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Extreme-Value Graphical Models
with Multiple Covariates
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Abstract—To assess the risk of extreme events such as hurri-
canes, earthquakes, and floods, it is crucial to develop accurate
extreme-value statistical models. Extreme events often display
heterogeneity (i.e., non-stationarity), varying continuously with
a number of covariates. Previous studies have suggested that
models considering covariate effects lead to reliable estimates of
extreme events distributions. In this paper, we develop a novel
statistical model to incorporate the effects of multiple covariates.
Specifically, we analyze as an example the extreme sea states
in the Gulf of Mexico, where the distribution of extreme wave
heights changes systematically with location and storm direction.
In the proposed model, the block maximum at each location and
sector of wind direction are assumed to follow the Generalized
Extreme Value (GEV) distribution. The GEV parameters are
coupled across the spatio-directional domain through a graphical
model, in particular, a three-dimensional (3D) thin-membrane
model. Efficient learning and inference algorithms are developed
based on the special characteristics of the thin-membrane model.
We further show how to extend the model to incorporate an
arbitrary number of covariates in a straightforward manner.
Numerical results for both synthetic and real data indicate that
the proposed model can accurately describe marginal behaviors
of extreme events.

Index Terms—extreme events modeling, Gaussian graphical
models, covariates, Laplacian matrix, Kronecker product

I. INTRODUCTION

EXTREME events, such as heat waves, cold snaps, tropi-
cal cyclones, hurricanes, heavy precipitation and floods,

droughts and wild fires, have possibly tremendous impact on
people’s lives and properties. For instance, China experienced
massive flooding of parts of the Yangtze River in the summer
of 1998, resulting in about 4,000 dead, 15 million homeless
and 26 billion USD in economic loss. To make matters
worse, both observational data and computer climate models
suggest that the occurrence and sizes of such catastrophes
will increase in the future [1]. It is therefore imperative to
model such events, assess the risk, and further take precaution
measurements.

Extreme-value theory governs the statistical behavior of
extreme values of variables, such as extreme wave heights
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during hurricanes. The theory provides closed-form distribu-
tion functions for the extremes of single variables (marginals),
such as block maxima (monthly or annually) and peaks over
a sufficiently high threshold [2]. The main challenge in fitting
such distributions to measurements is the lack of data, as
extreme events are by definition very rare. The problem can be
alleviated by assuming that all the collected data (e.g., extreme
wave heights at different measuring sites [3]) are stationary
and follow the same distribution. After combining all the
data, the resulting sample size is sufficiently large to yield
apparently reliable estimates. However, there usually exists
clear heterogeneity in the extreme-value data caused by the
underlying mechanisms that drive the weather events. Extreme
temperature, for example, is greatly influenced by the altitude
of the measuring site. The latter can be regarded as a covariate.
Accommodating heterogeneity in the model is essential since
the estimated model will be unreliable otherwise [4]. In
order to handle both heterogeneity as well as the problem of
small sample size, the interactions among extreme events with
different covariate values are often exploited. For instance,
extreme temperatures at similar altitudes behave similarly,
implying that the parameters of the corresponding extreme-
value distributions vary smoothly with the covariate (i.e.,
altitude). Such prior knowledge may help to improve the fitting
of extreme value distributions.

The large body of literature on extreme-value models with
covariates can be divided into two categories: models with
single [5]-[9] and multiple covariates [10]-[13]. Approaches
of the first group usually treat the parameters of the marginal
extreme-value distributions as a function of the covariate.
In [5]-[7], directional and seasonal effects are considered when
describing the marginal behavior of extreme wave heights. The
dependence of the parameters on the single covariate is cap-
tured by a Fourier expansion. Spatial effects are investigated
in [8]: the parameters are assumed to be Legendre polynomials
of the location; extreme value threshold is determined through
quantile regression. Although these parametric models offer
a simple framework to capture the covariate effect, they are
prone to model misspecification. A more appealing approach
is to incorporate the covariate in a non-parametric manner. The
work in [9] employs a Markov random field, in particular, a
conditional autoregressive model, to induce spatial dependence
among the parameters of extreme-value distributions across
a spatial domain. This also enables the use of the Markov
Chain Monte Carlo (MCMC) algorithm to learn the model.
However, such procedures are computationally complex and
can be prohibitive for large-scale systems.

On the other hand, few attempts have been made to model
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multiple covariates. A standard method is to predefine the
distribution parameters as a function of all the covariates [2].
Unfortunately, the function can be quite complicated as the
number of covariates increases, whereas only linear or log-
linear model are used in [2] for simplicity. The resulting
estimates may be biased due to the misspecification of the
functional form. As an alternative, Eastoe et al [10] proposed
to remove the heterogeneity of the entire data set, both extreme
and non-extreme, through preprocessing and then model the
extremal part of the preprocessed data using the above men-
tioned standard approach. They found that the preprocessing
technique can indeed remove almost all the heterogeneity, and
consequently, simple linear or log-linear models are capable
of expressing the residual heterogeneity. Motivated by this
success, Jonathan et al. [11] proposed to process two different
covariates individually. They removed the effect of the first
covariate by whitening the data using a linear location-scale
model and then employed the methods for a single covariate
to accommodate the second one. A setback of their method,
however, is that the dependence on the first covariate may be
nonlinear and therefore the whitening step cannot completely
remove the effect of the first covariate. Furthermore, capturing
the two covariates independently fails to consider the possible
correlation between them. To accommodate all the covariates
at the same time, a spline-based generalized additive model
is introduced in [12], where the spline smoothers for each
covariate are added to the original likelihood function and then
the penalized likelihood is maximized. Similarly, Randell et
al. [13] addressed the problem by means of penalized tensor
products of B-splines so as to obtain a smooth dependence
of the distribution parameters w.r.t. all the covariates. The
spline-based methods have the virtue of extending the meth-
ods for single covariates to the case of multiple covariates.
Unfortunately, directly maximizing the complex penalized
likelihood has several problems. First, the algorithm can be
time-consuming. Typically, Newton’s method is first employed
and the iterative back fitting is then used to solve each Newton
step. Thus, the algorithm has at least two loops, and the inner
loop, i.e., the iterative back fitting, usually has a slow rate of
convergence. Moreover, good initial points are essential for
the algorithm to find the global solution. Finally, choosing
the smoothness parameters can be problematic as pointed out
in [14].

The aforementioned shortcomings spark our interest in
exploiting graphical models to incorporate multiple covariates
in the extreme-value model. The interdependencies between
extreme values with different covariates are often highly struc-
tured. This structure can in turn be leveraged by the graphical
model framework to yield very efficient algorithms [15]-[18].
In this paper, we aim to model extreme events with multiple
covariates using graphical models. Our model is theoretically
significant because it is among the first approaches to exploit
the framework of graphical models to analyze the marginal
behavior of extreme events.

