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Overview

Motivation

Regulatory requirements ad-hoc (if not inconsistent) w.r.t.
accommodation of covariate effects and estimation of (e.g.)
directional and seasonal design values for coastal and ocean
structures.

Statistics literature provides a framework for rational and consistent
estimation, but many issues unresolved.

This talk

Analysis procedure with application to North Sea design

Some pressing issues in modelling and interpretation
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Procedure in a nut shell: I

Hindcast data for multiple locations in neighbourhood. Extract
storm peaks (to eliminate temporal dependence) over threshold u.

Assume extremal characteristics of all locations marginally identical,
although dependent. Goal is to estimate distribution of n-year return
value qn for any single location.

Estimation using NHPP: storm arrival rate µ, GP shape γ and scale
σ.

Accommodate covariate effects: µ, γ, σ and u vary with covariates
(e.g. direction, season, time). u estimated before hand as high
(local) quantile (sensitivity to threshold choice).

Maximise likelihood, penalised by parameter roughness w.r.t.
covariates. Diagnostics for model fit. Cross-validation for optimal
roughness. Block bootstrap for parameter uncertainty pointwise.
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Procedure in a nut shell: II

Simulate to estimate properties of qn.

Estimate qn also for partitions w.r.t. covariates. Estimate and
accommodate storm dissipation effects.

Present findings in engineering terms.

Procedure published here:

Effect of combining locations on estimation uncertainty (Jonathan and Ewans 2007b).

Illustrations of extent of covariate effects on extreme quantile estimates (Jonathan et al. 2008).

Modelling directional extremes in the Gulf of Mexico and Northern North Sea (Jonathan and Ewans 2007a, Ewans and Jonathan
2008).
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Data and pre-processing

Significant wave height HS values from a Northern North Sea
hindcast, for October 1964 to September 1998 inclusive, at 3 hour
intervals.

For approximate location of 2◦ longitude, 61◦ latitude, selected 100
grid points on 10 x 10 rectangular lattice covering an area of
approximately 5◦ longitude, 3◦ latitude centred at the location of
interest.

For each storm period for each grid point, isolated storm peak
significant wave height, Hsp

S , and corresponding wave direction, θ.

Estimated threshold for extreme value analysis based on local
quantile (with direction)

Estimated directional dissipation for a storm (w.r.t. storm peak HS ,
with direction)
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Exploratory analysis

Quantiles of Hsp
S (θ)

Conditional densities of Hsp
S (θ)

Hsp
S for NE and SW

θ for NE and SW
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Threshold and dissipation

Threshold u(θ)

Given interval Θ of θ, threshold
estimated empirically as quantile
of Hsp

S (Θ)

Local median used for modelling
henceforth

Dissipation ρ(∆θ)

For a given storm event,
ρ(∆θ) = HS(∆θ)/Hsp

S

Dissipation quantifies influence
of storm on extremes in
directions other than θ
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Generalised Pareto Modelling: I

Given {Xi}ni=1, {θi}ni=1, distribution of storm peaks above variable
threshold u (θ) assumed GP with cdf FXi |θi ,u:

FXi |θi ,u (x) = P (Xi ≤ x |θi , u (θi ))

= 1−
(

1 + γ(θi )
σ(θi )

(x − u (θi ))
)− 1

γ(θi )

+

γ and σ vary smoothly with θ, assumed to follow Fourier form∑p
k=0

∑2
b=1 Aabktb (kθ).
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Generalised Pareto Modelling: II

Penalised negative log likelihood is l∗:

l∗ =
n∑

i=1

li + λ

(
Rγ +

1

w
Rσ

)
Unpenalised negative log likelihood is:

li = log σ (θi ) +

(
1

γ (θi )
+ 1

)
log

(
1 +

γ (θi )

σ (θi )
(Xi − u (θi ))

)
+

Roughness of γ is given by:

Rγ =

∫ 2π

0

(
∂2γ

∂θ2

)2

dθ =

p∑
k=1

πk4

(
2∑

b=1

A2
1bk

)
Analogous expression for roughness of σ
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Cross-validation for roughness

Optimal λ
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Forms of γ and σ with block bootstrap

γ(θ), σ(θ), with block bootstrap 95% confidence interval
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Poisson Modelling: I

Non-homogeneous Poisson process model. The negative log-likelihood
written:

l(µ, γ, σ) = lN(µ) + lW (γ, σ)

where lN is the (negative) log-density of the total number of exceedances
(with rate argument µ), and lW is the (negative)log-conditional-density
of exceedances given a known total number N). Inferences on µ made
separately from those on γ and σ.
The Poisson process log-likelihood, for arrivals at times {ti}ni=1 in period
P0 is:

lN(µ) = −(
n∑

i=1

logµ(ti )−
∫

P0

µ(t)dt)
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Poisson Modelling: II

