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Abstract—We propose a new statistical model that captures
the conditional dependence among extreme events in a spatial
domain. This model may for instance be used to describe
catastrophic events such as earthquakes, floods, or hurricanes
in certain regions, and in particular to predict extreme values
at unmonitored sites. The proposed model is derived as follows.
The block maxima at each location are assumed to follow a Gen-
eralized Extreme Value (GEV) distribution. Spatial dependence
is modeled in two complementary ways. The GEV parameters
are coupled through a thin-membrane model, a specific type
of Gaussian graphical model often used as smoothness prior.
The extreme events, on the other hand, are coupled through
a copula Gaussian graphical model with the precision matrix
corresponding to a (generalized) thin-membrane model. We then
derive inference and interpolation algorithms for the proposed
model. The approach is validated on synthetic data as well as
real data related to hurricanes in the Gulf of Mexico. Numerical
results suggest that it can accurately describe extreme events in
spatial domain, and can reliably interpolate extreme values at
arbitrary sites.

I. INTRODUCTION

Extreme events such as floods, hurricanes, and earthquakes
often have a devastating impact on our society. Statistical
models may help to assess the likelihood of such extreme
events [1], and the dependency of extreme events across
space [1], [2], [3]. These models may be useful to quantify
the risks associated with certain infrastructures and facilities
exposed to extreme conditions.

Extreme value theory governs the behavior regarding the
asymptotic distributions of the extreme order statistics [1].
The Fisher-Tippett-Gnedenko (FTG) theorem, often called the
first theorem in extreme value theory, asserts that the block
maxima (e.g., monthly or annual maxima) of i.i.d. univariate
samples converge to the (GEV) distribution [4]. Of great
interest are models for extreme events in spatial domain, since
they can be used to describe catastrophic events in certain
regions (e.g., extreme waves in the Gulf of Mexico). One of
the most challenging issues in modeling extreme events in
spatial domain is to fully capture the spatial dependence of
extreme events, while constraining the marginals to be GEV
distributions (motivated by the FTG Theorem).

So far, the literature on modeling high-dimensional spatial
extreme events is rather limited. In the following, we provide
a brief review. In [2], a procedure is proposed to compute
the pairwise spatial dependence of extreme events, i.e., the
probability of threshold exceedance at one site conditioned

on the exceedance at another site [3]. Alternatively, Naveau
et al. [5] quantified pairwise spatial dependence through the
concept of a variogram. However, both models are only limited
to pairwise dependency. On the other hand, it has been
shown in [6] and [7] that spatial dependence can be captured
to some extent by smoothing the parameters of marginal
extreme value distributions. However, the extreme events at
different locations are assumed to be conditionally independent
after considering the parameter dependence. Recently, Sang et
al. [8] mitigated the conditional independence assumption by
means of a Gaussian copula, allowing the marginals to follow
GEV distributions while capturing the spatial dependence
through the exponential covariance function in the Gaussian
latent layer. An obvious advantage of using a Gaussian latent
layer is that once the mean and the covariance structure have
been specified, it is straightforward to compute marginal and
conditional distributions. However, Sang et al. [8] assume that
the shape and scale parameters of the GEV distribution do
not vary in space, which is less appropriate for phenomena
that exhibit substantial fluctuations over a large spatial domain
(e.g., global extreme sea states corresponding to hurricanes). A
further difficulty with the model of [8] is that a standard Gaus-
sian copula is parameterized by a dense covariance matrix. As
a result, inference in such model is computationally complex
and may be intractable for high-dimensional data (e.g., large
grids with thousands of sites) [9].

We introduce a novel model that is similar in spirit as
the approach of [8]. The main idea is to introduce Markov
Random Fields (MRF) in extreme spatial model, specifically,
thin-membrane models. More precisely, instead of using a
covariance function to capture the spatial dependence, we use
a sparse precision matrix (inverse covariance matrix) with
the structure of thin-membrane model, highly reducing the
computational complexity. In addition, we allow the marginal
GEV parameters to vary in space: we smoothen them through a
thin-membrane model [7]. The GEV parameters are estimated
by Gaussian inference. The smoothness parameters of the thin-
membrane models, which are hyperparameters in the overall
model, are inferred from the data by expectation maximization.
The resulting estimates of the shape and scale parameters
tend to be more accurate and may vary systematically across
space instead of being constant. We will refer to the proposed
approach as copula MRF-GEV model.

