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Abstract 
 

Estimation of environmental and complex structural responses, such as fatigue for risers on deepwater 

floating production systems, is a critical and generally computationally intensive process. Long term 

damage estimates require the determination of host vessel motions used for riser stress calculations. In 

principle, riser stress could be calculated for each of a large number of directional sea states, a 

considerable computational burden. However, it might be possible to identify a representative subset of 

directional sea states for vessel motion and subsequent riser stress analysis, such that estimated fatigue 

characteristics (from the full set of sea states and the subset thereof) were equivalent. This would be 

advantageous as it would require considerably less computational effort.  

 

In this work we use non hierarchical K-MEANS cluster analysis to partition a large set of directional 

wave spectra for contiguous sea states at a location offshore Brazil, corresponding to a period of 

approximately 2 years into a number of clusters. We adopt the set comprised of cluster centroids only as 

representative sea states for efficient characterization of the environment and structural response. 

 

We demonstrate that the representative sea states provide an efficient basis for estimation of overall sea 

state bulk, wind sea and swell characteristics. We evaluate the effect of cluster size on the performance 

of the representative sea states using custom built visualization tools utilizing the Kolmogorov-Smirnov 

test statistics. The representative sea states are further used as input for a VLCC-class FPSO vessel 

motion analysis. For heave at the turret, roll motions, and relative vessel heading, distributions of vessel 

motions from analysis of representative sea states are in excellent agreement with those from analysis of 

all sea states. Guidelines for the application of the methodology are provided.  
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1. Introduction 
 

Estimating the response of ocean structures subject to environmental loading is in general a complex but 

important task. For example, estimating riser fatigue on deepwater floating production systems is a 

critical and generally computationally intensive process. When interest lies in estimating long term 

damage, riser stress might be calculated for each of a large number of directional sea states. This is a 

considerable computational burden. 

 

Cluster analysis provides a way of grouping a (typically large) number of individuals (such as 

directional spectra for consecutive sea states) into a (typically small) number of clusters, such that all 

members of the same cluster have similar characteristics. Each cluster has a cluster centre (strictly the 

centroid or centre of mass). All members of a given cluster are more similar to the cluster centroid for 

that cluster than to any other cluster centroid. It is reasonable therefore to assume all the members of the 

cluster might be represented by just one directional spectrum, namely that of the cluster centroid (or any 

directional spectrum near to the cluster centroid). Further, the information contained in the (small) set of 

cluster centroids might be a reasonable approximation for the information in the original (large) set of 

directional spectra.  

 

We might expect that the distribution of values of any environmental variable of interest such as 

significant wave height (𝐻𝑆, or peak period 𝑇𝑃, or swell 𝐻𝑆, or 𝐻𝑆 for a particular directional sector, or 

mean wave direction 𝐷𝑀) for the original (large) set of directional spectra could be approximated by the 

distribution of values of the same variables calculated from the (small) set of directional spectral 

centroids, appropriately weighted to take account of the relative size of each of the clusters. For 

example, a bulk sea state variable like 𝐻𝑆 is easily calculated once the directional spectrum is known, so 

that approximating the full distribution of 𝐻𝑆 using the weighted distribution from cluster centroids is 

not so interesting. However, there are many important environmental variables (such as swell 𝐻𝑆, 

estimated from spectral partitioning) and engineering design variables (such as structural responses) 

which are not easily calculated from the directional spectrum. Approximating full distributions for these 

variables using weighted distributions from cluster centroids might represent a huge reduction in the 

computational complexity of estimating design values. 

 

Specifically, we expect that the statistical distribution of any complex response of a marine structure, 

subject to ocean environments characterised by each of the original (large) set of directional spectra, is 

well-approximated by the appropriately-weighted distribution of the same response for the cluster 

centroids. Therefore, given response analysis for the (small number of) cluster centroids only, we can 

estimate the full distribution of structural response. An approach similar to this, applied to 

characterisation of current profiles, has been reported previously in the ocean engineering literature 

(Prevosto et al. 2012, Jeans et al. 2015). 

 

The objective of this paper is to demonstrate that full distributions of environmental and structural 

response variables can indeed be well-approximated using weighted distributions of the same variables 

for cluster centroids only. We outline the approach in application to the estimation of design values for a 

FSPO offshore Brazil. The layout of the paper is as follows. In Section 2, we describe the observed 

wave climate at the location, for which a large set of directional spectra are available. Section 3 outilnes 

the vessel response analysis, and Section 4 provides a summary of the approach to cluster analysis used. 

