
Extreme value estimation using the likelihood-weighted method
(Submitted to Ocean Engineering, June 2016 )

Ryota Wadaa,∗, Takuji Wasedaa, Philip Jonathanb

aDepartment of Ocean Technology, Policy and Environment, University of Tokyo, Japan.

bShell Projects & Technology, Manchester M22 0RR, United Kingdom.

Abstract

This paper proposes a practical approach to extreme value estimation for small samples of observations with truncated
values, or high measurement uncertainty, facilitating reasonable estimation of epistemic uncertainty. The approach, called
the likelihood-weighted method (LWM), involves Bayesian inference incorporating group likelihood for the generalised
Pareto or generalised extreme value distributions and near-uniform prior distributions for parameters. Group likelihood
(as opposed to standard likelihood) provides a straightforward mechanism to incorporate measurement error in inference,
and adopting flat priors simplifies computation. The method’s statistical and computational efficiency are validated by
numerical experiment for small samples of size at most 10. Ocean wave applications reveal shortcomings of competitor
methods, and advantages of estimating epistemic uncertainty within a Bayesian framework in particular.
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1. Introduction

Extreme value estimation characterizes the tail of a probability density distribution, and often requires extrapolation
beyond what has been observed [1]. Extrapolation is motivated by extreme value theory for the asymptotic distribution
of large values from any max-stable distribution. A basic assumption in fitting an extreme value model to a sample is that
observations are independently and identically distributed. This assumption usually holds for the rarest and severest of5

ocean wave events (e.g. the storm peaks over threshold of significant wave heights in a tropical cyclone at a location). The
trade-off between sample size and adequate tail fit, and the fact that measurement errors on most extreme observations
tend to be large, render the analysis problematic.

The increasing availability of high quality measurements and hindcasts means that the metocean engineer is often blessed
with huge samples for estimation of return values for design purposes. Extreme value modelling is then a large-scale10

computational task, within which the effects of non-stationarity and spatial dependence can be estimated [2]. However,
there are many other applications where large samples of high quality data are still not available. The metocean engineer
is then required to provide design values from small samples of typically poor quality. For such analysis, uncertainties in
extreme value parameters and return value estimates are large and often difficult to estimate well. The effective number
of influential observations in estimating extreme events with very low probability, such as at the ten thousand year return15

period level, may be small even in samples corresponding to a hundred years of observations. The goal of this paper is to
explore a method for extreme value estimation useful for small samples (of size at most 10) of poor quality data, which
provides realistic estimation of epistemic model uncertainty. The approach, called the likelihood-weighted method (LWM),
involves Bayesian inference for the group generalised Pareto (or generalised extreme value) likelihood and uniform prior
distributions for parameters. Group likelihood provides a straightforward mechanism to incorporate measurement error;20

adopting flat priors simplifies computation.

Statistical models exhibit two types of uncertainty [3]. Aleatory uncertainty represents the inherent randomness of
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nature and physics; it is intrinsic and cannot be reduced. Epistemic uncertainty represents our limited knowledge, and
can be reduced (e.g.) by increasing sample size or reducing sample measurement error. Realistic estimation of epistemic
uncertainty is critical to reliable extreme value modelling. We will demonstrate that estimation methods such as maximum25

likelihood provide poor estimates of epistemic uncertainty from small samples of poor quality.

The organisation of the article is as follows. In Section 2, we review methods in extreme value analysis with emphasis
on uncertainty quantification from poor data. A description of LWM, our new estimation method, is given in Section 3.
In Section 4, LWM’s statistical and numerical efficiency is validated through numerical experiments. An application to
observed extreme wave height data is considered for further discussion in Section 5, followed by conclusion in Section 6.30

2. Extreme value estimation for small samples measured with error

2.1. Extreme value theory

The central limit theorem provides an asymptotic distributional form (the Gaussian distribution) for the mean An (=
(1/n)

∑n
j=1Xj) of n independent observations of identically-distributed random variables X1, X2, . . . , Xn, regardless of

the underlying distribution. Analogously, extreme value theory provides an asymptotic distributional form for independent35

observations from any of a large class of so-called max-stable distributions [4]. The limiting forms for extreme values of
block maxima Mn (= max(X1, X2, . . . , Xn)) were given by Jenkinson [5], and were later rationalised into one generalised
extreme value (GEV) distributional form. [6] and [7] derived the generalised Pareto (GP) distribution for peaks over
threshold (POT) by considering the logarithms of the GEV.

GEV and GP are three-parameter distributions, with parameters shape ξ, scale σ and location µ (for GEV) or extreme40

value threshold ψ (for GP). Cumulative distribution functions (cdfs, FGEV and FGP respectively) for these distributions
are given in Equations (1) and (2). Other distributional forms are used for extreme value estimation, including the Weibull
and log-normal distributions e.g. [8], [9]. Here we focus on GEV and GP, given their natural asymptotic motivation and
wide application.

Pr(Mn ≤ x)
large n
≈ FGEV (x) = exp

(
−
(

1 +
ξ

σ
(x− µ)

)−1/ξ)
for ξ 6= 0 (1)

= exp

(
− exp

(
− 1

σ
(x− µ)

))
otherwise, and

45

Pr(X ≤ x|X > ψ)
large ψ
≈ FGP (x) = 1−

(
1 +

ξ

σ
(x− ψ)

)−1/ξ
for ξ 6= 0 (2)

= 1− exp

(
− 1

σ
(x− ψ)

)
otherwise.