We further extend the concept of thin-membrane models to



irregular grids through Delaunay triangulation [10], allowing
us to handle the common situation where measurements are
collected at random locations. We derive interpolation algo-
rithms from the copula MRF-GEV model. The resulting inter-
polation schemes strongly resemble inverse distance weighted
(IDW) interpolation [11], and are quite simple and efficient,
due to the sparse thin-membrane structure.

We apply the copula MRF-GEV model to synthetic data
and real data, related to extreme wave heights in the Gulf of
Mexico. We benchmark the proposed model with several other
spatial models: MRF-GEV model [7] (with spatially dependent
GEV parameters but conditionally independent extreme val-
ues), copula GEV model (with locally fitted GEV parameters
but coupled extreme events), and a thin-membrane model,
directly fitted to the data without using copulas. The numerical
results clearly demonstrate that incorporating both extreme-
value dependence and parameter dependence across space
leads to more accurate inference. Moreover, by adjusting the
smoothness of GEV parameters automatically, the estimated
GEV parameters are able to capture different types of spatial
variations.

The rest of the paper is organized as follows. In the next
section, we briefly review thin-membrane models, since those
models play a central role in our approach. In Section III
we discuss the GEV marginals, and describe algorithms to
infer the GEV parameters. In Section IV, we describe how
we incorporate dependencies among the extreme events by
means of a copula Gaussian graphical model. In Section V we
explain how our proposed model can be used for interpolating
extreme values at sites without observations. In Section VI
we assess the proposed model and benchmark it with other
spatial models by means of synthetic and real data. We offer
concluding remarks in Section VII.

II. THIN-MEMBRANE MODELS

We use thin-membrane models to capture the spatial depen-
dence of the GEV parameters and the extreme events. We first
briefly review Gaussian graphical models, and subsequently,
the special case of thin-membrane models. Next, we elaborate
on generalized thin-membrane models.

In Gaussian graphical models or Gauss-Markov random
fields, a joint p-dimensional Gaussian probability distribution
N(µ,Σ) is represented by an undirected graph G which
consists of nodes V and edges E . Each node i is associated
with a random variable Xi. An edge (i, j) is absent if the
corresponding two variables Xi and Xj are conditionally in-
dependent: P (Xi, Xj |XV|i,j) = P (Xi|XV|i,j)P (Xj |XV|i,j),
where V|i, j denotes all the variables except Xi and Xj . It
is well-known that for multivariate Gaussian distributions, the
above property holds if and only if Ki,j = 0, where K = Σ−1

is the precision matrix (inverse covariance matrix).
The thin-membrane model is a Gaussian graphical model

that is commonly used as smoothness prior as it minimizes
the difference between values at neighboring nodes. The thin-
membrane model is usually defined for regular grids, as

illustrated in Fig. 1(a), and its pdf can be written as:

P (X) ∝ exp{−α
∑
i∈V

∑
j∈N (i)

(Xi −Xj)
2} (1)

∝ exp(−αXTKpX), (2)

where N (i) denotes the neighboring nodes of node i, and α
is the smoothness parameter. The matrix Kp is an adjacency
matrix with its diagonal elements [Kp]i,i equal to the number
of neighbors of site i, while its off-diagonal elements [Kp]i,j
are −1 if the sites i and j are adjacent and 0 otherwise.
Note that K = αKp is the precision matrix of P (X) (2).
The parameter α controls the smoothness of the whole thin-
membrane model, imposing the same extent of smoothness for
all pairs of neighbors.

(a) (b)

Fig. 1. Generalized thin-membrane model: (a) Regular grid; (b) Irregular
grid.