Or approximately (Chavez-Demoulin and Davison 2005):

l̂N(µ) = −(
m∑

j=1

cj logµ(jδ)− δ
m∑

j=1

µ(jδ))

where {cj}mj=1 is the number of occurrences in each of the m
sub-intervals. W
We estimate storm occurrence rate adopting a Fourier form for Poisson
intensity µ as a function of θ, penalising its roughness Rµ:

l̂∗N(µ) = l̂N(µ) + κRµ

Rµ has form analogous to that of Rγ or Rσ. Cross-validation and block
bootstrapping used similarly.
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Defining appropriate directional sectors

Optimal boundaries to reduce within-sector variability
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100-year storm peak cdf using directional γ,σ

Hsp
S100 for directional sectors and omni-directionally
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Overview Data Modelling Design Issues Conclusions References Sectors 100-year-Drn 100-year-Cns Strategies

100-year storm peak cdf using constant γ,σ

Hsp
S100 for directional sectors and omni-directionally
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Design values for different design strategies

Specification of an omni-directional non-exceedance probability does
not uniquely define sector design values.

Different strategies possible:

Design to omnidirectional Hsp
S100

Design to equal sector non-exceedence probability
Design to optimise a specified cost function
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Issues

Generic

Sample size (c.f. estimates required for long return periods)

Measurement (or hindcast) uncertainty (especially for extreme
values)

Temporal dependence (∴ ”storm peak” analysis)

Spatial dependence (∴ block bootstrap)

Model form (e.g. GP versus Weibull ...) and complexity

Transformation of variables (e.g. weighting locally w.r.t. covariate)

Combination of variables (e.g. joint modelling, structural response -
based analysis)

Specific

Reflecting model specification and fitting uncertainty in design
values

Threshold selection
Model stiffness
Dissipation

Specification and interpretation of design conditions in engineering
context
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Model selection - a toy problem

Two homogeneous directional sectors S1 and S2, extremes are
GP-distributed

γ, σ and u values potentially different between sectors

Random sample size 1250 from each sector corresponding to 25 years

Test

H0: γ1 = γ2, σ1 = σ2

HA: γ1 6= γ2, σ1 6= σ2

Cases (γ1,σ1,u1) and (γ2,σ2,u2)

Case 1 (-0.1,2,4) and (-0.3,4,4)
Case 2 (-0.1,3,4) and (-0.3,4,6)
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Case 1 - Model selection

Sector densities (theory) Probability of rejecting H0

Jonathan & Ewans, UK Extremes 2008, Lancaster Extremes with covariates
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Case 1 - Parameter estimates with threshold

HA: S1 estimates with threshold HA: S2 estimates with threshold

H0: estimates with threshold

Jonathan & Ewans, UK Extremes 2008, Lancaster Extremes with covariates
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Case 1 - Estimated median 100-year maximum

Median 100-year event: true (dot), HA (dash), H0 (full)
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Case 1 - Implications for long return periods

Median P-year event: true (dot), HA (dash),

H0 (full, for thresholds 6,7,...,11m)
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Case 2 - Model selection

Sector densities (theory) Probability of rejecting H0

Jonathan & Ewans, UK Extremes 2008, Lancaster Extremes with covariates
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Case 2 - Parameter estimates with threshold

HA: S1 estimates with threshold HA: S2 estimates with threshold

H0: estimates with threshold

Jonathan & Ewans, UK Extremes 2008, Lancaster Extremes with covariates
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Case 2 - Estimating median 100-year maximum

Median 100-year event: true (dot), HA (dash), H0 (full)
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Interpretation: Ratios of extreme quantiles with γ

σ=1. Moments of Hsp
S100 vary with γ
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Interpretation: seasonal extremes

Design values for short-term deployments in Gulf of Mexico
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Future work

Model multiple covariate effects (e.g. more general smoothers).

Model spatial and temporal dependence explicitly (e.g. extreme
quantiles for region rather than single location).

Improved modelling of dissipation effects.

Jointly model multiple variables (wind, waves, current, e.g.
Heffernan and Tawn 2004), compare inferences with response-based
approaches.

Extremes estimates incorporating uncertainties from model and
threshold specification (e.g. predictive distributions).

Models that better exploit the underlying physics (e.g. for
hurricanes)

Influence design practice. Regulators (e.g. API) currently reviewing
methods for seasonal and directional design. Bridge industry and
academia, communicate.
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Thanks for listening.
philip.jonathan@shell.com
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