As an example, we model the storm-wise maxima of signif-
icant wave heights in the Gulf of Mexico (see Fig. 7), where
the covariates are longitude, latitude, and wind direction.
Note that the significant wave height is a standard measure

of sea surface roughness; it is defined as the mean of the
highest one third of waves (typically in a three-hour period).
Theoretically, significant wave heights are affected by domi-
nant wave direction (i.e., storm direction). However, we use
wind direction as a surrogate since wind and wave direction
are generally fairly well correlated, especially for extreme
events. Motivated by the extreme value theory [2], the extreme
events are assumed to follow the heavy-tailed Generalized
Extreme Value (GEV) distributions. The parameters of those
GEV distributions are further assumed to depend smoothly on
the covariates. To facilitate the use of graphical models, we
discretize the continuous covariates within a finite range. In
the example of extreme wave heights in the Gulf of Mexico,
space is discretized as a finite homogeneous two-dimensional
lattice, and the wind direction is discretized in a finite number
of equal-sized sectors. More generally, the GEV distributed
variables (and hence also the GEV parameters) are defined
on a finite number of points indexed by the (discretized)
covariates. We characterize the dependence between the GEV
parameters through a graphical model prior, in particular, a
multidimensional thin-membrane model where edges are only
present between pairs of neighboring points (see Fig. 1). We
demonstrate that the multidimensional model can be con-
structed flexibly from one-dimensional thin-membrane models
for each covariate. The proposed model can therefore easily be
extended to cope with an arbitrary number of covariates. We
follow the empirical Bayes approach to learn the parameters
and hyper-parameters. Specifically, both the smoothed GEV
parameters and the smoothness parameters are inferred via
Expectation Maximization. A major challenge lies in the
scalability of the algorithm since the dimension of the model
is usually quite large. In order to derive efficient algorithms,
we take advantage of the special pattern of the eigenvalues
and eigenvectors corresponding to the one-dimensional thin-
membrane models.

Our numerical results for both synthetic and real data
suggest that the proposed model indeed accurately captures
the effect of covariates on the statistics of extreme events.
Moreover, the proposed model can flexibly accommodate
a large variety of (smooth) dependencies on covariates, as
the smoothness parameters of the thin-membrane model are
inferred automatically from data.

The remainder of the paper is organized as follows. In
Section II, we introduce thin-membrane models and their prop-
erties. In Section III, we first construct the 3D thin-membrane
model based on simple 1D thin-membrane models to model
extreme wave heights, and then illustrate how to generalize the
model to incorporate any number of covariates. In Section IV,
we discuss the efficient learning and inference algorithms at
length and provide theoretical guarantees. Numerical results
for both synthetic and real data are presented in Section V.
Lastly, we offer concluding remarks and point out directions
for future work in Section VI.

II. THIN-MEMBRANE MODELS

In this section, we first give a brief introduction to graphical
models, and subsequently consider the special case of thin-
membrane models. We then analyze two concrete examples of
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thin-membrane models that will be used as building blocks in
the proposed extreme-value graphical model: chain and circle
models.

In an undirected graphical model (i.e., Markov random
field), the probability distribution is represented by an undi-
rected graph G which consists of nodes V and edges E .
Each node i is associated with a random variable Zi. An
edge (i, j) is absent if the corresponding two variables Zi
and Zj are conditionally independent: P (Zi, Zj |ZV|i,j) =
P (Zi|ZV|i,j)P (Zj |ZV|i,j), where V|i, j denotes all the vari-
ables except Zi and Zj .

If the random variables Z corresponding to the nodes on the
graph are jointly Gaussian, then the graphical model is called
a Gaussian graphical model. Let Z ∼ N (µ,Σ) with mean
vector µ and positive-definite covariance matrix Σ. Since Z
constitutes a Gaussian graphical model, the precision matrix
(the inverse covariance) K = Σ−1 is sparse with respect to
the graph G, i.e., [K]i,j 6= 0 if and only if the edge (i, j) ∈
E [19]. The Gaussian graphical model can be written in an
equivalent information form N (K−1h,K−1) with a precision
matrix K and a potential vector h = Σ−1µ. The corresponding
probability density function (PDF) is

P (X) ∝ exp(−1

2
XTKX + hTX). (1)

The thin-membrane model [20] is a Gaussian graphical
model that is commonly used as smoothness prior, as it
minimizes the difference between values at neighboring nodes:

P (Z) ∝ exp{−1

2
α
∑
i∈V

∑
j∈N(i)

(Zi − Zj)2} (2)

∝ exp{−1

2
αZTKpZ}, (3)

where N(i) denotes the neighboring nodes of node i, Kp

is a graph Laplacian matrix such that [Kp]i,i is the number
of neighbors of the ith node while the off-diagonal elements
[Kp]i,j are equal to −1 if nodes i and j are adjacent and
0 otherwise, and α is the smoothness parameter which con-
trols the smoothness across the domain defined by the thin-
membrane model. By comparing (3) with (1), we can see that
the precision matrix of the thin-membrane model is K = αKp.
Since Kp is a Laplacian matrix, K is rank deficient, i.e.,
detK = 0. As such, the thin-membrane model is classified as
a partially informative normal prior [21] or intrinsic Gaussian
Markov random field [22]. To make the distribution well-
defined, the improper density function is usually applied in
practice:

P (Z) ∝ |K|0.5+ exp{−1

2
ZTKZ} (4)

= |αKp|0.5+ exp{−1

2
αZTKpZ}, (5)

where |K|+ denotes the product of nonzero eigenvalues of
K. Note that Kp1 = 0, where 1 is a vector of all ones,
indicating the eigenvalue associated with the eigenvector 1
equals 0. Thus, the thin-membrane model is invariant to the
addition of c1, where c is an arbitrary constant, and it allows
the deviation from any overall mean level without having to

specify the overall mean level itself. As an illustration, we can
easily find that the conditional mean of variable Zi is [22]

E(Zi|ZV|i) = − 1

[Kp]i,i

∑
j∈N(i)

[Kp]i,jZj , (6)

i.e., the mean of its neighbors, but it does not involve an overall
level. This special behavior is often desirable in applications.

We now turn our attention to the thin-membrane models
of the chain and the circular graph, as shown in Fig. 1a
and Fig. 1b respectively. The former can well characterize
the dependence structure of nonperiodic covariates (e.g., lon-
gitude and latitude), while the latter is highly suitable for
periodic covariates (e.g., directional and seasonal patterns).
The corresponding Laplacian matrices are denoted as KB

and KC respectively. It is easy to prove that the eigenvalues
and eigenvectors of KB and KC have the following special
pattern [23]:

λBk = 2− 2 cos

(
kπ

P

)
,

vBk =

[
cos

(
kπ

2P

)
, cos

(
3kπ

2P

)
, · · · , cos

(
(2P − 1)kπ

2P

)]T
,

λCk = 2− 2 cos

(
2kπ

P

)
,

vCk =
[
1, ωk, ω2k, · · · , ω(P−1)k

]T
,

for k = 1, · · · , P , where P is the dimension of KB and KC ,
ω = exp(2πi/P ) and i is the imaginary unit. An important
property of the eigenvectors is as follows: Let VB be the
eigenvector matrix of KB , i.e., VB = [vB1, vB2, · · · , vBP ],
and x be a P × 1 column vector, then VBx is identical to
the discrete cosine transform of x [23, Ch. 1]. Similarly,
let VC denote the eigenvector matrix of KC , then VCx can
be computed as the discrete Fourier transform of x [23,
Ch. 1]. Note that other smoothness priors, such as thin-
plate models [20], [22], do not have such nicely structured
eigendecomposition. This motivates us to use thin-membrane
models for the sake of computational convenience.

