles of the m estimates to give the 95% pointwise
confidence intervals.

5 APPLICATION
5.1 Data set

Data were obtained from the WAM-Hindcast data set [9],
with three hourly observations in the North Sea from 1957-2009,
over an area of 175 by 350km. The oceanographic variables
available are, significant wave height (Hs) [m] mean surface level
pressure [hPa (Pascal)] wind speed in 10m above sea level (WS)
[m/s] wind direction [degrees] and mean wave direction [de-
grees] with θ = 0◦ corresponding to the North. The majority
of severe storms will come from the Atlantic Ocean due to the
longer fetches, we will focus on four sites with interesting lo-
cal characteristics. A brief description of these four sites is as
follows along with their exact location given in Figure 2.

Site A is the furthest south of all of the four sites, and is most
likely to be influenced by storms coming from the southern
North Sea.

Site B is the closest site to the Shetland Islands and as a result
this land shadow will reduce the severity of storms. The
most severe storms will then be expected to come from the
southern North Sea.

Site C is situated in the north east of the region and is expected
to be strongly influenced by Atlantic storms. These At-
lantic storms dominate the region as they have much longer
fetches and produce the largest waves observed in the north-
ern North Sea.

Site D is in the north west of the region and will also be af-
fected by the Atlantic storms but should also see the effects
of storms coming south the Norwegian Sea.

FIGURE 2. Locations of Sites A-D in the North Sea

5.2 Storm peak algorithm
In order to ensure that each storm peak event is independent

in time, the following algorithm is deployed.
For each site in the data set, the time series of signifi-

cant wave height Hs(t), wind speed WS(t), mean surface level
pressure SLP(t) and wave direction WvD(t) are selected, where
t = 1, . . . ,m and m is the number of observations.

For the time series Hs(t) a suitable threshold v is determined.
For comparison across sites, it is sensible to have a quantile
threshold rather than a specific value. In this particular case a
50% quantile threshold for v was chosen. Once a threshold v has
been defined, points are identified whether they are Hs(t) > v or
Hs(t) < v. An up-crossing is defined to be the time at which Hs
goes above v. Similarly a down-crossing is defined to be the time
at which Hs goes below v. The time period between consecutive
up- and down-crossings is known as the storm period, the pro-
cess of defining the up-crossing and down-crossings is repeated
for the entire time series and produces y storm periods. In order
to ensure independence between storm peaks, a time window of
length τ = 16 (2 days) is defined. If two storm peaks ya yb are
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within time τ of one another, the two storm periods are combined
with the largest storm peak selected.

Once independent storm periods have been determined, the
maximum value of Hs in each storm period is recorded, as well
as the associated values of the covariates of interest. If multi-
ple occurrences of the maximum value of Hs are observed, the
average of the covariates at these time points are taken.

Henceforth NSLP, WS and Hs will refer to observations of
storm peak NSLP, storm peak WS and storm peak Hs selected
using the storm peak selection algorithm.

5.3 Extreme significant wave height and surface level
pressure

Given that the lowest values of surface level pressure corre-
spond to the highest values of significant wave height, we con-
sider NSLP and use the marginal transformation given in equa-
tion (1). When carrying out the marginal transformation, the
marginal cumulative distribution FS(S) and FT (T ) are replaced
with their empirical estimates F̂S(S) and F̂T (T ) respectively.

No direct relationship exists between surface level pressure
and extreme significant wave height, as NSLP generates wind
speed and changes in wind speed generate the largest waves. Due
to no clear relationship existing, we would expect them to be
asymptotically independent.

5.3.1 Directionally independent estimates As an
initial analysis, for each of sites A-D given in Section 5.1, the
measure χ̄ is given in Table 1. Estimates were found by using a
80% quantile threshold u in likelihood (10). From Table 1, it is
clear that the estimates of c are consistent across sites, however
slight variations can be seen in the estimates of χ̄ . The values of
χ̄ are of particular interest as they are significantly different from
either -1 or 1, thus we conclude that the data are asymptotically
independent and in this case with positive association. This con-
clusion is consistent with physical intuition. The next question to
determine is whether or not the level of asymptotic independence
varies with storm direction.