These distributional forms are correct asymptotically for block maxima and peaks over threshold, but only approximately
for finite samples. Increasing sample size for fitting is desirable to reduce estimated parameter bias and uncertainty, but
often is achieved at the expense of quality of fit of an extreme value distribution to the largest values in the sample (e.g. by
reducing block size for GEV, or reducing extreme value threshold for GP). We do not address this trade-off directly in this
work; rather, we assume that the sample is drawn from the extreme value distribution to be estimated, and concentrate50

on estimating parameters and uncertainty.

2.2. Parameter estimation

There are many possible approaches for parameter estimation in extreme value analysis. Popular schemes include maximum
likelihood (ML), the method of moments, probability weighted moments (PWM), L-moments and Bayesian inference [9].
Graphical methods have also been proposed, but these are not recommended for quantitative work. Other empirically-55

derived estimation methods such as Goda’s method [10] lack generality. Methods based on moments or likelihoods are
most common in the literature [11].
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For small samples, moment-based methods such as PWM and L-moments, are considered better than ML (in terms of
bias and mean square error) for point estimation of parameters [12]. Here our interest is not in deriving point estimates,
since large epistemic uncertainty is obviously unavoidable, and quantification of the epistemic uncertainty of much greater60

importance. For both ML and PWM, confidence intervals can be estimated by the so-called delta method, or the profile
likelihood method; both are motivated by consideration of asymptotic behaviour, and strictly valid for large samples. [13]
considers extreme value estimation for a three-parameter Weibull distribution using maximum likelihood for sample size
of over 40, and discusses the resulting unusual likelihood shape. In some applications, even a sample size as small as 20 is
difficult to gather. This is the motivation for the current work: we focus on extreme value estimation from sample sizes65

of at most 10.

Resampling methods such as bootstrapping are also used for uncertainty quantification. The simplest resampling scheme
draws random re-samples with replacement from the original sample [14], is easy to implement and widely used. Uncer-
tainty quantification from resampling is rather ad-hoc in nature, certainly compared with Bayesian inference. We will
illustrate the shortcomings of a simple bootstrap method for small samples in Section 4.70

2.3. Bayesian inference

Bayesian methods exploit both the sample likelihood and prior distributions for parameters in inference. The favourable
performance of Bayesian inference in extreme value estimation from small samples has been discussed [15]. One advantage
of the Bayesian approach is the flexibility offered to estimate unusually shaped likelihood surfaces [13].

The basic equations of Bayesian inference are described below. The sample likelihood L(θ;D) of parameter(s) θ for sample75

D = {xi}ni=1 is interpreted as the probability of the sample given parameters

f(D|θ) = L(θ;D) =

n∏
i=1

f(xi|θ) . (3)

The probability of the sample is then

f(D) =

∫
θ

f(D|θ)dF (θ) , (4)

where we can interpret dF (θ) as f(θ)dθ for continuous prior density f(θ) for θ. We estimate the posterior distribution of
θ using Bayes theorem

f(θ|D) =
f(D|θ)f(θ)

f(D)
. (5)

The posterior f(θ|D) can be used, amongst other things, to estimate credible intervals for parameters. The posterior80

predictive distribution g(x|D) of any function g(x|θ) is then the expected value of that function under the posterior
distribution f(θ|D) for θ. The posterior predictive distribution therefore captures both epistemic and aleatory uncertainty

g(x|D) = Eθ|D (g(x|θ)) =

∫
g(x|θ)f(θ|D)dθ . (6)

In spite of its many advantages, there are several drawbacks to Bayesian inference. One objection lies in the difficulty
in specifying prior distribution f(θ). Previous studies have focused on applying informative priors, which impose prior
knowledge or belief, compensating for lack of information in a small sample. For example, prior elicitation of extreme85

rainfall was achieved using observations from neighbouring spatial locations [15]. The inferential value of prior information
can be enormous, especially when sample quality is poor. However, expert knowledge of extreme events is often not
available or regarded as overly subjective. Uninformative priors are intended to be as objective as possible, by limiting
the incorporation of “unintended information” presented by the prior as much as possible. The basic uninformative prior
is the uniform or flat prior. A uniform prior f(θ) allocates the same prior probability to each prior choice of θ. However,90

even this simple prior has problems: e.g. when defined for parameters with infinite range; moreover, prior uniformity is
not transformation invariant. Jeffreys’ priors [16] and reference priors [17] have been studied to deal with transformation
invariance. However, none can theoretically be justified to be objective [18]. In this sense, the choice of flat prior can
be argued to be more or less subjective [19]. Computation can also be a problem for Bayesian inference [15]. Only in
special cases can the equations above be solved in closed form. The development of Markov Chain Monte Carlo (MCMC)95

simulation methods has made the computations required for Bayesian inference in general tractable and popular [20].
However, MCMC requires implementation expertise [9, 2] especially for larger problems.
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2.4. Measurement uncertainty

Adequate sample size is critical for good inference. The quality of individuals in the sample is equally important, especially
for observations of extreme values. In an ocean engineering context, [21] assesses the quality of visual observations for100

wave data, an important source of information for historical wave records. In-situ observations of severe ocean events
are likely to be made with large uncertainty, compared to observations of typical events [2]. Moreover, [22] notes that
maximum values of significant wave height may be overestimated in storms, suggesting additional bias effects for finite
samples. Some authors consider the effect of measurement uncertainty for extreme value estimation in ocean engineering
settings. [23] quantifies measurement uncertainty and explores its impact: data uncertainty is described as the joint effect105

of observational or instrumental error and sampling variability. Pre-specification of scale and shape parameters for the
extreme value distribution is one proposed approach to limit the impact of data uncertainty on inferences.