In Section 5, we estimate cumulative distribution functions for environmental and vessel response 

characteristics, by brute-force response analysis for all sea states, and by cluster analysis of all sea states 

followed by response analysis of cluster centroids only. Section 6 provides a discussion of results, and 

conclusions of the study. 
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2.  Observed Wave Climate 
 

2.1 Buoy Observations 

 

Data for this study include two years of wave records from a Wavescan metocean buoy deployed 

offshore of Brazil at measurement station BC-10 depicted in Figure 1. Station BC-10 is located in 

Campos Basin at approximately 21 15' S, 039 45' W with a water depth of 1750 m.  

 

 
 

Figure 1. Brazil Campos Basin offshore study area with BC-10 station location 

 

The metocean buoy was outfitted with a heave/slope Motion Reference Unit (MRU) for wave direction 

measurements and a meteorological station. A total of 17,086 hourly wave records were obtained 

spanning an approximate two-year time period from 1 May 2006 to 17 June 2008.  As is common with 

data collected at sea, there are occasional gaps in the data records.  The most significant gaps in the 

wave data are listed in Table 1.  

 

Table 1. Significant Observational Data Gaps 
 

Station Start Date End Date 

BC-10 4 NOV 2006 1 DEC 2006 

BC-10 16 MAY 2007 17 JUN 2007 

 

 

The Wavescan data were prepared for analysis by converting raw spectral coefficients to directional 

wave spectra using the maximum likelihood method (Oltman-Shay and Guza, 1984). Resulting spectra 

were interpolated to 0.01Hz frequency resolution and 10 degree directional resolution. A weighted-

average smoothing of the directional wave spectra over a three hour window reduced sampling noise; 

this generates wave partitions evolving more consistently over time. Sample spectra appear in Figure 2. 

 

Our structural response study required careful preparation of the resulting wave spectra through spectral 

partitioning (Hanson and Phillips, 2001; Hanson and Fratantonio, 2015).  The process of spectral 

partitioning is used to separate the sea and swell wave components from the directional wave spectra.  

We employed a watershed algorithm with directional wave age criterion to identify and combine wind 

sea peaks in the partitioned spectra.  An iterative smoothing/combination approach (Portilla et al., 2009) 
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reduced the number of partitions down to a single sea and swell wave component. The final partitioning 

step was application of a 7 hour forwards-and-back trend analysis to further reduce discontinuities in 

evolving sea and swell components resulting from fluctuating winds.  

Standard wave parameters computed from the original (bulk) and partitioned spectra include significant 

wave height 𝐻𝑆 (approximated by 𝐻𝑚0), peak wave period 𝑇𝑃 (estimated using a 3-point parabolic fit), 

and mean wave direction 𝐷𝑚 (see O’Reilly et al. 1996). Unless noted, all wind and wave directions 

reported are directions from which winds and waves propogate respectively, in units of degrees 

clockwise from North. Note that only original directional spectra are used as input to cluster analysis. 

Bulk sea-state characteristics (e.g. 𝐻𝑆, 𝑇𝑃) and partitioned characteristics (e.g. swell 𝐻𝑆, 𝑇𝑃) are regarded 

as responses. Interest lies in estimating the statistical distribution of responses as efficiently as possible. 

 

 
 
Figure 2. Sample directional (left panels) and non-directional (right panels) wave spectral records including a wind sea case (upper panels), 
swell case (middle panels), and a mixed sea and swell case (lower panels).   

 

2.2 Wavefield Description 

 

The Brazil offshore wavefield is composed of a dynamic mix of local wind sea and swell from regional 

and remote sources.  Basic statistics from the two-year wind and wave record appears in Table 2.  

Significant wave heights average is 1.8m and peak period is 9.4s, with an extreme wave height of 5.7m 
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at 15.8s period.  Wind speed and significant wave height roses appear in Figure 3.  Mean winds are 

approximately from the north-northeast.  It is noteworthy that the principal wave directions appear to be 

bi-modal, with some wavefield components approximately aligned with the wind, and additional energy 

propagating from the south.   

 

 
 

Figure 3.  Summary wind (upper) and wave (lower) roses at BC-10. 

 

To provide further insight into the wavefield climatology, a statistical summary of the wave partition 

analysis results is necessary.  Separate histograms for wind sea and swell height, period and direction at 

each station are provided in Figure 4.   

 

The site is dominated by swell, with significantly greater numbers of swell events than wind sea events.  