III. MODELING MULTIPLE COVARIATES

In this section, we present a novel extreme-value statistical
model that incorporates multiple covariates. We assume that
the block maxima (e.g., monthly or annual maxima) associated
with every possible set of values for the covariates follow
the Generalized Extreme Value (GEV) distribution, according
to the Fisher-Tippett-Gnedenko theorem in extreme value
theory [2]. The GEV parameters z are assumed to vary
smoothly with the covariates. The latter are discretized within
a finite range. Therefore, the GEV parameters can be indexed
as zi1i2···im , where m is the number of covariates, and i1
corresponds to a discretized value of the first covariate and
likewise for the other indices i2, · · · , im. In summary, the
GEV parameters are defined on a finite number of points
(i1, i2, ..., im) and those parameters are supposed to vary
smoothly from one point to a nearby point. The resulting
dependence structure can be well represented by a multidi-
mensional thin-membrane model. Furthermore, we show that
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Fig. 1: Thin-membrane models: (a) chain graph; (b) circle
graph; (c) lattice; (d) spatio-directional model.

the multidimensional model can be constructed from one-
dimensional thin-membrane models for each covariate, thereby
making the proposed model generalizable to accommodate as
many covariates as required. We employ the multidimensional
thin-membrane model as the prior and estimate the GEV
parameters through an empirical Bayes approach.

As an illustration, we present in detail the spatio-directional
model to quantify the extreme wave heights. Suppose that
we have N samples x(n)ijk (block maxima) at each location,
indexed by its longitude and latitude (i, j), and directional
sector k, where n = 1, · · · , N , i = 1, · · · , P , j = 1, · · · , Q,
k = 1, · · · , D and P , Q, D are the number of longitude
indices, latitude indices and directional sectors respectively.
Consequently, the dimension M of the proposed model is
given by M = PQD. Hence, our objective is to accurately
infer the GEV parameters with the consideration of both spa-
tial and directional dependence. Specifically, we first locally
fit the GEV distribution to block maxima at each location
and in each directional sector. The local estimates are further
smoothed across the spatio-directional domain by means of
3D thin-membrane models.

A. Local estimates of GEV parameters

We assume that the block maxima xijk follow a General-
ized Extreme Value (GEV) distribution [2], whose cumulative
probability distribution (CDF) equals:

F (xijk) =


exp{−[1 +

γijk
σijk

(xijk − µijk)]
− 1
γijk }, γijk 6= 0

exp{− exp[− 1

σijk
(xijk − µijk)]}, γijk = 0,

for 1+γijk/σijk(xijk−µijk) ≥ 0 if γijk 6= 0 and xijk ∈ R if
γijk = 0, where µijk ∈ R is the location parameter, σijk > 0
is the scale parameter and γijk ∈ R is the shape parameter.

The Probability-Weighted Moment (PWM) method [24] is
employed here to yield the estimates of GEV parameters µ̂ijk,
σ̂ijk and γ̂ijk locally at each location (i, j) and each direction
k. The goal of the PWM method is to match the moments
E[xtijk(F (xijk))r(1 − F (xijk))s] with the empirical ones,
where t, r and s are real numbers. For the GEV distribution,
E[xijk(F (xijk))r] (with t = 1 and s = 0) can be written as:

br =
1

r + 1
{µijk −

σijk
γijk

[1 + (r − 1)γijkΓ(1− γijk)]}, (7)

where γijk < 1 and γijk 6= 0, and Γ(· ) is the gamma function.
The resulting PWM estimates µ̂ijk, σ̂ijk and γ̂ijk are the
solution of the following system of equations:

b0 = µijk −
σijk
γijk

(1− Γ(1− γijk)),

2b1 − b0 =
σijk
γijk

Γ(1− γijk)(2γijk − 1),

3b2 − b0
2b1 − b0

=
3γijk − 1

2γijk − 1
.

(8)

In practice, since solving the last equation in (8) is time-
consuming, it can be approximated by [24]:

γ̂i
PWM = −(7.859c+ 2.9554c2), (9)

where c = (2b1 − b0)/(2b2 − b0) − log 2/log 3. The PWM
method generates good estimates even when the sample size
is small, as demonstrated in [24]. Therefore, the method is
suitable for extreme-events modeling, especially in our case
where the number of samples with the same values of covari-
ates is limited. The only restriction is that the PWM estimates
is inaccurate and even does not exist when |γijk| > 0.5.

To address this concern, we utilize the two-stage procedure
proposed by Castillo et al. [25], which is referred to as the
median (MED) method, when the PWM estimates |γ̂ijk| > 0.5
or is not a number (NAN). In the first stage of the MED
method, the extreme-value samples can be ordered x

(1)
ijk ≤

x
(2)
ijk ≤ · · · ≤ x

(N)
ijk . A set of GEV estimates is obtained by

equating the GEV CDF F (x
(n)
ijk) to its corresponding empirical

CDF P (x
(n)
ijk) = (n − 0.35)/N . More explicitly, for each n

such that 2 ≤ n ≤ N − 1 in turn, we have:

x
(1)
ijk =

σ
(n)
ijk

γ
(n)
ijk

{[− logP (x
(1)
ijk)]−γ

(n)
ijk − 1}+ µ

(n)
ijk ,

x
(n)
ijk =

σ
(n)
ijk

γ
(n)
ijk

{[− logP (x
(n)
ijk)]−γ

(n)
ijk − 1}+ µ

(n)
ijk ,

x
(N)
ijk =

σ
(n)
ijk

γ
(n)
ijk

{[− logP (x
(N)
ijk )]−γ

(n)
ijk − 1}+ µ

(n)
ijk .

(10)

Note that the equations associated with the first and last
sample, i.e., x(1)ijk and x

(N)
ijk , will be used multiple times. By

solving the three equations in (10) w.r.t. the GEV parameters
independently for each n (2 ≤ n ≤ N − 1) in turn, we
can obtain a set of (γ

(n)
ijk , σ

(n)
ijk , µ

(n)
ijk) for each of the N − 2

occurrences x
(n)
ijk . In the second stage, we determine the

median of the sets of GEV parameters as the final MED
estimates (µ̂ijk, σ̂ijk, γ̂ijk). As shown in [25], although the
MED method is more computationally demanding than the
PWM method, it yields reliable estimates when the shape
parameter |γijk| > 0.5.

B. Prior distribution

We assume that each of the three parameter vectors µ =
[µijk], γ = [γijk] and σ = [σijk] has a 3D thin-membrane
model (see Fig. 1d) as prior. Since the thin-membrane models
of µ, γ, and σ share the same structure and inference methods,
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we present the three models in a unified form. Let z denote
the true GEV parameters, that is, z is either µ, σ, or γ.