Measurement uncertainty in general is a combination of systematic bias and random error. Systematic bias can sometimes
be reduced by (e.g.) calibration. The impact of random measurement error on extreme value inference is not easily
understood. For example, consider a sample of relatively small size containing a single large extreme observation: naive110

extreme value fitting might suggest a heavy-tailed distribution. However, if the single large value is due to random
measurement error of the observation process, the underlying distribution may in fact be short-tailed. Understanding and
quantifying the effects of measurement uncertainty in extreme value analysis is clearly critical.

2.5. The case for an improved approach

As outlined above, the combined effect of small sample size and large measurement uncertainty is a real challenge in many115

ocean engineering applications of extreme value analysis. Naive adoption of results from asymptotic statistical theory,
appropriate only for large samples, cannot be justified for uncertainty quantification with small samples. Moreover,
measurement error cannot be ignored, and should be accommodated appropriately in any extreme value model.

It is common engineering practice to provide a point estimate of a return value estimated under an extreme value model,
typically by assuming that the best-fitting combination of model parameters is a correct and certain inference from the120

extreme value fit. For example, the conventional closed-form definition of a return value typically corresponds to a
particular quantile of the distribution (due to aleatory uncertainty alone) of the maximum value which would be observed
during the return period under consideration, near the mode of that distribution. Such a point estimate already ignores
the fact that a larger value than the return value might be expected to occur routinely during the return period due to
natural variability. Introducing additional epistemic uncertainty due to uncertain model parameter estimates exasperates125

the issue. Uncertainty in point estimates is mitigated in structural design by incorporation of safety factors. These
are calibrated using historical analysis and expert knowledge, and sometimes tuned for specific ocean basins. Yet the
magnitude of epistemic uncertainty of a point estimate from any study is dependent on the available data for that study,
and may not therefore always be appropriately accounted for in safety factors. We conclude that the point estimate of
return value may well not be a wise estimate, e.g. in the light of a preference for conservatism in structural design.130

[24] proposes that a high quantile of the distribution of the maximum value during the return period might be more a
appropriate choice, particularly considering the influence of uncertain GP shape parameter estimate. This proposal is
made to account for aleatory and epistemic uncertainty in extreme value estimation. Using a high quantile value seems
rational for reliable design, yet for small samples, the value of the (e.g.) 90% percentile is likely to be unrealistically
large due to epistemic uncertainty. High quantiles have also been recommended for other reasons: Det Norske Veritas135

[25] concludes that a quantile in the order of 85-95% is a reasonable choice for return values of environmental conditions
and structural loads for use in design, to account for cases when the short-term variability of a process (such as structural
loading) within a sea-state is not otherwise being considered.

Our aim therefore is to develop a practical method for extreme value estimation to a small sample of relatively poor quality,
which provides reasonable estimation of extreme value models and return values, and allows realistic quantification of140

epistemic uncertainty. Given that the posterior predictive distribution outlined above provides an intuitive framework to
quantify both aleatory and epistemic uncertainties, it seems natural to use the framework of Bayesian inference to achieve
this.
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3. The likelihood-weighted method

The likelihood-weighted method (LWM) is a straightforward Bayesian approach to extreme value estimation for small145

samples of poor quality. Its purpose is to provide reasonable estimates of extreme value model parameters and their
uncertainties to estimate return values for subsequent structural design calculations, from small samples of poor quality.
The LWM model has two distinct features: a group likelihood (see Section 3.1, as opposed to a standard likelihood), and
near-uniform prior distributions (see Section 3.2). Section 3.3 provides brief comments on computation.

3.1. Group likelihood150

Group likelihood is a simple approach to incorporate measurement uncertainty in (Bayesian) inference. Group likelihood
was originally proposed to overcome non-regularity issues in ML. We focus on the group likelihood of [26]. Suppose we
sample D = {xi}ni=1 independently from identically-distributed random variables X1, X2, ..., Xn, related to underlying
identically-distributed random variables Y1, Y2, ..., Yn of interest to us, such that in terms of the conditional density
f(Xi|Yi)155

f(Xi = xi|Yi = yi) =
1

2δ
for xi − δ ≤ yi < xi + δ (7)

= 0 otherwise.

That is, we observe a discretised version Xi of each Yi; the underlying values of Yi is uniformly distributed on the interval
[xi − δ, xi + δ). Observation of Xi allow us to make posterior predictive inferences about Yi using Equation 6. If the
density f(Yi|θ) of Yi is given in terms of parameters θ, the conditional density at X = xi with respect to θ is

f(xi|θ) =

∫
f(xi|yi)f(yi|θ)dyi =

1

2δ

∫ xi+δ

xi−δ
f(yi|θ)dyi (8)

=
1

2δ
(F (xi + δ|θ)− F (xi − δ|θ)) ,

where F is the cdf of Yi, and for the full sample

LG(θ) =

n∏
i=1

f(xi|θ) (9)

=
1

2δ

n∏
i=1

(F (xi + δ|θ)− F (xi − δ|θ)) .