The wave period histograms suggest a broad distribution of wave periods, with the most frequent being 

11-12s period swell.  The wave direction histograms depict a bi-modal distribution, as was indicated by 

the bulk wave height roses of Figure 3.   
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Table 2.  Bulk Wind and Wave Statistics 
 

Descriptor Mean Extreme 
Standard 

Deviation 

Wind Speed (m/s) 4.0 17.6 3.1 

Wind Direction (deg) 38.2 234.1 -- 

Sig. Wave Height (m) 1.8 5.7 0.5 

Peak Wave Period (s) 9.4 15.8 -- 

Mean Wave Direction 

(deg ) 
103.3 160.0 -- 

 

 
 

Figure 4.  Wave system (wind sea and swell) histograms for wave height (left), peak period (center), and wave direction (right).   

 

Here we have confirmation that the northeast waves are primarily wind sea, and the southerly waves are 

predominantly swell.  The southerly swells originate from intense storms at higher latitudes (farther 

south), primarily during the southern hemisphere winter.   

 

Further detail on the mix of wind sea and swell in the Brazil offshore environment is revealed by a joint-

occurrence analysis.  The joint occurrences (%) of wind sea and swell are given in Table 3.  In this case 

the partitioning analysis was set up to find a wind sea and one or two swells in each wave record.  Only 

in 17% of records does wind seas occur in the absence of swell, so that at least one swell component is 

present in 83% of records. Swell in combination with wind sea occurs in 52% of records.  Two swell 

systems occur 29% of the time.  There are no instances of calm seas (Significant wave height<0.3 m) in 

the records from BC-10. 

 
Table 3.  Joint Occurrence Table (%) for BC-10 Wind sea and Swell 

 

Conditions 

Primary 

Swell 

Primary & 

Secondary Swell No Swell Total 

Wind Sea 42 10 17 69 

No Wind Sea 12 19 0 31 

Total 54 29 17 100 
 

 

A significant point from Table 3 is that secondary swell is present nearly 30% of the time at BC-10.  

This implies that for a standard two-component analysis, nearly 30% of the swell events will actually be 

a combination of two swell events.  When present, secondary swells at BC-10 typically account for 6-

25% of the total wave energy in the wavefield. 
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3. Response Analysis 
 

In order to demonstrate the effectiveness of the spectral clustering approach, statistical distributions for 

vessel motions (surge, sway, heave, roll, pitch and yaw) of the FPSO Espirito Santo at the BC-10 field 

offshore Brazil were estimated from directional wave spectra for all individual sea states in the original 

measured two-year sample. For each sea state, vessel motion spectra were calculated using Response 

Amplitude Operators (RAOs), which are transfer functions of wave period and direction.  To justify this 

approach we make the first order assumption that vessel motion is linearly related to surface waves. 

Then vessel motion in irregular waves may be calculated by summing motions from regular waves of 

different amplitudes, frequencies and potentially directions of propagation corresponding to the sea state 

of interest.  Figure 5 illustrates the transfer function principle. 

 

 
 

Figure 5. Principle of transfer of waves into vessel responses (from Journee and Massie 2001) 

 

Figure 6 shows heave, pitch, roll, surge, sway and yaw RAOs for the FPSO Espirito Santo.  
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Figure 6. RAOs for the FPSO Espirito Santo 

 

The resultant vessel motion spectra were integrated and significant responses estimated using 

 

𝑅𝑆 = 4 𝑚0
1/2

 

 

where 𝑚0 is the zero-order moment of the vessel motion frequency spectrum, equal to the integrated 

response. The maximum vessel response 𝑅𝑚𝑎𝑥 in a three hour sea state associated with each significant 

response 𝑅𝑆 in that sea state was derived in an analogous way to maximum wave heights, using 

 

𝑅𝑚𝑎𝑥 = 𝑅𝑆{(1/2)𝑙𝑛(10800 𝑇𝑍⁄ )}1/2 

where 𝑇𝑍 = {𝑚0/𝑚2}1/2 and 𝑚2 is the second response spectral moment. 
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4. Cluster Analysis 
 

The input to the cluster analysis is a set of 𝑛 directional spectra 𝑋𝑖, 𝑖 = 1,2, … , 𝑛, where each 𝑋𝑖 is a 

𝑛𝑓 × 𝑛𝑑 matrix of wave energy for a sea state resolved into 𝑛𝑓 frequencies by 𝑛𝑑 directions. Cluster 

analysis summarises the information in the 𝑛 spectra in terms of 𝑚 cluster centroids 𝜇𝑗, 𝑗 = 1,2, … , 𝑚, 

where 𝑚 ≪ 𝑛. In the cluster analysis, each of the 𝑛 observations is allocated to exactly one of the  𝑚 

clusters 𝐶𝑗, 𝑗 = 1,2, … , 𝑚, the centroid of which is 𝜇𝑗, and the number of members of which is |𝐶𝑗|. 