We next illustrate how to construct the 3D thin-membrane
model priors from the fundamental Markov chains and circular
graphs. As a first step, we build a regular lattice (see Fig. 1c)
from Markov chains. Since both the longitude and the latitude
of the measurements are nonperiodic, either of them can be
characterized by the chain graph shown in Fig. 1a. Let KBx

and KBy denote the Laplacian matrices corresponding to the
graph of one row (i.e., the longitude) and one column (i.e.,
the latitude) of sites respectively. We further assume that the
smoothness across the longitude and the latitude are the same,
thus, they can share one common smoothness parameter αz .
The resulting precision matrix of the regular lattice is given
by:

Kp = (αzKBx)⊕ (αzKBy ) = αz(KBx ⊕KBy ) = αzKL,

where ⊕ and ⊗ represent Kronecker sum and Kronecker
product respectively, I∗ is an identity matrix with the same
dimension as K∗. It is easy to show that KL = KBx ⊕KBy

is the graph Laplacian matrix of the lattice. According to
the property of Kronecker sum, the eigenvalue matrix ΛL =
ΛBx ⊕ ΛBy and eigenvector matrix VL = VBy ⊗ VBx .

In the second step, we accommodate the effect of wind
direction. We discretize the wind direction into D sectors and
assume that the true GEV parameters are constant in each
sector. As GEV parameters of neighboring sectors are similar,
the directional dependence can be encoded in a circular graph
(see Fig. 1b), whose Laplacian matrix is KC . Another smooth-
ness parameter βz is introduced to dictate the directional
dependence since the smoothness across wind direction and
space can be different. We can then seamlessly combine the
lattice and the circle, leading to the 3D thin-membrane model
(see Fig. 1d) with precision matrix:

Kprior = (αzKL)⊕ (βzKC) = αzKs + βzKd. (11)

Interestingly, Ks = KL⊗ IC and Kd = IL⊗KC corresponds
to the lattices and circular graphs in the graph respectively,
indicating that the former only characterizes the spatial de-
pendence while the latter the directional dependence. Based
on the property of Kronecker sum, the eigenvalue matrix of
Kprior equals:

Λprior = (αzΛL)⊕ (βzΛC) = αzΛs + βzΛd, (12)

where Λs = ΛL ⊗ IC and Λd = IL ⊗ ΛC . The eigenvector
matrix equals:

Vprior = VL ⊗ VC = VBx ⊗ VBy ⊗ VC . (13)

By substituting (11) into (4), the density function of the 3D
thin-membrane model becomes:

P (z) ∝ |Kprior|0.5+ exp{−1

2
zTKpriorz} (14)

= |αzKs + βzKd|0.5+ exp{−1

2
ZT (αzKs + βzKd)Z}.

(15)

The specific structure of the model is extendable to any
number of covariates. Specifically, the precision matrix can
be generalized as:

Kprior = (αKa)⊕ (βKb)⊕ (γKc)⊕ · · · (16)
= αKa ⊗ Ib ⊗ Ic ⊗ · · ·+ βIa ⊗Kb ⊗ Ic ⊗ · · ·
+ γIa ⊗ Ib ⊗Kc ⊗ · · ·+ · · · , (17)

where Ki ∈ {KB ,KC} for i ∈ {a, b, c, · · · } is the graph
Laplacian matrix associated with the dependence structure
of covariate i, and where α, β and γ are corresponding
smoothness parameters. The eigenvalue and eigenvector matrix
of Kprior can be computed as:

Λprior = (αΛa)⊕ (βΛb)⊕ (γΛc)⊕ · · · (18)
= αΛa ⊗ Ib ⊗ Ic ⊗ · · ·+ βIa ⊗ Λb ⊗ Ic ⊗ · · ·
+ γIa ⊗ Ib ⊗ Λc ⊗ · · ·+ · · · , (19)

= αΛ̃a + βΛ̃b + γΛ̃c + · · · , (20)
Vprior = Va ⊗ Vb ⊗ Vc ⊗ · · · , (21)

where Λi ∈ {ΛB ,ΛC} and Vi ∈ {VB , VC} are the eigenvalue
and eigenvector matrix of Ki. The dependence structure of
nonperiodic and periodic covariates can usually be described
by chain and circle graphs respectively, thus it is easy to
calculate Λi and Vi as discussed in Section II.

C. Posterior distribution

Let y denote the local estimates of z, where y is either
µ̂, σ̂, or γ̂, and z denotes the true GEV parameters. We
further assume that local estimates for some locations (i, j)
and directions k are missing, probably due to the two reasons
listed below:

1) There are insufficient observations of extremes in some
direction sectors or at some sites. Note that the PWM
method needs at least three samples to solve (8). In
practice, for data collected by satellites, there are always
missing parts in satellite images due to the limited satel-
lite path or the presence of clouds. For data collected
by sensors, the sensors may fail during the extreme
events, resulting in missing measurements of extreme-
value samples. On the other hand, the rate of occurrence
of events with respect to direction in particular is non-
uniform. For example, for locations sheltered by land,
the number of extreme events emanating from the direc-
tion of the land will be smaller than from other directions
in general.

2) There exist unmonitored sites where no observations
are available. For instance, the measuring stations are
often irregularly distributed across space, whereas the
proposed method is more applicable to the case of
regular lattice (see Fig. 1c). As a result, we can introduce
unmonitored sites such that all the sites, including both
observed and unobserved ones, are located on a regular
lattice. In addition, in the case of wave heights analysis,
people may have particular interest in some unmonitored
locations since it is easy and convenient to build offshore
facilities there.
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We therefore only have measurements (i.e., the local estimates
y) at a subset of variables z in the 3D graphical model. Due
to the limited number of samples available at each site, we
model the local estimates as y = Cz+b, where b ∼ N(0, Rz)
is zero-mean Gaussian random vector (Gaussian white noise)
with diagonal covariance matrix Rz , and C is the selection
matrix that only selects z at which the noisy observations y
are available. C has a single non-zero value (equal to 1) in
each row. If there are adequate observations available at all the
locations and directions, C would simply be an identity matrix.
Note that the local estimates given by the PWM method are
asymptotically Gaussian distributed [24], thus motivating us
to employ the Gaussian approximation.

As a result of this approximation, the conditional distri-
bution of the observed value y given the true value z is a
Gaussian distribution:

P (y|z) ∝ exp{−1

2
(y − Cz)TR−1z (y − Cz)}. (22)

Since we assume that the prior distribution of z is the 3D
thin-membrane model (15), the posterior distribution is given
by:

P (z|y) ∝P (z)P (y|z) (23)

∝|Kprior|0.5+ exp{−1

2
zT (Kprior + CTR−1z C)z+

zTCTR−1z y} (24)

∝|Kpost| exp{−1

2
zTKpostz + zTCTR−1z y}, (25)

where Kpost = Kprior + CTR−1z C is the precision matrix of
the posterior distribution.

IV. LEARNING AND INFERENCE

We describe here the proposed learning and inference al-
gorithm. Concretely, we discuss how the smoothed GEV pa-
rameters, the noise covariance matrix Rz , and the smoothness
parameter αz for each of the three parameters µ, γ, and σ are
computed.