Group likelihood takes account of data uncertainty, whereas typically extreme value estimation is made assuming no160

measurement error. In most cases, our knowledge of measurement error will be approximate; it is important to keep this
in mind [27]. Of course, many forms of error distributions f(Xi|Yi) might be considered, e.g. the case where the range
[xmini , xmaxi ] of possible values for Yi corresponding to observation xi is known. Now

LG(θ) =

n∏
i=1

1

xmaxi − xmini

(
F (xmaxi ; θ)− F (xmini ; θ)

)
. (10)

Given that sample size is small and measurement error an issue, it is essential that every available piece of information is
well used. Even knowledge that an extreme event occurred, but that no observation was possible, can be incorporated by165

use of suitable [xmini , xmaxi ]. Equivalently, we might be able to specify δ differently for each observation, such that

LG(θ) =

n∏
i=1

1

2δi
(F (xi + δi|θ)− F (xi − δi|θ)) (11)

in the obvious notation. Of course, yet more general error structures might be considered, but these would require more
sophisticated methods (e.g. MCMC) for estimation. In particular, we note that δ here represents uncertainty due to
instrument precision alone. In practice, we might expect additional sources of uncertainty to contribute to the overall
measurement error, as mentioned in 2.4.170
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3.2. Near-uniform prior

The second feature of LWM is the use of near-uniform priors; improper uniform priors are avoided ([28], [29]) and near-
uniform Gaussian prior distributions N(α, β) with mean α and large variance β adopted. The corresponding density is
near-uniform near the mean, yet the distribution provides a proper prior in that it integrates to unity. For studies below,
unless otherwise stated, we proceed as follows, assuming a priori that ξ ∼ N(0, 102), log σ ∼ N(0, 104) and ψ = 0 as175

suggested by [30] for peaks over threshold (GP), and ξ ∼ N(0, 102) , log σ ∼ N(0, 104), and µ ∼ N(0, 104) recommended
by [28] for block maxima (GEV).

We note that both the uniform and Gaussian distributions are not conjugate to GP (nor to GEV). Therefore, a numerical
procedure is required for parameter estimation.

3.3. Inference scheme180

For sample D = {xi}ni=1 and specified δ, LWM inference proceeds as follows for peaks over threshold.

Estimation of group likelihood : Define an index set {θGj }mj=1 of m combinations of parameters on a rectangular grid
covering a plausible 2-dimensional domain for parameters ξ and log σ, with suitable grid resolution for each parameter,
with threshold ψ assumed to be the minimum value in the sample. The plausible domain for ξ and log σ is estimated
from a prior trial analysis using the full prior parameter domain and course grid resolution; based on the trial, a sensible185

restricted grid domain and increased grid resolution are specified.

Compute the group likelihood at each θGj on the index set. Sum the group likelihood over the index set, then divide the

group likelihood at θGj by the sum. The result is the estimate for posterior density f(θGj |D) on the index set

f(θGj |D)∆ =
LG(θGj )f(θGj )∑m
j′=1 LG(θGj′)f(θGj′)

prior

uniform
≈

LG(θGj )∑m
j′=1 LG(θGj′)

, (12)

where the near-uniform prior f(θGj ) is assumed constant over the index set, and ∆ is (constant) grid cell volume. The
posterior is seen to be a weighted likelihood, motivating the choice of name “likelihood-weighted method”. The obvious190

analogous scheme (with 3-dimensional rectangular grid for ξ, log σ and µ) is employed for inferences with block maxima
data.

Estimation of credible regions: Credible regions for parameters are estimated by sorting the values in {f(θGj |D)}mj=1 in

decreasing order to yield f(θGr(j)|X) for sorting array {r(j)}mj=1. Given a probability level p, the subset of the index set

contributing to the credible region is then simply {θr(j)}kj=1, where195

k = arg min
κ

κ∑
j=1

f(θGr(j)|D)∆ ≥ p . (13)

Boundaries of credible regions can be further refined if necessary by a simple interpolative scheme. Marginal credible
intervals are estimated analogously.

Estimation of posterior predictive distributions: Distributions g(x|D) for arbitrary functions g(x|θ), including return value
distributions, are also trivially estimated as

g(x|D) =

m∑
j=1

g(x|θGj )f(θGj |D)∆ . (14)

4. Evaluation of LWM200

In this section we evaluate the performance of LWM in three ways. First, for small samples of GP- and GEV- distributed
data with known parameter values, we estimate coverage probabilities of credible regions and compare them with expected
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Table 1: Description of the Monte Carlo experiment

Shape Scale Threshold/Location Sample size Number of cases

GP ξ = −0.5, 0, 0.5 σ = 4 ψ = 0 N = 10, 20, 50 NR = 1000
GEV ξ = −0.5, 0, 0.5 σ = 4 µ = 1 N = 10, 20, 50 NR = 1000

Figure 1: Discrepancy p̂ − p in coverage probabilities for credible regions, as a function of probability p, for GP samples. Rows represent
different sample sizes N = 10, 20, 50 and columns different values of ξ = −0.5, 0,+0.5.

values. Then, we compare estimation of credible regions for parameter from LWM, Bayesian inference using the Metropolis-
Hastings algorithm and a maximum likelihood scheme with bootstrap uncertainty estimation, in terms of quality of
inference and computational efficiency of inference. Finally, we assess whether the LWM method is able to identify a205

known measurement δ in simulated truncated samples.