Site ĉ (95% CI) ˆ̄χ (95% CI)

A 0.55 (0.50,0.60) 0.61 (0.50,0.72)

B 0.54 (0.49,0.59) 0.61 (0.50,0.72)

C 0.57 (0.51,0.63) 0.59 (0.47,0.70)

D 0.53 (0.48,0.58) 0.65 (0.53,0.77)

TABLE 1. Estimates of c and χ̄ for the 4 sites with the threshold set
at the respective 80% quantile estimation threshold

5.3.2 Directionally dependent estimates The
model given in equation (10) was extended to include further
Fourier terms. The estimates are plotted in Figures 3(a) to 3(d),
along with their respective 95% pointwise confidence intervals.

From Figure 3(a) to 3(d), it can be seen that a different num-
ber of Fourier terms are needed for the different sites. In the case
of sites A and B, two Fourier terms are sufficient, and in both
cases the most uncertainty in the estimates lies between (0,180◦)
and (300,360◦). For sites A and B this would correspond respec-
tively to storms coming from the Arctic Ocean and the dampen-
ing of the Shetland land shadow on severe storms. All of the
estimates of χ̄(θ) are significantly different from one apart from
the sector corresponding to severe storms coming from the At-
lantic Ocean. This is expected as severe storms that arise in the
Atlantic dominate the region and pressure fields stretch over a
large spatial area thus supporting the similarities between the es-
timates of χ̄(θ) at the sites. For the rest of the directional sectors
in Figure 3(a) to 3(d), the estimate of χ̄(θ) ranges from asymp-
totic independence with positive association, independence and
asymptotic independence with negative association. The asymp-
totic independence with positive association supports the phys-
ical processes as the lowest values of NSLP correspond to the
highest values of Hs, and furthermore the asymptotic indepen-
dence is expected as no direct relationship exists between NSLP
and Hs. In the cases where NSLP and Hs are found to be asymp-
totically independent with positive association this corresponds
to severe storms that have arisen from the Arctic ocean.

5.4 Extreme significant wave height and wind speed
The previous combination of oceanographic variables illus-

trated the idea of asymptotic independence. A more prominent
relationship of interest to metocean engineers, is the relationship
between extreme significant wave height and wind speed. Large
wind speeds are known to be a key driver of storm severity, a
consequence of these are extreme wave heights.

5.4.1 Directionally independent estimates Given
that such a strong relationship exists between extreme significant
wave height and the corresponding values of wind speed, we ex-
pect them to be asymptotically dependent. However, to check
this assumption, estimates of χ̄ are first calculated for the four
sites and are given in Table 2. From Table 2, the estimates of
χ̄ are very close to 1. This suggests there is evidence that ex-
treme significant wave height and wind speed are asymptotically
dependent. Consequently estimates of χ are also taken for each
site, these are also given in Table 2. It is clear that the maxi-
mum likelihood estimates of χ are significantly different from
zero, suggesting that extreme significant wave height and wind
speed are asymptotically dependent and at a strong level, which
emphasises how closely related they are in determining storm
severity. Interestingly, the estimates are consistent across the
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(a) Estimate of χ̄(θ) for Site A (b) Estimate of χ̄(θ) for Site B

(c) Estimate of χ̄(θ) for Site C (d) Estimate of χ̄(θ) for Site D

FIGURE 3. Estimates of χ̄(θ) with Fourier term and bootstrapped pointwise confidence intervals for each of the 4 sites plotted against direction (θ ).
The maximum likelihood estimates for each of the sites is given by the black solid line and the 95% bootstrapped pointwise confidence intervals are
given by the dashed black lines.

northern North Sea, this supports physical insight as wind speed
is a key indicator of storm severity and wind speed is determined
by changes in pressure fields that stretch over a large spatial area
rather than a single location.

Site ˆ̄χ (95% CI ˆ̄χ) χ̂ (95% CI χ)

A 0.95(0.81,1.00) 0.73(0.69,0.79)

B 0.86(0.73,0.98) 0.74(0.69,0.78)

C 0.85(0.71,0.99) 0.73(0.68,0.78)

D 0.84(0.71,0.97) 0.72(0.67,0.77)

TABLE 2. Estimates of (χ̄ and χ) for the four sites with the threshold
set at the respective 80% quantile estimation threshold

5.4.2 Directionally dependent estimates The esti-
mates of χ given in Table 2 are consistent across sites, suggest-
ing that one summary measure would be sufficient to describe
the level of asymptotic dependence across sites. However, it is
known that each of the four sites have very different local char-
acteristics particularly in terms of where the most severe storms
come from. These different environmental characteristics should
be more evident once direction has been introduced as a covari-
ate.

