Characterising extreme sea state severity using absolute spatial dependence Authors: Ryota Wada*, Takuji Waseda*, Adrean Webb* and Philip Jonathan** *University of Tokyo, **Shell

Background

- Extreme waves in tropical cyclone (TC) dominated region *rare*
- Estimates of 100-year significant wave height (SWH) using data from a single location have large epistemic uncertainty
- Using *spatial information* can reduce this uncertainty
- Key modelling idea is to characterise (1) peak storm severity (STM) and (2) its absolute spatial dependence (ASD)

Methodology

- **Space-time maximum (STM):** The maximum value of SWH at any location in the region for any time during a TC event.
- Absolute spatial dependence (ASD): For each location on a fixed spatial grid over the region, and a TC, ASD gives the maximum value of SWH for any time during the TC as a fraction of STM for that TC.
- Assumptions: (1) STM is spatially stationary (i.e. its distribution does not depend on location), and (2) STM and ASD are independent.

Purpose of Study

improve accuracy of extreme wave estimation TO deriving a novel stochastic method BY **USING** ideas of spatial statistics

Extreme wave during a TC event

Ex) TC in Sep. 1996 largest SWH during TC event

Space-time maximum (STM)

Extreme value distribution of storm peak is modelled with General pareto distribution for POT

Extreme value estimation = Extrapolation in time (LWM^[1])

Absolute spatial dependence (ASD)

Spatial Dependence = Empirical based on TC events

Extreme distribution for each TC event $\mathbf{P}(\rho Hs^{sp} \le h_s) = \int \mathbf{F}_{\rho}(\frac{h_s}{h_s^{sp}})f(h_s^{sp})dh_s^{sp}$

Extreme distribution for N-year event

$$\mathbf{P_{Nyears}}(\rho Hs^{sp} \le h_s) = \sum_{k=0}^{\inf} \frac{\lambda^k e^{-\lambda}}{k!} \mathbf{P}^k(\rho Hs^{sp} \le h_s) = exp(-\lambda(1 - \mathbf{P}(\rho Hs^{sp} \le h_s)))$$

Application to North West Pacific using hindcast wave dataset

Data

Wave Hindcast: Todai Wavewatch 3^[2]

- 21-year (1994-2014) hindcast
- High resolution (0.01degree) grid

Extreme of STM

- 100 yr RP is around 33m
- Shape param. is $\xi = -0.02$

Tropical cyclone tracks: IBTrACS^[3]

- Track data merged from many agencies
- Indicates storm center location

Storm peak extraction

- 10m threshold for storm peak SWH
- 63 TCs during 1994-2014 (3 per year) > STM data peak per storm >ASD data per storm per location

TC tracks during 1994-2014 (IBTrACS)

Justification of modelling assumptions

- a. Location and magnitude of STM value
- b. Random permutation result for spatial linear trend for STM c. Kendall's rank test for exchangeability for STM and ASD

CDF of absolute spatial dependence

at maximum likelihood

Still has large uncertainty from 63 TCs

Typical storm track

- Moves towards North East
- Waves are larger on the right of storm track due to stronger wind forcing

Comparison: Single point estimation vs spatial inference

Discussion

- Novel approach to estimation of return values for SWH in TC regions.
- Key assumptions, consistent with data for the current application, are that STM is spatially stationary, and that STM and ASD are independent.
- Improved description compared with location-by-location analysis, reflecting e.g. land-shadow effects clearly.
- Further applications currently under way, and article in preparation.

Reference. [1] Wada, R., Waseda, T., & Jonathan, P. (2016). Extreme value estimation using the likelihood-weighted method. Ocean Engineering, 124, 241-251. [2] Webb, A., Waseda, T., & Kiyomatsu, K. (2016, February). A 20-Year High-Resolution Wave Resource Assessment of Japan with Wave-Current Interactions. In AGU Fall Meeting Abstracts. [3] Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J. (2010). The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bulletin of the American Meteorological Society, 91(3), 363-376.

> International Workshop on Wave Hindcasting and Forecasting/ Coastal Hazards Symposium, Liverpool, UK Corresponding Author: Ryota Wada, PhD / Assistant Professor, University of Tokyo / E-mail: r wada@k.u-tokyo.ac.jp