For large samples and small measurement δ, we can assume that LWM and ML (using the standard likelihood) have
similar statistical efficiency. Since ML is considered asymptotically efficient [31], LWM is approximately so also. However,
here we focus on small samples, for which we might speculate that LWM and ML would yield different statistical and
computational efficiencies.210

4.1. Coverage probabilities for credible regions

We simulate NR = 1000 random realisations of samples of GP and GEV data with parameters listed in Table 1, with
measurement δ = 0.005 imposed. 3 different sample sizes N for each of 3 GP cases and 3 GEV cases are considered. For
each realisation r of each sample size for each case, we evaluate credible region C(θr; p) corresponding to probability p for
p = 0.01, 0.02, ..., 0.99. Using the NR realisations, we estimate a coverage probability p̂,215

p̂ =
1

NR

NR∑
r=1

I(θr ∈ C(θr; p)) for p = 0.01, 0.02, ..., 0.99 . (15)

where I is the obvious indicator function. The discrepancy p̂−p in coverage probability is plotted against p for all GP cases
in Figure 1, and for all GEV cases in Figure 2. The dashed horizontal lines in each panel of Figures 1 and 2 correspond to
α = 0.025 and α = 0.975 quantiles for the distribution of the Kolmogorov-Smirnov (KS) statistic DN = supp∈[0,1] |p̂− p|.
For sample size N , critical values Q for the KS statistic DN are calculated using Q = N−1/2kα, where kα is a quantile of
the Kolmogorov distribution with non-exceedance probability 1− α220

Pr(K ≤ kα) = 1− 2

∞∑
j=1

(−1)(j−1) exp(−2j2k2α) = 1− α . (16)

From the figures, we see that excellent agreement between actual and estimated coverage probabilities for critical regions
is obtained in all cases. Of course, performance in general depends critically on the value of δ relative to the spread of
samples values before truncation. As δ increases, inference becomes increasingly difficult and critical regions for parameters
inflate.
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Figure 2: Discrepancy p̂ − p in coverage probabilities for credible regions, as a function of probability p, for GEV samples. Rows represent
different sample sizes N = 10, 20, 50 and columns different values of ξ = −0.5, 0,+0.5.

4.2. Comparison of estimated critical regions from LWM with competitor methods225

Here we compare estimated for parameter credible regions from LWM with 2 competing approaches, in terms of quality
of estimate and computational efficiency of the estimation, based on a sample size N = 20 from a GP distribution. The
competitor methods considered are (a) Bayesian inference using a simple Metropolis-Hastings (MH) scheme [32], and (b)
a simple maximum likelihood estimation with bootstrap resampling for uncertainty estimation. We also briefly compare
credible regions for a sample size N = 200, and compare estimates for marginal tail quantiles based on a sample size230

N = 20.

Some care was taken in specifying schemes (a) and (b) so that reasonably fair comparison with LWM was possible. In
LWM, we evaluate the posterior density on a rectangular grid of m pre-specified parameter combinations {θGj }mj=1 as
described in Section 3.3. The Bayesian MH (a) is an iterative scheme in which the product of the group likelihood and
the near-uniform prior is evaluated for candidate parameter combinations corresponding to a Gaussian random walk with235

respect to the current state, and accepted with a certain probability (to achieve a specified proposal acceptance rate). With
the variance of the random walk step adjusted to achieve reasonable acceptance rate of around 0.35 per candidate, the
total number of accepted parameter combinations mMH therefore represents a reasonable measure of the computational
burden of the Bayesian inference, although the number of candidate posterior densities evaluated is larger than this. In
the ML-bootstrap method (b), ML estimation is undertaken for a large number of bootstrap resamples of the original240

sample, with each ML estimation involving a function minimisation step. We use the number mBS of bootstrap resamples
as a measure of computational burden, but realise that the actual burden is larger due to ML estimation. Whenever ML
failed, estimation as suggested by [6] was performed.

The detailed comparison was set up as follows. We assume a GP-distributed sample of size N = 20 with known parameters
ξ = 0 and 0.5, σ = 1, ψ = 4 , measurement δ = 0.005 and evaluate credible regions for parameters using LWM, Bayesian245

MH and ML-boostrap. For LWM, appropriate parameter index sets corresponding to m = 104 and m = 106 were specified.
For Bayesian MH, estimates from chain lengths mMH = 104 and mMH = 106 were obtained. Care was taken that the
chain converged to its stationary distribution, and that parameter combinations corresponding to MCMC burn in were not
used for inference. To estimate credible regions, kernel density estimation [33] was used, involving still further computation
relative to LWM. For ML-bootstrap, mBS = 104 and mBS = 106 resamples were generated and ML estimates obtained250

for each. Again, kernel density estimation was used to estimate credible regions.