Thin-membrane models can be extended to irregular grids,
as illustrated in Fig. 1(b). The adjacency structure may be
generated automatically by Delaunay triangulation, cf. [10],
which maximizes the minimum angle for all the triangles in
the grid. In this case, N (i) denotes all the nodes that have
direct connection with node i. As a natural extension of (2), the
non-zero entries in Kp may be defined as [Kp]i,j = −1/d2i,j ,
where di,j is the distance between node i and j. The diagonal
elements in the adjacency matrix are given by [Kp]i,i =
−
∑p
j=1,j 6=i[Kp]i,j . We refer to this model as the irregular

thin-membrane model. Note that the regular thin-membrane
model is a special case of the irregular thin-membrane model,
where all the nodes are located on a regular grid, and all
distances di,j are identical.

As pointed out in [9], for some applications the off-diagonal
entries [Kp]i,j are not necessarily related to the distance di,j
between node i and node j. More generally, the entries of the
precision matrix K may be inferred from the data, without
specifying any dependence on the distance di,j . However, the
sparsity pattern of K is fixed, as it is specified by the (regular
or irregular) grid, i.e., Ki,j 6= 0 iff edge (i, j) is present. In
generalized thin-membrane models, the non-zero entries of K
are learned from data, for a fixed sparsity pattern determined
by the grid (cf. Fig. 1).

III. GEV MARGINALS

In this section, we describe how we infer the GEV marginal
distributions at each site. Suppose that we have n samples
x
(j)
i (block maxima) at each of the p locations, where i =



1, · · · , p and j = 1, · · · , n. Our objective is to infer the three
GEV parameters with the consideration of spatial dependence.
Specifically, we first fit the GEV distribution to block max-
ima at each location using the Probability-Weighted Moment
(PWM) method [13]. Those GEV parameter estimates are
then smoothed by means of thin-membrane model priors [7],
both for regular and irregular grids. At last, the smoothness
parameter α for the whole grid is inferred from the data by
expectation maximization (EM).

A. Local Estimates of GEV Parameters

We assume that the block maxima x
(j)
i at each location

follow a Generalized Extreme Value (GEV) distribution [4]:

F (xi) =


exp{−[1 +

γi
σi

(xi − µi)]−
1
γi }, γi 6= 0

exp{− exp[− 1

σi
(xi − µi)]}, γi = 0,

(3)

for 1 + γi/σi(xi − µi) ≥ 0 if γi 6= 0 and xi ∈ R if γi = 0,
where µi ∈ R is the location parameter, σi > 0 is the scale
parameter and γi ∈ R is the shape parameter.

We estimate the parameters µi, σi, and γi locally
at each site i by the Probability-Weighted Moment
(PWM) method [13], which aims to match the moments
E[Xt

i (F (Xi))
r(1− F (Xi))

s] with the empirical ones, where
t, r and s are real numbers. For the GEV distribution,
E[Xi(F (Xi))

r] (with t = 1 and s = 0) can be written as:

br =
1

r + 1
{µi −

σi
γi

[1 + (r − 1)γiΓ(1− γi)]}, (4)

where γi < 1 and γi 6= 0, and Γ(· ) is the gamma function.
The resulting PWM estimates (µ̂iPWM), (σ̂iPWM) and (γ̂iPWM)
are the solution of the following system of equations:

b0 = µi −
σi
γi

(1− Γ(1− γi))

2b1 − b0 =
σi
γi

Γ(1− γi)(2γi − 1)

3b2 − b0
2b1 − b0

=
3γi − 1

2γi − 1
.

(5)

B. Spatial-Dependent Estimates of GEV Parameters

We assume that each of the three parameter vectors µ =
(µ1, · · · , µp), γ = (γ1, · · · , γp) and σ = (σ1, · · · , σp) has a
thin-membrane model as prior, where p is the number of sites.
Since the thin-membrane models of µ, γ, and σ share the same
structure and inference methods, we present the three models
in a unified form.