Allocation of spectra to clusters, and estimation of cluster centroids 𝜇𝑗 is done by minimising some 

criterion quantifying the dissimilarity between two spectra. In the current work, we find cluster 

allocations and centroid estimates such that the within-cluster sum of squares 𝐼2 

 

𝐼2 = ∑ ∑ ‖𝑋𝑖 − 𝜇𝑗‖
2

𝑋𝑖∈𝐶𝑗

𝑚

𝑗=1

 

 

is minimised with respect to 𝐶𝑗, 𝜇𝑗, 𝑗 = 1,2, … , 𝑚 for a given value of 𝑚, where ‖𝑋‖2 indicates the sum 

of the squares of the elements of matrix 𝑋. There are many possible choices of clustering criterion 𝐼2. 

Since the directional spectra quantify the distribution of wave energy by frequency and direction, in the 

present application we consider within-cluster sum of squares to be a natural measure of the difference 

between directional spectra, and therefore a suitable basis for clustering of spectra. 

 

The fundamental motivation for this work is to show that examining the characteristics of sea states 

corresponding to the 𝑚 centroids only, and the structural responses of vessels for the centroid sea states, 

is a good approximation to examining the same characteristics and structural responses for the full set of 

𝑛 spectra. In particular, we study whether the distributions of environmental variables (such as 𝐻𝑆, 𝑇𝑃) 

of interest, and of structural responses (such has vessel heave, pitch and roll) estimated using the 𝑚 

centroid sea states are good approximations to the corresponding distributions estimated using spectra 

for all  𝑛 sea states. Note that cluster analysis here uses unpartitioned directional spectra only as input, 

and that bulk sea-state characteristics (e.g. 𝐻𝑆, 𝑇𝑃), partitioned characteristics (e.g. swell 𝐻𝑆, 𝑇𝑃)  and 

vessel motion characteristics (e.g. heave and pitch) are all regarded as responses. 

 

Cluster analysis is computationally NP-hard, but the K-MEANS algorithm is a useful pragmatic 

approach. The algorithm starts with a set of candidate clusters 𝐶𝑗
0, 𝑗 = 1,2, … , 𝑚, then improves the 

cluster solution by moving spectra between clusters so as to reduce the value of within-cluster sum of 

squares 𝐼2 until further exchange of spectra provides only negligible reduction in 𝐼2. Since it is possible 

that different candidate clusters might provide different cluster solutions, it is important to explore the 

stability of K-MEANS cluster solutions with respect to candidate clusters.  

 

The number of clusters 𝑚 must be pre-specified in K-MEANS clustering. It is essential therefore to 

explore the behaviour of 𝐼2 as a function of 𝑚. As 𝑚 increases, we expect that 𝐼2 decreases since there 

are more clusters available to explain the same set of spectra. However, it is often the case that a 

particularly suitable value 𝑚𝑂𝑝𝑡 of 𝑚 can be found: e.g. such that the rate of change of 𝐼2 with 𝑚 is 

large for 𝑚 < 𝑚𝑂𝑝𝑡 but that the rate of change of 𝐼2 with 𝑚 is smaller for 𝑚 ≥ 𝑚𝑂𝑝𝑡, and that the value 

of 𝐼2 at  𝑚𝑂𝑝𝑡 is relatively near to the value of 𝐼2 for much larger values of 𝑚. In this situation, we claim 

that 𝑚𝑂𝑝𝑡 provides an optimal size for the cluster solution. 
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5. Application 
 

We now illustrate the cluster analysis approach to estimate the cumulative distribution functions (cdfs) 

of environmental and vessel response variables for sea states from the location described in Section 2. 

 

5.1 Cluster analysis 

Cluster analysis of the original set of 𝑛 = 17,086 directional spectra into 𝑚 ∈ [10,1000] clusters was 

performed using the sum of squares metric given in Section 4. As discussed below, the 𝑚 = 100 cluster 

solution provides a good choice for this application. For this reason, we choose to illustrate the cluster 

solutions using 𝑚 = 100 as a reference cluster solution size. 