Fig. 3 shows estimated credible regions corresponding to probabilities 0.1, 0.3, 0.5, 0.7 and 0.9 for the 104 case (LWM)
and the 106 case for Bayesian MH and ML-bootstrap for both ξ = 0 and 0.5. For LWM, estimates based on m = 104 and
m = 106 are indistinguishable. We conclude that m = 104 is sufficient for evaluation of credible regions for this sample.
We observe that credible regions are not symmetric in ξ or log σ, and that the domain of parameters is constrained by the255

identity ξ(x+ − ψ) + σ = 0 when ξ < 0, where x+ is the finite upper end point of the GP distribution. Credible regions
are clearly not symmetric in parameters, and parameter estimates are clearly not multivariate normally distributed. A
maximum a posteriori (MAP) estimate for GP shape near zero is found for both ξ = 0.0 and ξ = 0.5. This corresponds
to a large estimation error for ξ = 0.5, and shows the importance of considering epistemic uncertainty. Specifically, the
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(a) Sample from ξ = 0 case

(b) Sample from ξ = 0.5 case

Figure 3: Credible regions for GP parameter estimates from LWM (right), Bayesian MH (centre) and ML-bootstrap (left) for probabilities
0.1, 0.3, 0.5, 0.7 and 0.9. Results for 104 computations (LWM) and 106 computations (Bayesian MH and ML-boostrap). Sample size N=20 from
GP distribution with ξ = 0 and 0.5, σ = 1, ψ = 4.

credible region for LWM clear does not exclude a GP shape of 0.5 in the case ξ = 0.5. 104 estimates for Bayesian MH and260

ML-boostrap (not shown) are very poor, since the number of parameter combinations available to describe credible regions
corresponding to higher probabilities in particular is small. In this case, the somewhat arbitrary choice (e.g.) of kernel
width for kernel density estimation will have a large undesirable influence on estimated credible regions. Estimates for
credible intervals using Bayesian MH with mMH = 106 are in much better agreement with LWM, but again uncertainties
in the location the boundary of the credible region, especially for higher probabilities, is larger that for LWM. This is265

despite the fact that Bayesian MH uses at least 2 orders of magnitude more function evaluations. The figure illustrates
also that the ML-bootstrap method is inadequate for estimation of credible regions, regardless of the number of bootstrap
resamples used. Specifically, when a bootstrap resample fails to include the largest observed value in the sample, the
estimation suggests a shorter-tailed distribution. As a result, the posterior density partitions as shown in the figure. We
also note as expected that the maximum a posteriori (MAP) estimates for shape parameter ξ are biased towards more270

negative values for all inference methods.

As validation for a larger sample, estimation was repeated for a sample of size N=200 from the same GP distribution
with m = mMH = mBS = 106. As can be seen from Figure 4, the three inferences from LWM and Bayesian MH are in
relatively good agreement. We see that posterior densities of parameters approach their multivariate normal asymptote ,
and. We also note the relative improvement in ML-bootstrap performance, but this inference still exhibits bimodality for275

ξ = 0 . The negative bias of MAP estimates for ξ is also reduced for all inference methods.

Using the posterior densities illustrated in Figure 3, estimates for the marginal GP quantiles with non-exceedance proba-
bilities 0.9, 0.95 and 0.99 were also found, and are shown in Table 2. Since considerable variability between estimates based
on 104 computational steps were observed for Bayesian MH and ML-bootstrap, these inferences were repeated 100 times
(for the same underlying sample). Values quoted are means, and values following in parentheses are standard deviations280

from the 100 replicates. For other inferences, it was confirmed that uncertainty in estimates of quantiles was zero to two
decimal places. Results are in line with expectations following the discussion of Figure 3 above. For mMH = 106, there is
good agreement between LWM and Bayesian MH. However, inferences from ML-bootstrap are misleading.

9



Figure 4: Credible regions from LWM (black), Bayesian MH (blue) and ML-bootstrap (red) for probabilities 0.1, 0.3, 0.5, 0.7 and 0.9. Results
from 106 computations for sample size N=200 from the GP distribution with ξ = 0.5, σ = 1, ψ = 4.

ξ = 0 ξ = 0.5

LWM Bayesian MH ML-bootstrap LWM Bayesian MH ML-bootstrap

104 106 104 106 104 106 104 106 104 106 104 106

F=0.90 6.71 6.71 6.73(0.05) 6.71 6.10(0.02) 6.11 7.61 7.61 7.61(0.05) 7.61 6.91(0.00) 6.91
F=0.95 7.81 7.81 7.83(0.06) 7.81 6.87(0.05) 6.91 8.91 8.91 8.91(0.08) 8.91 7.78(0.05) 7.81
F=0.99 12.31 12.31 12.35(0.40) 12.31 8.78(0.05) 8.81 15.11 15.12 15.2(0.60) 15.22 9.92(0.06) 9.91

Table 2: Estimation of marginal quantiles by LWM, Bayesian MH and ML-bootstrap for a sample size N=200 from the GP distribution with
ξ = 0.5, σ = 1, ψ = 4.
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Figure 5: Dn/Q as a function of δ. True value of δ is 0.5, shown as circle. Values of Dn/Q < 1 indicate reasonable fit of LWM.

4.3. Validation of group likelihood

We now confirm that LWM correctly identifies a known value of measurement truncation δ used in the group likelihood.285

To achieve this, we conducted a simple validation exercise for the GP sample of size N = 20 for ξ = 0, σ = 4, ψ = 1, with
values truncated to whole numbers such that δ = 0.5. For each of 1000 random realisations of the sample, we estimate
discrepancies in coverage probabilities for credible regions with probabilities 0.01, 0.02, ..., 0.99 for the parameters with a
single assumed value for δ drawn from the set illustrated in Figure 5. Then, as in Section 4.1, we estimate the KS statistic
DN for the discrepancy, and a 95% confidence level Q = N−0.5kα for the KS statistic, and record the ratio DN/Q for each290

of the 1000 random sample realisations, for each values of δ. When the value of δ is specified appropriately, we expect
that the ratio DN/Q should be < 1. The mean of DN/Q as a function of δ is illustrated in Figure 5. The figure shows
that values of δ near the true value of 0.5 give the lowest values of DN/Q as expected.