Let y = (y1, y2, . . . , yp) denote the local estimates of
z = (z1, z2, . . . , zp), where y is either (µ̂PWM), (σ̂PWM), or
(γ̂PWM) and z is either µ, σ, or γ after considering spatial
dependence. We model the local estimates as y = z + b,
where b ∼ N(0, Rz) is zero-mean Gaussian random vector
with diagonal covariance matrix Rz .

As a result of this Gaussian approximation, the conditional
distribution of the observed value y given the true value z is

a Gaussian distribution:

P (y|z) ∝ exp{−1

2
(y − z)TR−1z (y − z)}. (6)

Since we assume that the prior distribution of z is a thin-
membrane model (cf. (2)), the posterior distribution is given
by:

P (z|y) ∝ exp(−αzzTKpz) exp{−1

2
(y − z)TR−1z (y − z)}

∝ exp{−1

2
zT (αzKp +R−1z )z + zTR−1z y}. (7)

The maximum a posteriori estimate of z is given by:

ẑ = argmaxP (z|y) = (αzKp +R−1z )−1R−1z y. (8)

The noise covariance Rz can be estimated by the bootstrap
approach described in [7], [14].

We infer the parameter αz by expectation maximization. In
the E-step, we compute [15]:

Q(αz, α̂
(k−1)
z ) = E

Z|y,α̂(k−1)
z

[logP (y, Z|αz)] (9)

= −1

2
αz{trace[Kp(α̂

(k−1)
z Kp +R−1z )−1]

+ (ẑ(k−1))TKp ẑ
(k−1)}+

1

2
log det(αzKp),

where ẑ(k) is computed as in (8), and αz is replaced by
α̂
(k)
z . Note that ẑ(k) is the MAP estimate of z conditioned on
α̂
(k)
z and y. Since the posterior distribution in z is Gaussian,

the MAP estimate ẑ(k) is also the mean of the (Gaussian)
posterior of z. In the M-step, we select the value α̂(k)

z of αz
that maximizes Q(αz, α̂

(k−1)
z ). A closed form expression of

α̂
(k)
z exists, cf. [15], and is given by:

α̂(k)
z =

p

trace[Kp(α̂
(k−1)
z Kp +R−1z )−1] + (ẑ(k−1))TKp ẑ(k−1)

,

(10)

where p is the number of sites. We iterate the E-step and
M-step until convergence, yielding a local extremum of the
marginal posterior of αz .

IV. COPULA GAUSSIAN GRAPHICAL MODEL

We capture the spatial dependence between the extreme
values (block maxima) x(j)i at the each of the p locations by
means of a copula Gaussian graphical. Also for this purpose,
we use a thin-membrane model. The smoothness parameter
αi,j now varies for each pair of neighbors in the grid (both
regular and irregular), adding extra flexibility to the model.
The sparsity structure Kp of K is fixed, as it corresponds
to a thin-membrane model. The non-zero elements of K are
inferred from data.

In the following, we denote the observed GEV variables
and hidden Gaussian variables as X1, . . . , XP and Z1, . . . ,
ZP respectively. A copula Gaussian graphical model is defined
as [16]:

Z ∼ N (0,K−1) (11)

Xi = F−1i (Φ(Zi)), (12)



where K is the precision matrix whose inverse K−1 (covari-
ance matrix) has normalized diagonal, Φ is the cdf of the
standard Gaussian distribution, and Fi is the marginal GEV
cdf of Yi with corresponding parameters µi, γi and σi. Note
that F−1i is the pseudo-inverse of Fk, which is defined as:

F−1(x) = inf
y∈Y
{F (y) ≥ x}. (13)

where y takes values in Y .
According to definition [16], a copula Gaussian graphical

model is determined by the marginals Fi and the precision
matrix K. The marginals Fi are GEV distributions, as de-
scribed in Section III. The spatial dependence among the GEV
marginals Fi is captured by coupling the GEV parameters
through thin-membrane models (cf. Section III).