 

 
Figure 7. Summary statistics for three clusters from the 100 cluster solution, showing the frequency spectrum (left panels), significant wave 
height histograms (center panels), and peak wave period histograms (right panels) for wind sea (upper panels), swell (middle panels) and 
mixed wavefield conditions (lower panels). Cluster groups shown include the spectral records depicted in Figure 2. Left hand panels shows a 
90% band (pointwise per frequency) for the cluster members (in gray) and the centroid spectrum (in red). The red lines in the center and right-
hand panels correspond to cluster centroid values. 

 

Figure 2 identifies three characteristic wind sea, swell and mixed sea states. It is interesting to examine 

the characteristics of the clusters into which these three sea states are allocated (clusters 65, 43 and 21 

respectively, in this case). Figure 7 summarises the characteristics of the three clusters in terms of the 
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frequency spectrum, and histograms for 𝐻𝑆 and  𝑇𝑃. The red curves in Figure 7 give the value of the 

frequency spectrum, 𝐻𝑆 and  𝑇𝑃 for the cluster centroid. We observe that, by construction, all the sea 

states in cluster 65 are similar: they exhibit typical wind sea spectra, with 𝐻𝑆 near 2m and 𝑇𝑃 between 5s 

and 8s. Similarly cluster 43 contains typical swell spectra with 𝐻𝑆 near 4m and 𝑇𝑃 around 15s. Cluster 

21 exhibits mixed wind sea and swell, with 𝐻𝑆 near 2m. The distribution of 𝑇𝑃 for cluster 21 is bi-modal, 

since the peak period can correspond to either the wind sea or swell component of the spectrum. It is 

clear that the cluster centroid 𝑇𝑃 in this case corresponds to the swell peak period near 12s.  

 

 
Figure 8.  Characteristics of the cluster containing the mixed sea state from Figure 2, for 10, 100 and 1000 cluster solutions.  Includes the 
frequency spectrum (left panels), significant wave height histograms (center panels), and peak wave period histograms (right panels). Left 
hand panels shows a 90% band (pointwise per frequency) for the cluster members (in gray) and the centroid spectrum (in red). 

 

Figure 8 explores how the characteristics of the cluster containing the mixed sea state from Figure 2 

change as we vary the size of the cluster solution 𝑚. When 𝑚 is small, e.g. 𝑚 = 10, all spectra must be 

allocated into one of 10 clusters. The number of sea states 𝑚𝑗 in cluster 𝐶𝑗, 𝑗 = 1,2, … , 10 must be 

relatively large therefore, compared (say) with the 𝑚 = 100 solution. Further, we would expect the 

variation of frequency spectrum, 𝐻𝑆 and  𝑇𝑃 within the cluster to be relatively large for 𝑚 = 10. Figure 

8 confirms this. The centroid frequency spectrum does not correspond to a mixed sea state at all, but the 

cluster nevertheless contains mixed sea states. If we increase the size of the cluster solution to 𝑚 =
1000, then the expected size of a cluster must be relatively small, and we would expect the variability in 

within-cluster characteristics to be relatively small. This is indeed the case from the figure. 
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Cluster analysis proceeds by minimising the clustering criterion 𝐼2 (from Section 4) for given cluster 

solution size 𝑚. By design in general, we would expect that 𝐼2 reduces with increasing 𝑚, since there 

are more clusters to explain the variability of directional spectra, and therefore less unexplained within-

cluster variability. We also observe that the within-cluster variability of a function 𝐺 of the directional 

spectra (corresponding to 𝐻𝑆, 𝑇𝑃 or 𝐷𝑀, or any of the 6 maximum vessel responses) also reduces with 

increasing 𝑚.  Figure 9 gives the value of within-cluster total root mean squared (RMS) error 𝐼𝐺  for 

typical environmental and structural responses, where  

 

𝐼𝐺
2 = ∑ ∑ ‖𝐺(𝑋𝑖) − 𝐺(𝜇𝑗)‖

2

𝑋𝑖∈𝐶𝑗

𝑚

𝑗=1

 

 

and for the case of 𝐺 representing the maximum heave response, 𝐺(𝑋𝑖) is the maximum heave for 

directional spectrum 𝑋𝑖, 𝑖 = 1,2, … , 𝑛, and 𝐺(𝜇𝑗) is the maximum heave response corresponding to the 

cluster centroid spectrum 𝜇𝑗 of cluster 𝑗, 𝑗 = 1,2, … , 𝑚. We observe that for all choices of 𝐺 considered 

the cluster analysis based on directional spectra 𝑋𝑖, 𝑖 = 1,2, … , 𝑛 provides a reasonable basis for 

characterisation of environmental and structural response variables.  