A. Inferring smoothed GEV Parameters

Given the covariance matrix Rz and the smoothness param-
eters αz and βz , the maximum a posteriori estimate of z is
given by:

ẑ = argmaxP (z|y) = K−1postC
TR−1z y. (26)

The dimension M of Kpost is equal to M = PQD. In most
practical scenarios, it is intractable to compute the inverse of
Kpost due to the O(M3) complexity. In the following, we
explain how we can significantly reduce the computational
complexity by exploiting the special configuration of the
eigenvectors of Kprior. When the diagonal matrix CTRzC can
be well approximated by a scaled identity matrix cIz , we have:

Kpost ≈ Kprior + cIz (27)

= V Tprior(αzΛs + βzΛd + cIz)Vprior (28)

As a result, ẑ can be computed as:

ẑ = V Tprior(αzΛs + βzΛd + cIz)
−1VpriorC

TR−1z y. (29)

We propose a fast thin-membrane model (FTM) solver to
evaluate (29) in three steps.

1) Let z0 = CTR−1z y, and the first step computes z1 =
Vpriorz0. Note that Vprior = VBx ⊗ VBy ⊗ VC (21),
thus, z1 = Vpriorz0 is a three-dimensional integration
transform as defined in [28]. More explicitly, we can first
reshape the vector z0 into a P×Q×D array Z0 such that
z0 = vec(Z0), where vec(Z0) denotes the vectorization
operation. In the spatio-directional model, the three
dimensions represent longitude, latitude and direction
respectively. Next, we perform the fast cosine transform
(FCT) in the first and second dimension (corresponding
to VBx and VBy ) and the fast Fourier transform (FFT)
in the third one (corresponding to VC). The detailed
derivation is shown in Appendix A. The resulting com-
putational complexity is O(M log(M)). Moreover, the
computation is amenable to parallelization.

2) In the second step, (αzΛs + βzΛd + cIz) is a diagonal
matrix, so the complexity of the operation z2 = (αzΛs+
βzΛd + cIz)

−1z1 is linear in M .
3) The operation V Tpriorz2 in the final step amounts to

performing the inverse FCT and FFT in the proper
dimensions of the P ×Q×D array reshaped from z2,
and the computational effort is the same with the first
step.

In summary, the computational complexity of evaluating z is
O(M log(M)). A similar algorithm can easily be designed
for the general case of multiple covariates. Since the gen-
eralized Vprior = Va ⊗ Vb ⊗ Vc ⊗ · · · for Vi ∈ {VB , VC}
(i ∈ {a, b, c, · · · }) (21), we can perform FFT in the i-th
dimension if Vi belongs to the VB family, and perform FCT
otherwise.

When cIz is not a good approximation to CTRzC, we
decompose Kpost into two parts K1 and K2 as follows:

K1 = Kprior + cIz, K2 = Kpost −K1,

where c is chosen as the largest entry in CTRzC. The
Richardson iteration [27] is then used to solve z(κ+1) =
K−11 (CTR−1z y−K2z

(κ)) until convergence. In each iteration,
computing the inverse of K1 can be circumvented by using
the FTM solver mentioned above. The following two theorems
guarantee the convergence of the proposed method.

Theorem 1. Given Kpost = Kprior +CTR−1z C, K1 = Kprior +
cIz and K2 = Kpost−K1, where c equals the largest diagonal
element in CTR−1z C,

1) Kpost is strictly positive definite,
2) the spectral radius ρ(K−11 K2) < 1 and the result-

ing Richardson iterations z(κ+1) = K−11 (CTR−1z y −
K2z

(κ)) are guaranteed to converge to K−1postC
TR−1z y.

Proof. See Appendix B.

Theorem 2. The convergence rate of the proposed algorithm



7

ρ(K−11 K2) is bounded below and above by:

ρ(K−11 K2) ≥ max(CTR−1z C)−min(CTR−1z C)

max(Λprior) + max(CTR−1z C)
, (30)

ρ(K−11 K2) ≤ max(CTR−1z C)−min(CTR−1z C)

min(Λprior) + max(CTR−1z C)
, (31)

where max(K) and min(K) denote the maximum and mini-
mum diagonal element of the matrix K respectively.

Proof. See Appendix C.

According to Theorem 2, decreasing the difference between
the largest and smallest diagonal entries of matrix CTR−1z C
will reduce the upper bound on ρ(K−11 K2), resulting in
faster convergence. In the limit case where min(CTR−1z C) =
max(CTR−1z C), that is, CTR−1z C = cIz , the Richardson
iteration converges in one step as in (29).

Note that the MAP estimate of z is dependent on the
covariance matrix Rz and the smoothness parameters, the
calculation of which is described in the sequel.

B. Estimating Covariance Matrices Rz
We use the parametric bootstrap approach to infer the

(diagonal) noise covariance matrices Rµ, Rγ and Rσ; this
method is suitable when the number of available samples is
small [26]. Concretely, we proceed as follows:

1) We generate the local GEV estimates µ̂ijk, σ̂ijk and γ̂ijk
using the method discussed in Section III-A.

2) We draw M = 3000 sample sets S1, · · · , SM , each with
N GEV distributed samples based on the local estimates
of GEV parameters (µ̂ijk, σ̂ijk, γ̂ijk).

3) For each Sm, where m = 1, · · · ,M , we estimate
the GEV parameters locally again using the method in
Section III-A. The resulting GEV estimates are denoted
as (µ̂

[m]
ijk , σ̂

[m]
ijk , γ̂

[m]
ijk ).

4) The variance of µ̂[m]
ijk (m = 1, · · · ,M) at site (i, j) and

wind direction k is our estimate of the corresponding
diagonal element in Rµ. Similarly, we can obtain esti-
mates of the diagonal covariance matrices Rγ and Rσ .

C. Learning Smoothness Parameters

Since αz and βz are usually unknown, we need to infer them
based on the local estimates y. However, since z is unknown,
directly inferring αz and βz is impossible, and instead we
solve (25) by Expectation Maximization (EM):

(α̂(κ)
z , β̂z

(κ)
) = argmaxQ(αz, βz; α̂

(κ−1)
z , β̂(κ−1)

z ). (32)

In Appendix D, we derive the Q-function:

Q(αz, βz; α̂
(κ−1)
z , β̂(κ−1)

z )

∝ − tr

(
Kprior

(
K

(κ−1)
post

)−1)
−
(
z(κ)

)T
Kpriorz

(κ) + log |Kprior|+ + c, (33)

= −c1αz − c2βz + log |Kprior|+ + c, (34)

where

c1 = tr

(
Ks

(
K

(κ−1)
post

)−1)
+
(
z(κ)

)T
Ks z

(κ), (35)

c2 = tr

(
Kd

(
K

(κ−1)
post

)−1)
+
(
z(κ)