In the following, we describe how we infer the precision
matrix K. As a first step, we transform the non-Gaussian
observed variables X into Gaussian distributed latent vari-
ables Z:

Zi = Φ−1(Fi(Xi)). (14)

In the second step, for given thin-membrane sparsity structure
Kp, the precision matrix K is estimated from the latent
Gaussian variables Z [17]:

K̂ = argmax
K�0

log detK − trace(SK), (15)

s.t. Ki,j = 0 ∀(i, j) 6∈ Kp,

where S is the empirical covariance of latent variables Z. The
convex optimization problem (15) can be solved efficiently
by the Newton-CG primal proximal point algorithm [17] or
iterative proportional fitting [18].

V. INTERPOLATION

Here we explain how extreme values can be inferred at any
location P0 in space, including sites without observations. We
assume that the surface of the extreme values is smooth across
space. Since both spatial-dependent GEV parameters µ, γ, σ
and the latent variables Z in (11) share a (generalized) thin-
membrane structure, we will first formulate the interpolation
problem in a unified form, and then describe the minor
differences.

Let x represent the parameter vectors µ, γ, σ, or hidden
variables Z, associated to the sites with measurements, and
let x0 denote the interpolated value at site P0 (without mea-
surements). The random variables x and x0 are assumed to
form a thin-membrane model with joint precision matrix:

K0 =

(
Kx0

Kx0,x

Kx,x0
Kx

)
. (16)

The conditional expected value of x0 therefore equals:

E[x0|x] = −K−1x0
Kx0,x x̂, (17)

where x̂ is the expected value of x.
Since we consider thin-membrane models, x0 is condition-

ally dependent on its neighbors only. For a standard thin-
membrane model (on regular or irregular grid) as illustrated
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Fig. 2. Illustration of the modified interpolation method

in Fig. 2, the expected value (17) can be simplified as:

E[x0|x] =
Kx0,x1x1 +Kx0,x2x2 +Kx0,x3x3 +Kx0,x4x4

Kx0,x1
+Kx0,x2

+Kx0,x3
+Kx0,x4

.

(18)

Clearly, due to the sparse precision matrix corresponding to
a thin-membrane model, the expression (18) is quite simple.
It is natural to choose Kx0,xj = −α/d20,j in standard thin-
membrane models (both on regular and irregular grids. Con-
sequently, the weighted average (18) boils down to inverse
distance weighted (IDW) interpolation [11]. We use IDW to
interpolate the GEV parameters.

For the latent Gaussian variables Z, however, the thin-
membrane precision matrix is not a function of distance. On
the other hand, for interpolation purposes, we need to consider
the distance from sites with observations, and potentially also
other parameters. Here we propose a modified inverse distance
weighted (MIDW) interpolation method, where Kx0,xj is not
only a function of distance but of direction as well. We assume
that Kx0,xj changes linearly with direction when the distance
remains unchanged and is proportional to the inverse square
distance when the direction remains unchanged. As illustrated
in Fig. 2, Kx0,x1

for instance can be computed as:

αx0,x1 =
1
π
2

(
α1θ4 + α4θ1

)
, (19)

Kx0,x1
= −αx0,x1

d2x0,x1

. (20)

After interpolating the parameters µ0, γ0, σ0, and hidden
variable Z0 for site P0, we obtain the GEV distributed value
of site P0 through (12).

VI. NUMERICAL RESULTS

In this section, we benchmark the proposed copula MRF-
GEV model against the MRF-GEV model (without modeling
the extreme value dependence) [7], copula GEV (without mod-
eling the GEV parameter dependence), and thin-membrane
model directly fitted to the data according to (15) (where S
is the empirical covariance matrix of the observations), both
on synthetic and real data sets. We compare all four models



by means of three criteria: the mean square error between
the interpolated extreme value and the true value, the KL-
divergence, and the number of parameters.

For synthetic data, we also compute the mean square error
(MSE) for inferring the GEV parameters. Specifically, we
report the MSE for (i) local PWM estimates; (ii) spatial-
dependent estimates from copula MRF-GEV model; (iii) IDW
interpolation from copula MRF-GEV model at unobserved
sites.