 

 
Figure 9. Within-cluster root mean square error for wave and vessel response variables, as a function of size of cluster solution. 
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5.2 Estimation of statistical distributions for environmental and structural response variables 

Section 5.1 demonstrated that environmental and vessel response characteristics for cluster centroids (of 

directional wave spectra) provide reasonable approximations for the same characteristics as the full set 

of directional spectra. In this section, we explore whether cluster centroid characteristics can also be 

used to estimate the cumulative distribution functions (cdfs) of environmental and structural response 

variables. We define the empirical cdf 𝐹𝐺  of any environmental or structural response variable 𝐺 using 

the full set of 𝑛 directional spectra 𝑋𝑖, 𝑖 = 1,2, … , 𝑛 as 

𝐹𝐺(𝑔) = ℙ(𝐺 ≤ 𝑔) =
1

𝑛
∑ ℐ(𝐺(𝑋𝑖) ≤ 𝑔)

𝑛

𝑖=1

 

where  ℐ(𝑥) is an indicator function, with value 1 if 𝑥 is true and 0 otherwise.  To calculate 𝐹𝐺 , we need 

to evaluate 𝐺(𝑋𝑖) for all 𝑛 directional spectra, which can be computationally demanding. We want to 

generate good approximations of 𝐹𝐺(𝑔) for all possible values of 𝑔 using the corresponding estimate �̃�𝐺   

based on the cluster centroids only, where  

�̃�𝐺(𝑔) =
1

𝑛
∑|𝐶𝑗| ℐ(𝐺(𝜇𝑗) ≤ 𝑔)

𝑚

𝑗=1

 

and |𝐶𝑗| is the number of directional spectra in cluster 𝐶𝑗 with centroid 𝜇𝑗, 𝑗 = 1,2, … , 𝑚, and 

∑ |𝐶𝑗|𝑚
𝑗=1 = 𝑛. To calculate �̃�𝐺 , we need to evaluate 𝐺(𝜇𝑗) just for the 𝑚 cluster centroids, which is 

computationally attractive especially when 𝑚 ≪ 𝑛.  

As a baseline comparison, it is also interesting to examine estimates �̃�𝐺
𝑅 for the cdf based on random 

selections of 𝑚 spectra from the full set. The computational complexity of generating this estimate, in 

terms of the number of response analyses required, is the same as that of generating the cluster centroid 

estimate �̃�𝐺 . However, the 𝑚 spectra used for �̃�𝐺  are special in that they are known to provide an optimal 

representation, in terms of 𝑚 spectra, of the full set of 𝑛 spectra. Spectra selected at random to estimate 

�̃�𝐺
𝑅 do not have this property. It is reasonable therefore to expect that �̃�𝐺will be a better estimate for 𝐹𝐺  

than �̃�𝐺
𝑅.  

These comparisons are visualised in Figure 10, which shows estimates for the cdf of significant heave 

(left-hand side) and of maximum heave (right-hand side) based on the full set of 𝑛 spectra (in blue, 𝐹𝐺) 

and the set of 𝑚 cluster centroids (in green, �̃�𝐺). Also shown is the range of values (pointwise with 

heave value) for 100 different estimates of �̃�𝐺
𝑅, each based on a random subset size 𝑚 of the full set of 

spectra. The three rows of the figure correspond to 𝑚 = 10, 𝑚 = 100 and 𝑚 = 1000 cluster solutions. 

From the figure we observe that the quality of approximation of 𝐹𝐺  improves as 𝑚 increases for both 

�̃�𝐺and �̃�𝐺
𝑅. However, we also observe that the cluster centroid estimate �̃�𝐺  is always within the bounds 

corresponding to the random subsample estimate �̃�𝐺
𝑅. The figure also gives good guidance as to the 

relative lack of fit for 𝑚 = 10, 𝑚 = 100 and 𝑚 = 1000. For the current application, with 𝑛 ≈ 17000, 

were computational constraints to limit the maximum number of response analyses to about 100, it is 

clear that the cluster centroid-based estimate is preferrable. However, if 1000 response analyses were 

feasible, for the current application the relative difference between centroid-based and random 

subsample-based estimates is small, and potentially negligibly so. 
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Figure 10. Empirical cumulative distribution functions for significant heave (left) and maximum heave (right) for 10 (upper), 100 (middle) and 
1000 (lower) cluster solutions. Estimates based on full set of directional spectra (blue) and cluster centroids only (green). The red band is a 
pointwise range for the cdf estimated from 100 different random subsamples of the full sample. 