)T
Kd z

(κ), (36)

z(κ) is computed as in (26) with α̂(κ−1)
z and β̂(κ−1)

z obtained
from the previous iteration, and c stands for all the unrelated
terms. In (33), we need to evaluate log |Kprior|+. Since Kpiror
can be regarded as a generalized Laplacian matrix corre-
sponding to the connected graph of the 3D thin-membrane
model, according to the properties of Laplacian matrices,
|Kprior|+ = M detS(Kprior), where S(Kprior) denotes the first
M − 1 rows and columns of the M ×M matrix Kprior and
S(Kprior) is positive definite [29]. As a result,

log |Kprior|+ = log detS(Kprior) + logM, (37)
= log det(αzS(Ks) + βzS(Kd)) + c. (38)

Taking the partial derivatives of Q function with regard to
αz and βz , we can obtain:

∂Q

∂αz
= −c1 + tr(S(Kprior)

−1S(Ks)), (39)

∂Q

∂βz
= −c2 + tr(S(Kprior)

−1S(Kd)), (40)

where the Jacobi’s formula is applied, i.e.,

∂ log detK

∂x
= tr

(
K−1

∂K

∂x

)
. (41)

By equating the partial derivatives (39) and (40) to zero, we
have:

c1 = tr(S(Kprior)
−1S(Ks)), (42)

c2 = tr(S(Kprior)
−1S(Kd)). (43)

As a consequence, we obtain:

αc1 + βc2 = tr{S(Kprior)
−1(αzS(Ks) + βzS(Kd))} (44)

Recall that αzS(Ks) + βzS(Kd) = S(Kprior), and therefore,

αc1 + βc2 = M − 1. (45)

By substituting (45) into the Q-function (33), it follows:

Q(αz, βz; α̂
(κ−1)
z , β̂(κ−1)

z )

= log |Kprior|+ − (M − 1) + c. (46)

At this point, the expression (32) can be succinctly formulated
as:

(α(κ)
z , β(κ)

z ) = argmax log |Kprior|+, (47)
s.t. c1αz + c2βz = M − 1, αz ≥ 0, βz ≥ 0.

Since the eigenvalue matrix Λprior of Kprior equals Λprior =
αzΛs+βzΛd as in (20), we can further simplify the objective
function (47) as:

log |Kprior|+ = log |Λprior|+
=

∑
kλsk+λdk>0

log(αzλsk + βzλdk), (48)
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TABLE I: The learning and inference algorithm for modeling
multiple covariates.

1) Estimate the GEV parameters locally using the com-
bination of PWM and MED estimator.

2) Approximate the relation between locally fitting and
true GEV parameters by a Gaussian model, that is,
y = Cz + b. Estimate the diagonal noise covariance
Rz using the parametric bootstrap approach.

3) Initialize the smoothness parameters α̂(0)
z and β̂

(0)
z .

Iterate the following steps till convergence:
a) E-step: update the MAP estimates of GEV

parameters z using the methods described in
Section IV-A:

ẑ(κ) =
{
K

(κ−1)
post

}−1
CTR−1z y,

where K
(κ−1)
post = K

(κ−1)
prior + CTR−1z C =

(α̂
(κ−1)
z Ka) ⊕ (β̂

(κ−1)
z Kb) ⊕ (γ̂

(κ−1)
z Kc) ⊕

· · · + CTR−1z C. The last expression follows
from (16).

b) M-step: update the estimate of smoothness pa-
rameters by solving (49).

Consequently, the constrained convex optimization prob-
lem (47) can be solved efficiently via the bisection
method [30].

In the scenario of multiple covariates, (47) can be extended
as:

(α(κ)
z , β(κ)

z , γ(κ)z , · · · ) = argmax
∑
k

log(αzλ̃ak + βzλ̃bk

+ γzλ̃ck + · · · ), (49)
s.t. c1αz + c2βz + c3γz + · · · = M − 1,

αz ≥ 0, βz ≥ 0, γz ≥ 0, · · ·

where λ̃ik(i ∈ {a, b, c, · · · }) is the k-th diagonal element of
λ̃i in (20). The overall learning and inference algorithm for
the generalized model is summarized in Table I.

D. Bootstrapping the uncertainty of GEV estimates

In addition to the point estimates of GEV parameters, we
also have particular interest in the uncertainly of the estimates.
As demonstrated in [3], nonparametric bootstrapping provides
a reliable tool to quantify the uncertainty associated with
extreme-value models. The bootstrap procedure consists of the
following steps:

1) Generate M = 1000 sample sets S1, · · · , Sm, each
with N occurrences, by resampling at random with
replacement from the original N observations.

2) For each Sm, where m = 1, · · · ,M , apply the algorithm
in Table I to yield smoothed GEV parameters z(m),
which denotes either γ, σ, or µ.

3) The 95% confidence interval for GEV estimates is
computed as the values corresponding to the 2.5% and
97.5% quantiles of z(m) with m = 1, · · · ,M .

V. NUMERICAL RESULTS

In this section, we test the proposed spatio-directional model
on both synthetic and real data against the locally fit model,
a spatial model (only considering the covariate of location),
and a directional model (only considering the covariate of
direction).

A. Synthetic Data

Here we draw samples from GEV distributions with param-
eters that depend on location and direction. Concretely, we
select 256 sites arranged in a two-dimensional 16×16 lattice.
Extreme events occurring at each site are further allocated
to one of 8 directional sectors. We then predefine GEV
parameters for each site and each direction sector. In particular,
the shape parameter γ is chosen to be constant across space
whereas varying smoothly with direction. In contrast, the scale
parameter σ is chosen to be a quadratic polynomial function
of the location while remaining a constant with direction. The
location parameter µ changes smoothly with regard to both
location and direction. More explicitly, we characterize the
spatial dependence and directional dependence by a quadratic
polynomial and a Fourier series expansion respectively, as
suggested in [8] and [5]. We then randomly generate 200 GEV
distributed occurrences for each site and direction.

Our results are summarized in Fig. 2 to 4. Fig. 2 and 3
show the scale and location parameters estimated by the
aforementioned four models across space, while Fig. 4 shows
the estimated GEV parameters with 95% confidence interval
across different wind directions. We can see that estimates
resulting from the proposed spatio-directional model follow
the ground truth closely, across both space and wind direc-
tion. On the contrary, local estimates fluctuate substantially
and exhibit the largest uncertainty among the four models,
since the limited number of occurrences at each location and
direction is insufficient to yield reliable estimates of GEV
parameters. On the other hand, the spatial model is able
to infer the varying trend of GEV parameters across space,
but generates biased results; specifically, it underestimates the
location parameters (see Fig. 2c) and overestimates the scale
parameters (see Fig. 3c). Moreover, the model mistakenly
ignores the directional variation of GEV parameters as shown
in Fig. 4. Similarly, the directional model can roughly capture
the overall trend across different directions (cf. Fig. 4) but
fails to model the spatial variation (cf. Fig. 2d and Fig. 3d).
Note that the confidence intervals of the latter two models
are narrower than that of the spatio-directional model due to
the larger sample size by combining the data from different
directions (or sites) after ignoring the possible variation.