5. Application

5.1. Application to Wave data295

We now apply the LWM method to estimation of return values for significant wave height (HS ) from a small sample of
21 observations of peaks of HS over a threshold of 4 meters collected over a period of 10.74 years in a Japanese harbour
[34]. The sample will be referred to henceforth as Goda’s sample for brevity. The data are given in decreasing order in
Table 3. We compare extreme value estimation from LWM (with group likelihood and δ = 0.005 and the near-uniform
priors specified in Section 3.2) and three approaches based on ML with different methods for quantification of uncertainty,300

assuming that data are drawn from a GP distribution with unknown shape and scale, but known threshold of 4m. For
ML, the three approaches used for uncertainty quantification are profile likelihood, the delta method and bootstrapping.
We also compare inferences with those of Goda’s method [34] which assumes a Weibull model for the sample. Note that
the value of δ for LWM was set to 0.005m since sample values are specified in metres to two decimal places ., to capture
uncertainty due to instrument precision. As discussed earlier, other sources of measurement uncertainty are also likely,305

and might be incorporated by increasing the value of δ.

Estimated 50-year return values are given in Table 4. Return value estimates from LWM and Goda are in reasonable
agreement, but estimates from ML are lower. The 95% uncertainty bands from ML-delta method and ML-profile likelihood
are narrower than for the other approaches. The ML-bootstrap uncertainty band is implausibly wide. Estimated extreme
value tails from LWM, ML-profile likelihood and Goda’s method are depicted in Figure 7.310
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n-th largest 1 2 3 4 5 6 7 8 9 10 11

HS 8.36 7.02 6.94 6.85 6.74 6.20 5.92 5.68 5.57 5.42 5.34

n-th largest (cont.) 12 13 14 15 16 17 18 19 20 21

HS 5.10 5.09 4.95 4.81 4.77 4.63 4.61 4.41 4.34 4.11

Table 3: Sample of 21 HS values (in metres) from [34].

LWM ML-delta method ML-profile likelihood ML-bootstrap Goda

50-year RP 10.21 8.34 8.34 9.10 10.38
with 95% intervals (7.53, 20.36) (7.75, 8.94) (7.65, 10.95) (5.70, 298.95) (6.99, 13.77)

Table 4: Estimated 50-year return values (in metres) with corresponding 95% uncertainty bands.

Credible regions with probabilities 0.5, 0.9 and 0.95 for GP parameters estimated using LWM, ML-delta method and
ML-profile likelihood are illustrated in Figure 6. MAP estimates from LWM, ML-delta method and ML-profile likelihood
are similar, but the shapes and sizes of credible regions are quite different.

Measurement uncertainty δ may be larger than that corresponding to just instrument precision. To explore this possibility
further, Table 5 gives the results of an investigation into the choice of δ appropriate for analysis of the Goda sample.315

Different choices (0.005m, 0.05m, and 0.5m) of δ were considered. The table shows that for δ ≤ 0.5m, estimates for the
50-year return value and its uncertainty are stable. However, the choice δ = 1.5m results in a reduction the return value
estimate, although its uncertainty is relatively unchanged. These results illustrate how LWM allows us to deal explicitly
with data uncertainty.

Figure 8 shows that credible regions for GP parameters are stable as expected for δ ≤ 0.5m.320

GP shape ξ and scale parameter σ estimates are negatively correlated, so that the observed sample can be equally well
estimated using different combinations of ξ and σ corresponding to longer-tailed distributions (with smaller scale) or
shorter-tailed distributions (with large scale). Return value estimates from these distributions will be different in general,
and differences will increase with increasing return period. The problem of parameter identifiability increases as sample
size decreases.325

In summary, we note that uncertainty intervals from ML, estimated using both of the delta and profile likelihood methods,
are too narrow. Uncertainty intervals from the bootstrap are too wide. Yet LWM gives statistically sound estimates of
intervals. From an engineering perspective however, the uncertainty interval for the 50-year return period wave height
estimated from LWM remains implausibly wide. This merely reflects the large epistemic uncertainty present in the
estimation: LWM is a data-driven method, and wide credible intervals for return values cannot be avoided from small330

sample sizes. Sample size must be increased, or information from other sources incorporated if the interval is to be reduced.
Since LWM is implemented here as a Bayesian procedure, it is straightforward to incorporate prior information, such as
in [28]. We note however that satellite observations of sea significant wave height in excess of 20m have been reported
[35], and that imposition of physical constraints on the characteristics of rare and extreme events is not always possible
or appropriate. We might surmise that the occurrence of apparently implausibly wide credible intervals raises questions335

regarding the appropriateness of some existing practices in the field of ocean engineering, and obviates the need for careful
incorporation of different sources of uncertainty in design.