A. Synthetic Data

We generate spatially dependent GEV distributed synthetic
data as follows:

1) We generate the coordinates of the 256 observed and
400 unobserved sites. We consider two cases: First, the
observed sites are arranged in a regular grid (e.g., wave
height measuring stations in the Gulf of Mexico [19])
while unobserved sites are randomly distributed across
the grid. Second, both observed and unobserved sites are
randomly distributed in the same spatial domain (e.g.,
precipitation measuring stations in South Africa [8]).

2) We generate 315 samples from a zero-mean multivariate
Gaussian distribution, both at observed and unobserved
sites. The covariance matrix of that distribution is de-
fined as Σi,j = exp(−d2i,j/φ), where φ is the range
parameter.

3) We select GEV parameters for each site. All GEV
parameters vary smoothly across space. For both case
studies, the location parameter surface is a quadratic
Legendre polynomial, as shown in Fig. 3(a). The other
parameters are chosen differently in each case, as we
will explain later.

4) We transform the Gaussian samples generated in Step 2
to GEV distributed samples with the GEV parameters
chosen in Step 3 using (12).

0

5

10

15

20 0
5

10
15

20

-10

0

10

20

30

latitudelongitude

lo
ca

tio
n 

pa
ra

m
et

er
 µ

(a)

0
5

10
15

20

0
5

10
15

20
0

2

4

6

8

longitudelatitude

sc
al

e 
pa

ra
m

et
er

 σ

(b)

Fig. 3. True GEV parameters for synthetic data: (a) Location parameter
surface; (b) Scale parameter surface.

1) Case Study 1: The observed sites are located on a 16x16
grid, whereas the observed sites are randomly distributed, as
shown in Fig. 4. The shape and scale parameters γ and σ are
chosen to be constant, and are equal to 0.4 and 2 respectively.
The results for GEV parameter estimation are summarized in
Table I. As mentioned earlier, we report the MSE for (i) local
PWM estimates; (ii) spatial-dependent estimates from copula
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Fig. 4. Coordinates of observed and unobserved sites for Case Study 1.

MRF-GEV model; (iii) IDW interpolation from copula MRF-
GEV model at unobserved sites. The GEV estimates by the

TABLE I
MEAN SQUARE ESTIMATION ERROR FOR GEV PARAMETERS IN CASE

STUDY 1

GEV parameter PWM copula MRF-GEV IDW interpolation
shape parameter γ 0.0013 9.0334× 10−4 9.0334× 10−4

scale parameter σ 0.0093 0.0084 0.0084
location parameter µ 0.0114 0.0113 0.0260

copula MRF-GP model are more accurate than the local PWM
estimates, although the difference is minor. The PWM method
often results in accurate estimates of GEV parameters [13].
The corresponding smoothness parameter αµ = 0.3370 while
αγ and ασ converge to infinity. As a consequence, the shape
and scale parameter do not depend on location, in agreement
with the true parameter values. As can also be seen from
Table I, IDW parameter interpolation, based on estimates from
the copula MRF-GP model, generates accurate estimates of the
GEV parameters at unobserved sites.

TABLE II
COMPARISON FOR CASE STUDY 1

Models MSE KL-divergence No. of Parameters
copula MRF-GEV 0.0497 301.8436 738

MRF-GEV 81.0440 646.8706 258
copula GEV 116.0777 302.3067 1248

Gaussian 0.7025 804.4967 736

Table II summarizes the performance of the four methods
for inferring extreme values. The proposed copula MRF-GEV
model has the smallest MSE and KL divergence. Both MRF-
GEV and copula GEV fail to describe the spatial extreme
values suitably, since they only capture one of the two types
of spatial dependence, motivating our approach to model the
spatial dependence both for the parameter and extreme values.