Table II summarizes the overall mean square error (MSE)
for each of the three GEV parameters and the Akaike Infor-
mation Criterion (AIC) of model fitting. The proposed model
yields the smallest MSE and AIC score. The latter implies
that the proposed model fits the data best notwithstanding the
penalty on the effective number of parameters. Note that the
effective number of parameters (i.e. the degree of freedom) in
the AIC score can be computed as tr{(CTR−1z C + αzKs +
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Fig. 2: Estimates of location parameter µ across all sites in the directional sector [300◦, 315◦).
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Fig. 3: Estimates of scale parameter σ across all sites in the directional sector [300◦, 315◦).
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Fig. 4: Estimates of the GEV parameters (solid lines) with 95% confidence intervals (dashed lines) across different directions
at a randomly selected site.

βzKd)
−1CTR−1z C} in the proposed spatio-directional model,

according to the definition given in [31] and [32].

TABLE II: Quantitative comparison of different models

Models
Mean Square Error (MSE)

AIC
γ σ µ

Locally fit model 0.0039 0.0266 0.0344 2.0325×106

Spatial model 0.0199 0.5000 2.8510 3.3389×106

Directional model 6.4635×10−4 0.4454 2.1997 2.1542×106

Spatio-directional model 2.2358×10−4 0.0024 0.0158 2.0270×106

Interestingly, the estimated smoothness parameters αγ and
βσ converge to infinity in the proposed spatio-directional
model, exactly consistent with the ground truth that γ and σ
are constant w.r.t. location and direction respectively. This

indicates that the EM algorithm can learn the appropriate
degree of smoothness in an automatic manner.

Next, we investigate the impact of sample size on the four
models. In this set of experiments, we consider the MSE
of the GEV estimates for varying sample size. Concretely,
we consider sample size 10, 30, 50, 100, 150, and 200 per
location per directional bin. For each sample size, we generate
100 data sets with the same parameterization as before. We
then compute the MSE of GEV estimates averaged over the
100 sets, as shown in Fig. 5. The proposed spatio-directional
model usually performs the best. The only exception is for
the shape parameter when the number of samples is less
than 50. In this case, the directional model produces the
most accurate results, because the number of occurrences
for each direction in the directional model is 256 (i.e., the
number of sites) times larger than that in the spatio-directional
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(a) Shape parameter γ.
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(b) Scale parameter σ.
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(c) Location parameter µ.

Fig. 5: Mean square error (MSE) of the GEV estimates as a function of sample size (averaged over 100 data sets).

model. More importantly, the shape parameter only varies
with direction in our simulation, thus making the directional
model a proper choice. The proposed model yields reasonably
accurate estimates even when the sample size is as small as
10, which demonstrates the utility of the proposed model in
the case of small sample size.

Finally, we test the performance of the proposed model
when dealing with unmonitored sites and wind directions, i.e.,
sites and directional sectors for which no observations are
available. The selection matrix C is not an identity matrix in
this case. We depict in Fig. 6 the MSE for each GEV parameter
and for the observed and unobserved variables respectively
as a function of the percentage of missing variables across
100 trials. We can see that the MSE decreases as the number
of unmonitored sites and directional sectors decreases, in
agreement with our expectations. However, the MSE is still
small even when only 10% variables are observed in the
3D graphical models. In conclusion, the proposed model can
successfully tackle missing data.
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Fig. 6: MSE for varying proportion of observed sites (averaged
over 100 trials). The MSE decreases with increasing number
of observed sites, as expected.

B. Real Data
We now investigate the extreme wave heights in the Gulf of

Mexico. Such analysis could be of benefit when constructing

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Site Index

W
av

e 
H

ei
gh

t (
m

)

(a) Distribution of extreme wave heights at 20 randomly selected sites.
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(b) Scatter plot of wave height w.r.t direction.

Fig. 7: Heterogeneity in GOMOS data. The wave heights
clearly depend on the location in the Gulf of Mexico and the
wind direction.

oil platforms in the gulf to withstand extreme waves. The
GOMOS (Gulf of Mexico Oceanographic Study) data [33]
is used in this study, which cover the period from September
1900 to September 2005 inclusive, at thirty-minute intervals.
It measures the significant wave heights. The hindcasts are
produced by a physical model, calibrated to observed hurricane
data. We isolate 315 maximum peak wave height values; each
corresponds to a hurricane event in the Gulf of Mexico. We
also extract the corresponding vector mean direction of the
wind at the time of the peak significant wave height. We then



11

0 5 10 15
0

5

10

15

significant wave height at Site 76

si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 a

t S
ite

 7
7

(a) Two nearby sites

0 5 10 15
0

2

4

6

8

10

significant wave height at Site 1

si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 a

t S
ite

 1
76

(b) Two distant sites

Fig. 8: Scatter plots of wave height at pairs of sites.

6 8 10 12 14 16 18
2.1

2.15

2.2

2.25

2.3

2.35

2.4 x 105

number of directional sectors

A
IC

 s
co

re

 

 

local estimates
directional model
spatial model
spatio-directional model

Fig. 9: AIC score as a function of the selected number of
directional sectors.

select 176 sites arranged on a 8× 22 lattice with spacing 0.5◦

(approximately 56km), which almost covers the entire U.S.
Gulf of Mexico.

An initial analysis (as shown in Fig. 7) shows the hetero-
geneity of the data w.r.t. location and direction. We can also
see from Fig. 7 that the distribution of storm-wise maxima at
each site and direction has a heavy tail, supporting the use
of the GEV marginals. We further depict in Fig. 8 the scatter
plot of extreme wave heights from two neighboring sites and
two distant sites in the lattice. Strong spatial dependence exists
between two nearby sites, however, the dependence is clearly
weaker between sites that are far apart. This observation
provides support for the choice of thin-membrane models,
since the latter only capture the direct dependence between
neighbors. In summary, the preliminary study suggests that
the proposed model is well suited for this data set.

We next apply the four models to the data: the locally fit
model, the spatial model, the directional model and the spatio-
directional model. To test the influence of the selected number
of directional sectors on the results, we consider different
numbers of sectors, i.e., 6, 8, 10, 12, 15 and 18 in sequence.
We then compute the AIC score of the four models for each
number of directional sectors. The results are summarized in
Fig. 9. Again, the spatio-directional model always achieves the
best AIC score. Moreover, the performance of this model is
not sensitive to the chosen number of directional sectors. In

practice, we propose to choose the number that minimizes the
AIC score, which is 12 for the GOMOS data. The directional
model also performs well but it ignores the spatial variation,
which is essential to model the extreme wave heights in the
Gulf of Mexico [8] (see Fig 7a and 8b). The spatial model,
on the other hand, does not properly consider the strong
directional variation visible in Fig. 7b. Finally, the locally fit
model overfits the data by introducing too many parameters.
This can be concluded from the fact that its AIC increases with
the number of directional sectors. Obviously, the proposed
spatio-directional model is preferred for this GOMOS data.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel extreme-value model
to accommodate the effects of multiple covariates. More
explicitly, we assume that marginal extreme values follow
GEV distributions. The GEV parameters are then coupled to-
gether through a multidimensional thin-membrane model. The
advantages of the proposed model can be summarized as fol-
lows: Firstly, the multidimensional thin-membrane model can
be constructed flexibly from one-dimensional thin-membrane
models, rendering the proposed model generalizable to incor-
porate any number of covariates. Secondly, component eigen-
vector structures provide efficient inference of smoothed GEV
parameters with computational complexity O(M log(M)).
Thirdly, the eigenvalues of the overall multidimensional model
can be computed easily, and help to simplify the determinant
maximization problem in the learning process of smoothness
parameters. As a result, the proposed method scales gracefully
with the problem size. Numerical results for both synthetic and
real data support the proposed model; it achieves the most
accurate estimates of GEV parameters, and models the data
best. Therefore, the approach may prove to be a practical tool
for modeling extreme events with covariates.