The model given in equation (5) was extended to include
Fourier terms. It was found that for each of the four sites, three
Fourier terms were sufficient to describe the directional structure
of χ(θ). The estimates are plotted in Figures 4(a) to 4(d), along
with their respective 95% pointwise confidence intervals.

Through the addition of the extra Fourier terms it is apparent
that each of the sites have very different spatial characteristics.
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(a) Estimate of χ(θ) for Site A (b) Estimate of χ(θ) for Site B

(c) Estimate of χ(θ) for Site C (d) Estimate of χ(θ) for Site D

FIGURE 4. Estimates of χ(θ) with 3 Fourier terms and bootstrapped pointwise confidence intervals for each of the four sites plotted against direction
(θ ). The maximum likelihood estimates for each of the sites is given by the black solid line and the 95% bootstrapped pointwise confidence intervals
are given by the dashed black lines.

For each of the figures, the effects of the directional sectors are
detected and the effects vary depending on the local characteris-
tics of the site. For all sites, apart from site B, the minimum point
is observed from 45◦ to 90◦. These directions correspond to se-
vere storms coming from Norway, which are rarely observed at
site B and instead is dominated by severe storms from the south.
The sites’ proximity to the Shetland land shadow is also apparent
in Figure 4(b) due to the estimate of χ only being about 0.1. The
small width of the tolerance interval either side of the direction
of θ = 180◦ reflects the fact that the site is dominated by storms
from the southern North Sea. For sites A, B and D, the main
directional sectors have been clearly identified to be storms com-
ing from the southern North Sea, Atlantic Ocean and the Arctic
Ocean with clear differences arising dependent on the location

of the specific site. At all four sites there is found to be a strong
asymptotic dependence between extreme significant wave height
and wind speed that significantly depends upon direction. For
site B and D it was found there was evidence for perfect depen-
dence between extreme significant wave height and wind speed
that correspond to storms coming from a direction of θ = 180◦.

6 CONCLUDING REMARKS
The asymptotic extremal dependence measures χ̄ and χ are

vital summary statistics when modelling bivariate extremes. We
have extended these measures to include a third variable direc-
tion to see whether the extremal dependence measures change
with direction. We have used χ̄ and χ to provide us with infor-
mation about the asymptotic relationship between oceanographic
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variables such as storm peak significant wave height, wind speed
and surface level pressure that are known to be key influences of
storm severity. It was found that extreme storm peak significant
wave height and the corresponding values of surface level pres-
sure are asymptotically independent. In contrast, extreme storm
peak significant wave height and the corresponding wind speed
were found to be asymptotically dependent. These conclusions
are consistent with our physical understanding; pressure differ-
ences cause winds which cause waves. We might then not expect
a clear relationship to exist between significant wave height and
surface level pressure, whereas the relationship between wind
and waves should be clearer. High wind speeds cause the largest
waves. Therefore, we would expect them to be asymptotically
dependent.

As previous authors [4] had found storm direction is an im-
portant covariate in the marginal behaviour of Hs, we thought that
storm direction may also affect the extremal dependence struc-
tures. As a result, the extremal dependence measures χ̄ and χ

were extended to include direction as a covariate. For both χ̄

and χ , the covariate was introduced in the form of a Fourier
series, which assumes a smooth function for the estimates of
χ̄(θ) and χ(θ). The modelling techniques could easily be ex-
tended to include other covariates that are influential to χ̄ or χ .
For both measures, it was found that direction was a highly im-
portant covariate and the harmonic terms correctly identified the
different directional storm sectors in the North Sea. This mod-
elling approach of introducing the covariate direction resulted in
very different estimates of the extremal dependence measures.
For example, in some cases suggesting that for certain directions
the measure changes from being asymptotically dependent to
asymptotically independent. These findings motivate the adop-
tion of the conditional extremes approach of [10] for reliable es-
timation of design criteria, since it is able to handle both asymp-
totic independence and dependence, and covariate effects [11].

Further research is currently being undertaken which pre-
whitens a data set before any dependence modelling is per-
formed. The pre-whitening of data set involves removing any
marginal effects present in a data set before the joint modelling
takes place. This further analysis will help to determine whether
the dependence observed in the extremal dependence measures is
from marginal effects that have been unaccounted for or whether
the measures are genuinely capturing the extremal dependence
between a pair of variables [11].
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