Interestingly, the Gaussian model has the second best perfor-
mance in terms of MSE, probably due to the smooth nature
of the extreme value surface. However the KL divergence for
the Gaussian model is large compared to the other models,
since Gaussian models are not capable of capturing extreme
events; such models mostly describe fluctuations around the
mean value. Compared with the copula GEV model, the copula
MRF-GEV model achieves a smaller KL divergence with
fewer parameters, suggesting that it is beneficial to model the
spatial dependence of the GEV parameters.

We further set the scale parameter surface to be quadratic
instead of constant, as shown in Fig. 3(b). The results are
qualitatively similar. The only difference is that ασ is now
finite (4.9831), implying that the estimates of σ are no longer
independent of location. This is not surprising since the true
parameter σ follows a quadratic surface. In other words, by
inferring smoothness parameters, the smoothness of the GEV
parameters can be automatically and suitably adjusted.

2) Case Study 2: In the second scenario, both the observed
and unobserved sites are randomly distributed in space, as
shown in Fig. 5. The adjacency structure of the corresponding
irregular thin-membrane model is generated automatically
using Delaunay triangulation [10], indicated by the blue lines
in the figure.
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Fig. 5. Coordinates of observed and unobserved sites for Case Study 2.

As in the first scenario, we first set the shape and scale
parameters γ and σ to be constant, and equal to 0.4 and 2
respectively. The results of parameter estimation are presented
in Table III. The proposed copula MRF-GP model yields
smaller estimation error than the PWM local estimates. The
smoothness parameters αγ and ασ converge to infinity while
αµ is finite (0.2188), in agreement with the true underlying
model.

Table IV summarizes the comparison of the four models. It
can be seen that the proposed copula MRF-GEV outperforms
the other methods both in terms of MSE and KL divergence,

TABLE III
MEAN SQUARE ESTIMATION ERROR FOR GEV PARAMETERS IN CASE

STUDY 2

GEV parameter PWM copula MRF-GEV IDW interpolation
shape parameter γ 2.8527× 10−4 9.9447× 10−5 9.9447× 10−5

scale parameter σ 0.0126 0.0126 0.0084
location parameter µ 0.0157 0.0155 0.0650

TABLE IV
COMPARISON FOR CASE STUDY 2

Models MSE KL-divergence No. of Parameters
copula MRF-GEV 0.1869 150.7595 1009

MRF-GEV 95.0509 652.2792 258
copula GEV 99.1437 151.0429 1519

Gaussian 0.2283 690.6725 1007

which suggests that the method is also suitable for irregular
grids.

Comparing the results with Case Study 1, we notice that by
introducing more parameters, the KL-divergence between the
copula MRF-GEV model and the data is reduced. Meanwhile,
due to the random location of the observed sites, there is a
lack of information in some areas compared to the regular
grid, resulting in a larger mean square error of interpolation.

Next, as in the first scenario, we set the scale parameter
surface to be a quadratic Legendre polynomial as shown in
Fig. 3(b). Consistent with the true model, the resulting ασ is
finite (2.8716).

B. Real Data

In this section, we consider the GOMOS (Gulf of Mexico
Oceanographic Study) data [19], which consists of 315 maxi-
mum peak wave height values; each corresponds to a hurricane
event in the Gulf of Mexico. The distance between each pair
of neighbors is 0.125◦ (approximately 14km).

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

significant waveheight at site 33

si
gn

ifi
ca

nt
 w

av
eh

ei
gh

t a
t s

ite
 3

4

(a)

0 2 4 6 8 10 12
0

5

10

15

significant waveheight at site 1

si
gn

ifi
ca

nt
 w

av
eh

ei
gh

t a
t s

ite
 7

8

(b)

Fig. 6. Scatter plots of wave height at pairs of sites: (a) two distant sites;
(b) two nearby sites.

As can be seen from Fig. 6, strong spatial dependence exists
between two nearby sites, and even between sites that are far
apart. Fig. 7 shows that the maximum peak wave heights vary
smoothly over space.