In the ongoing work, we will capture the dependence
between both the GEV parameters and the extreme values.
The latter is essential when considering the spatial effects on
extreme-value modeling [18]. Additionally, another potential
area for future application is in estimation of joint extremes,
for instance, the joint distribution of significant wave height
and associated spectral peak period [37]. This can be crucial
for the design and assessment of offshore and coastal struc-
tures.

APPENDIX A
DERIVATION OF THE FIRST STEP IN THE FTM SOLVER

Due to the mixed product property of Kronecker product,
Vprior in (21) can be expressed alternatively as the matrix
product:

Vprior = (IBx ⊗ IBy ⊗ VC)(IBx ⊗ VBy ⊗ IC)

× (VBx ⊗ IBy ⊗ IC). (50)

Therefore, the calculation of z1 = Vpriorz0 can be further
divided into three substeps. Before elaborating on the subthree
steps, we first introduce another property of Kronecker prod-
uct: for two arbitrary matrices J and K that can be multiplied
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together,

vec(JK) = (IK ⊗ J)vec(K) (51)

= (KT ⊗ IJ)vec(J). (52)

Now let us focus on the first substep (as denoted by the
superscript), that is, z11 = (VBx ⊗ IBy ⊗ IC)z0. Given the
above mentioned property, z11 can be computed as:

z11 = vec(Z1
0V

T
Bx) = vec{(VBxZ1

0
T

)T }, (53)

where Z1
0 is a P by QD matrix such that vec(Z1

0 ) = z0,
and P , Q and D are the dimension of VBx , VBy and VC
respectively. In addition, recall that we define Z0 to be a 3D
P by Q by D array such that vec(Z0) = z0 as in Section IV-A.
As a result, it is easy to express Z1

0
T using the entries of Z0:

Z1
0
T

=


[Z0]111 [Z0]121 · · · [Z0]1Q1 · · · [Z0]1QD

[Z0]211 [Z0]221 · · · [Z0]2Q1 · · · [Z0]2QD
...

...
...

...

[Z0]P11 [Z0]P21 · · · [Z0]PQ1 · · · [Z0]PQD

 .

As mentioned in Section II, VBxZ
1
0
T is equivalent to discrete

Fourier transform on each column of Z1
0
T , and therefore, it

coincides with performing FFT along the first dimension of
the 3D array Z0.

Similarly, in the second substep, we can first apply the prop-
erty in Expression (51), and subsequently, in Expression (52).
As a result, we can find that z21 = (IBx ⊗ VBy ⊗ IC)z11 is
identical to FFT in the second dimension of the 3D P by Q
by Q array Z1

1 which satisfies vec(Z1
1 ) = z11 . The operation

in the third substep, i.e., z1 = (IBx ⊗ IBy ⊗ VC)z21 , can be
proven likewise. Note that the ordering of the three integration
transforms can be arbitrary, because the three matrices (IBx⊗
IBy⊗VC), (IBx⊗VBy⊗IC), and (VBx⊗IBy⊗IC) commute
with each other. This algorithm resembles the popular row-
column algorithm in the literature of multidimensional Fourier
transform, cf. [34].

APPENDIX B
PROOF OF THEOREM 1

Since Kprior is a Laplacian matrix, it is strictly positive
semi-definite. In addition, CTR−1z C is a diagonal matrix
with positive diagonal elements corresponding to the observed
variables. According to the properties of Laplacian matrices,
the resulting summation Kpost is strictly positive definite.

The second conclusion follows from the following theorem
of standard Richardson iteration, proved by Adams [35].

Theorem 3. Let Kpost = K1 + K2 be a symmetric positive
definite matrix and let K1 be symmetric and nonsingular. Then
ρ(K−11 K2) < 1 if and only if K1 −K2 is positive definite.

Since K1 = Kprior + cIz and c > 0, K1 is symmetric and
nonsingular. Note that

K2 = Kpost −K1 (54)

= CTR−1z C − cIz, (55)

where c equals the largest diagonal element in CTR−1z C.
Therefore, K2 is a diagonal matrix with diagonal elements
smaller than or equal to 0. As a result, K1 −K2 is positive
definite.

APPENDIX C
PROOF OF THEOREM 2

Computing the eigenvalues of K−11 K2 amounts to solving
the generalized eigenvalue problem:

λK1x = K2x. (56)

It follows from Theorem 2.2 in [36] that

λmax(K2)

λmax(K1)
≤ ρ(K−11 K2) ≤ λmax(K2)

λmin(K1)
, (57)

where λmax(K) and λmin(K) denote the largest and smallest
absolute eignevalues of K. By substituting K1 = Kprior + cIz
and K2 = CTR−1z C−cIz into (57), we can obtain the bounds
specified for the proposed algorithm.

APPENDIX D
DERIVATION OF THE Q-FUNCTION

We aim to learn the smoothness parameters αz and βz by
maximum likelihood estimation, i.e., by maximizing

L(αz, βz) = log p(y|αz, βz) (58)

= log

∫
z

p(y, z|αz, βz)dz. (59)

Since maximizing log p(y|αz, βz) is infeasible, we apply
Expectation Maximization (EM) instead.

In the E-step, we compute the Q-function, which is defined
as:

Q(αz, βz; α̂
(κ−1)
z , β̂(κ−1)

z )

=

∫
z

p(z|y, α̂(κ−1)
z , β̂(κ−1)

z log p(y, z|αz, βz)dz

= E
z|y,α̂(κ−1)

z ,β̂
(κ−1)
z
{log p(y, z|αz, βz)}

= E
z|y,α̂(κ−1)

z ,β̂
(κ−1)
z

{
−1

2
tr(zTKpriorz) +

1

2
log |Kprior|+

}
+ c.

Note that the trace and the expectation operator commute.
Consequently,

Q(αz, βz; α̂
(κ−1)
z , β̂(κ−1)

z )

= −1

2
tr
(
KpriorEz|y,α̂(κ−1)

z ,β̂
(κ−1)
z

(zzT )
)

+
1

2
log |Kprior|+ + c

= −1

2
tr

(
Kprior

(
K

(κ−1)
post

)−1)
− 1

2

(
z(κ)

)T
Kpriorz

(κ)

+
1

2
log |Kprior|+ + c.

If we ignore the common coefficient 1/2, we obtain the Q-
function in (33).
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