 

Figure 11 shows the 𝑚 = 100 cdf estimate for 𝐻𝑆, 𝑇𝑃 and 𝐷𝑀, and the 6 maximum vessel responses. We 

observe that the cluster centroid-based estimate �̃�𝐺  provides a better approximation to full sample cdf 𝐹𝐺  

than the random subsample-based estimate �̃�𝐺
𝑅 in each case. 

The Kolmogorov-Smirnov (KS) statistic provides a straight-forward means for quantifying the similarity 

of two cdfs. The KS statistic is the maximum absolute difference between two the values of two cdfs 𝐹1 

and 𝐹2 for any single value 𝑔 in the common domain of the cdfs 

𝐾 = max
𝑔

|𝐹1(𝑔) − 𝐹1(𝑔)| 

We can use the KS statistic 𝐾 to summarise the lack of fit of the cluster centroid-based estimate �̃�𝐺  to 

the full sample cdf 𝐹𝐺for various choices of environmental and structural response variable 𝐺, and 

examine the behaviour of 𝐾 as a function of the size  𝑚 of cluster solution. 
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Figure 11. Empirical cdfs for significant wave height, peak wave period and mean wave direction (top), maximum surge, sway and heave 
(middle) and maximum roll, pitch and yaw (bottom) estimated using the full set of directional spectra (blue) and cluster centroids from the 100 
cluster solution. Also shown is the range of estimates from 100 different randomly-sampled sets of 100 directional spectra (red). 

 

Figure 12 illustrates that the value of 𝐾 decreases as a rule with increasing  𝑚 for 𝐻𝑆, 𝑇𝑃 and 𝐷𝑀 (wind 

sea, swell and total for each) and the 6 maximum vessel responses. This confirms that the quality of fit 

of �̃�𝐺  to 𝐹𝐺improves with increasing  𝑚 in general. 

As discussed in Section 4, it is sometimes (but not always) possible to identify a particularly favourable 

value 𝑚𝑂𝑝𝑡 for the size 𝑚 of the cluster solution. From Figure 9, we observe that 𝐼2 reduces 

monotonically with increasing 𝑚 for all maximum responses. However, the same is not true for the KS 

statistic 𝐾 in Figure 12; the absolute gradient of 𝐾 with 𝑚 is larger for 𝑚 < 100, but smaller for 

𝑚 > 100 for a number of the variables examined, suggesting that perhaps 𝑚 = 100 is a suitable cluster 

solution size for the current application, especially if estimation of 𝐹𝐺for the variables illustrated is a 

priority. 
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Figure 12. Values of Kolmogorov-Smirnov test statistic, comparing  cluster centroid-based estimates for cdfs of environmental and vessel 
response variables, with those based on the full set of directional spectra.  

 

6. Discussion and Conclusions 
 

Some ocean basins, such as the Gulf of Mexico, are dominated by wind-driven sea states. In these 

basins, extreme environments are dominated by wind-wave properties with relatively common 

directional wave spectral characteristics. This is not the case at other locations, such as offshore Brazil, 

where seas are dynamic and multi-modal, with competing wind sea and swell effects at play. To 

characterise such environments well, more sophisticated techniques are needed to identify a small yet 

relatively representative set of directional wave spectra. In this work we demonstrate that statistical 

distributions of environmental and structural response variables corresponding to a large set of sea-state 

directional wave spectra can be well-approximated using weighted distributions of those variables for a 

small set of representative spectra only. We used representative spectra corresponding to the centroids 

from a K-MEANS cluster analysis  of the full set of spectra. When the number of clusters in the cluster 

solution is appreciably smaller than the number of original sea states, this results in a computationally-

efficient approach to estimation of distributions of complex structural responses in particular. 

 

There are many possible approaches to estimation of small representative subsets of a large set of 

individuals, such as sea-state directional spectra; cluster analysis is one possible approach, and K-

MEANS is one amongst many clustering algorithms, attractive because of its simplicity. When the 
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dimensionality of the description (i.e. the total number of frequency × directional increments of the 

directional spectrum)  is large, it can be advantageous computationally to first reduce dimensionality by 

performing principal components (or empirical orthogonal function) analysis of the spectra, and then 

perform cluster analysis on the reduced data. Jeans et al. (2015) reports the application of K-MEANS to 

clustering of current profiles. Prevosto et al. (2012) propose using the use of self-organising maps (Liu 

and Weisberg 2011, Barbariol et al. 2015) as an alternative to cluster analysis, again in application to 

current profiles.   