First we analyze a 31x31 lattice in a central region of
the Gulf of Mexico (see Fig. 8(b)). The nodes of a 16x16
regular sublattice are chosen as locations with observations
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Fig. 8. Interpolation of the maximum wave heights caused by a storm (small regular subgrid). (a) True graph; (b) Observed sites (black) and unobserved
sites (red) on the grid; Interpolation by (c) the copula MRF-GEV model; (d) MRF-GEV model; (e) copula GEV model; (f) Gaussian model.
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Fig. 7. The maximum wave height corresponding to one storm for 256 sites
located on 16x16 lattice.

(indicated by black circles in the figure), while the other nodes
in the 31x31 lattice are treated as sites without observations.
The interpolation results for one storm event are shown in
Fig. 8. The figure suggests that the copula MRF-GEV model
outperforms the other 3 models in terms of interpolation
accuracy. Results for all 315 storms are summarized in Ta-
ble V, listing the interpolation mean square error (MSE), KL
divergence, and number of parameters for each model. The
proposed copula MRF-GEV model achieves the smallest KL
divergence and MSE with only relatively few parameters. The
resulting smoothness parameters αγ =∞, ασ = 127.1875 and
αµ = 78.5047. The parameter γ is constant, whereas both σ
and µ fluctuate across space.

Now we consider the irregular grid with all 4363 measuring

TABLE V
COMPARISON FOR REGULAR GRID IN THE GULF OF MEXICO

Models MSE KL-divergence No. of Parameters
copula MRF-GEV 0.0011 238.3892 993

MRF-GEV 17.0022 513.9034 258
copula GEV 1.3863 240.3537 1248

Gaussian 0.0023 506.9120 736

sites in the Gulf of Mexico. We randomly select 1000 sites as
the locations with measurements, while the remaining sites are
regarded as locations without measurements. Fig. 9 shows the
interpolation by all four methods, for one storm.

Again, the copula MRF-GEV model seems to yield the
lowest interpolation error. The Gaussian model also performs
well but its contour plot fluctuates more than the copula MRF-
GEV model, suggesting that the estimates are less reliable.
On the other hand, the other two methods cannot correctly
interpolate the values for the unobserved sites, since they fail
to capture the spatial dependencies among the GEV parameters
and the wave heights at different locations.

TABLE VI
COMPARISON FOR IRREGULAR GRID IN THE GULF OF MEXICO

Models MSE KL-divergence No. of Parameters
copula MRF-GEV 0.0130 524.4927 5944

MRF-GEV 7.6933 1.7159× 103 3000
copula GEV 1.6094 529.2659 5944

Gaussian 0.0254 791.1372 3944

Table VI shows quantitative results of all four models, com-
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Fig. 9. Interpolation of the maximum wave heights caused by a storm (irregular grid covering the Gulf of Mexico). (a) True graph; (b) Observed sites (black)
and unobserved sites (red) on the grid; Interpolation by (c) the copula MRF-GEV model; (d) MRF-GEV model; (e) copula GEV model; (f) Gaussian model.

puted from all hurricane events. The corresponding smooth-
ness parameters for the copula MRF-GEV model are αγ =
4.8860 × 103, ασ = 148.0747 and αµ = 83.9102. None
of the smoothness parameters converge to infinity, suggesting
significant spatial variations in the GEV parameters across the
Gulf of Mexico.

VII. CONCLUSIONS

In this study, we have presented a new model for quantifying
dependencies among spatial extreme events. The dependency
of the extreme events across space is modeled through a
thin-membrane Gaussian copula. Also the parameters of the
GEV marginals are coupled in space through thin-membrane
models.

Numerical results show that the proposed model not only
provides accurate estimates and predictions, it is also compu-
tationally efficient and practical for both regular and irregular
grids, even for large regions such as the entire Gulf of Mexico.

The present model has several limitations. The monoscale
thin-membrane model cannot capture the long-range depen-
dencies effectively in a large spatial domain. In future work,
we will attempt to utilize multiscale models instead. In addi-
tion, the model does not consider other covariate effects (e.g.,
direction, season) and this will be further explored in detail.
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