δ = 0.005 δ = 0.05 δ = 0.5 δ = 1.5

50-year RP 10.21 10.21 10.01 9.01
with 95% CI (7.53, 20.36) (7.53, 20.50) (7.38, 21.68) (6.74, 20.18)

Table 5: Estimated 50-year return values (in metres) with corresponding 95% uncertainty bands using different values of δ (in metres).
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Figure 6: Credible regions with probabilities 0.5, 0.9 and 0.95 for GP parameters from LWM, ML-delta method and ML-profile likelihood for
Goda’s sample of 21 HS values.

Figure 7: Estimated cdf of extreme value disctribtution for LWM, ML-profile likelihood and Goda’s method.
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Figure 8: Credible regions with probabilities 0.1, 0.3, 0.5, 0.7 and 0.9 for GP parameters from inferences with δ = 0.005m, 0.05m and 0.5m.
Credible regions for δ = 0.005m and δ = 0.05m are almost superimposed.

5.2. Incorporating threshold uncertainty

The analysis above assumes that threshold ψ for GP estimation is fixed at 4m. In most applications, threshold specification
is a difficult issue, due to the trade off between the need for a high threshold to justify fitting an asymptotic model, and340

the need for a low threshold to increase sample size. Here we explore different LWM inferences from each of a set of
pre-specified thresholds, and propose a weighted LWM scheme. The latter can be viewed as placing a uniform prior over
each of a set of threshold choices.

Samples of peaks over a sufficiently high threshold can be assumed to follow the GP distribution approximately, and
the threshold choice itself should not affect the estimated extreme value. Threshold choice can be based on stability of345

the estimated parameters [1]. Usually, the lowest threshold value ψ0 that gives near-constant estimation for all larger
thresholds is chosen for subsequent inference. Assuming that the GP model is valid for threshold ψ0, we can also express
the GP distribution with respect to any other threshold ψ > ψ0. In the modified distribution, GP shape ξ remains
unchanged, but scale σ changes linearly according to

σ = σ0 + ξ(ψ − ψ0) (17)

where σ0 is the scale corresponding to threshold ψ0. If we are to compare inferences for different thresholds, or to combine350

them appropriately, it is important to adjust scale estimates to that they refer to a common threshold choice, such as ψ0.
For the Goda data, we estimated credible regions for ξ and σ0 using ψ0=4m, for each of ψ = 4.0, 4.2, ..., 5.0m. Results are
show in Figure 10. Credible regions are consistent across thresholds, but the magnitude of epistemic uncertainty increases
as the ψ increases and sample size decreases.

Figure 11 illustrates credible regions for parameters θ = (ξ, σ0) estimated from the aggregated posterior density f(θ|D)355

over thresholds, expressed in terms of the posterior densities f(θ|D,ψ) for each of a set of nψ thresholds ψ as

f(θ|D) =

∫
ψ

f(θ|D,ψ)f(ψ)dψ =
1

nψ

∑
ψ

f(θ|D,ψ) (18)

where prior f(ψ) has point masses of weight 1/nψ at each of the nψ thresholds ψ considered.
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Figure 9: Credible regions with probabilities 0.1, 0.3, 0.5, 0.7 and 0.9 for ξ and σ0 with ψ = 4, 4.2, ..., 5.0m for Goda’s sample.

Figure 10: Credible regions with probabilities 0.1, 0.3, 0.5, 0.7 and 0.9 for ξ and σ0 from the threshold-aggregated posterior density for Goda’s
sample.
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Figure 11: 50-year return value (in metres) with 95% credible interval for individual choices of ψ = 4, 4.2, ..., 5.0m for Goda’s sample (in black).
Also shown (in red) are the corresponding threshold-aggregated estimates.

Figure 11 shows estimates of the 50-year return value with 95% credible interval for individual choices of ψ, and for the
threshold-aggregated model. Again we observe that uncertainty in return value increases in general as threshold level
increases. However, 50-year return value estimated from posterior distribution is stable for all threshold.360

6. Conclusion

A straightforward likelihood-weighted method (LWM) to estimate extreme value models and return values from small
samples of low quality data is proposed and demonstrated for samples of simulated and observed data. The method
allows computationally efficient and accurate estimation of credible regions for model parameter estimates and posterior
predictive distributions for return values. LWM exploits Bayesian inference for a group extreme value likelihood and365

near-uniform prior distributions for parameters, directly evaluating the posterior density on an index set of pre-specified
parameter combinations. We demonstrate the performance of LWM in simulation studies, and find that LWM provides
superior inferences for small samples compared with Bayesian inference using the Metropolis-Hastings algorithm, and
maximum likelihood estimation with bootstrap uncertainty quantification. We propose a threshold-aggregated LWM
procedure for applications where threshold selection is problematic.370

Attempting extreme value analysis from samples of less that 50 observations would be considered foolhardy by most.
However, in reality, metocean engineers are often required to estimate return values in such circumstances. Given this, it
is essential to do this as well as possible, and in particular to incorporate the effects of huge epistemic uncertainty sensibly
in estimates of return values. LWM provides a simple, rational, consistent and computationally efficient means to achieve
both these objectives. LWM suffers the same difficulties as any other extreme value model, and attempts to address a375

very difficult problem. However, in comparison with competitors, LWM exploits sound statistical methods to the full,
including Bayesian inference with proper near-uniform priors and group likelihood. LWM provides an objective measure
of uncertainty in extreme value estimation based strictly on data alone. We hope that LWM provides a useful addition to
the metocean engineer’s toolbox.
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