 

We outline the approach in application to the estimation of design values for a FSPO offshore Brazil. 

Here, the wave climate can be characterized as bi-modal with wind seas from the northeast and swell 

from the south. The wavefield is swell-dominated in winter, and wind sea dominated in summer. 

Although a wind sea and multiple swell systems occasionally occur simultaneously, a two-component 

wavefield is generally adequate to describe the offshore environment. For this application, using within-

cluster sum of squares as the K-MEANS clustering criterion, we find that cluster centroids from a 100-

cluster solution provide a relatively good approximation to the cumulative distribution functions of 

significant wave height, peak wave period and mean wave direction, and for the 6 maximum vessel 

responses.  In applying the approach, the user is required to specify the clustering minimisation criterion 

(within-cluster sum of squares here) and an appropriate size of the cluster solution. Since the elements of 

are directional spectrum are on the energy scale, a within-cluster sum of squares criterion seems 

appropriate. Choice of the size of the cluster solution is in general more challenging, and should take 

account of all of the following considerations: (a) the uncertainty in the estimated cumulative 

distribution function based on cluster centroids as a function of the size of the cluster solution, and (b) 

the computational resource required for a response analysis for one sea state. 

 

The current work shows that spectral clustering is effective at estimating the statistical distributions of 

environmental variables derived from full and partitioned directional spectra. If our interest lies in 

estimation of the statistical distribution of (e.g.) swell 𝐻𝑆, spectral partitioning of directional spectra for 

all sea states is not necessary therefore, and only necessary for directional spectra of sea states 

corresponding to cluster centroids. The vessel motion analysis reported here assumes a linear 

relationship between wave input and vessel response; this is adequate for typical sea states and vessel 

motions. The current work demonstrates that spectral clustering is effective at estimating the statistical 

distributions of such motions. The transfer function approach may not be as appropriate for extreme 

environmental conditions and highly non-linear systems, for which full time-domain hydrodynamic 

response analysis might be required; it would be interesting to demonstrate the effectiveness of the 

current approach in such cases. 

 

  



18   

References 
 

Barbariol, F., F.M. Falcieri, C. Scotton, A. Benetazzo, S. Carniel, and M. Sclavo, Self-Organizing Maps 

approaches to analyze extremes of multivariate wave climate, Submitted to Ocean Sci. (2015). 

 

Hanson, J.L. and O.M. Phillips, 2001.  Automated analysis of ocean surface directional wave spectra, J. 

Atmos. Oceanic Technol. 18 277-293. 

 

Hanson, J.L., and R. Fratantonio, 2015.  XWaves Users Guide, Wave Force Technologies, 

http://waveforcetechnologies.com/help/xwaves/getting_started.html. 

 

Jeans, G., R. Gibson, and O. Jones, 2015. A New Quantitative Assessment of Current Profile Clustering 

Methods for Riser Engineering, OMAE2015-41429, St. John’s, Newfoundland, Canada. 

Journee J. M. J. and Massie W. W., 2001. Introduction in offshore hydromechanics, First edition, Delft 

University of Technology. 

 

Liu, Y., and R.H. Weisberg, 2011. A review of self-organizing map applications in meteorology and 

oceanography. In: Self-Organizing Maps-Applications and Novel Algorithm Design, 253-272. 

 

Oltman-Shay, J. M., and R. T. Guza, 1984.  A data adaptive ocean wave directional-spectrum estimator 

for pitch and roll type measurements, J. Phys. Oceanogr. 14 1800–1810. 

 

O'Reilly, W. C., T. H. C. Herbers, R. J. Seymour, and R. T. Guza, 1996. A comparison of directional 

buoy and fixed platform measurements of Pacific swell. J. Atmos. Ocean. Tech. 13 231-238. 

 

Portilla, J., F. O. Torres, and J. Monbaliu, 2009.  Spectral partitioning and identification of wind sea and 

swell,  J. Atmos. Oceanic Technol. 26 107-122. 

 

Prevosto, M., G. Z. Forristall, G. Jeans, C. Herry, G. Harte, L. Harrington-Missin, and P. Dooley, 2008. 

Worldwide approximataions of current profiles for steel riser design – the WACUP project, 

OMAE2012-83348, Rio de Janeiro, Brazil. 

 

 

http://waveforcetechnologies.com/help/xwaves/getting_started.html

