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1. Changes in Variance - Additional Simulations

The simulation study reported in Section 4.1 of Killick, Fearnhead & Eckley (2012)

considered segment variances simulated so that 95% were within [1/10,10] and a

linearly increasing number of changepoints (m = n/100). Here we also consider the

cases of square root increasing changepoints (m = b
√
n/4c) and a fixed number of

changepoints (m = 2). Both these sceanarios violate the assumptions of Theorem 3.2

from the main text. Figure 2 in the supplementary material shows the results for the

varaince range [1/10,10] alongside the linearly increasing figures from the main text.

Similarly, Figures 1 and 3 in the supplementary material follow the format of Figure 2

in the supplementary material repeated for ranges [1/5,5] and [1/20,20]. The results

across the different ranges are similar.

Firstly Figure 2(a) in the supplementary material shows that when the number of

changepoints increases linearly with n, PELT does indeed have a CPU cost that is

linear in n. By comparison Figures 2(b) and 2(c) in the supplementary material show

that if the number of changepoints increases at a slower rate, the CPU cost of PELT

is no longer linear. However even in the latter two cases, substantial computational
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savings are attained relative to optimal partitioning.

Figures 2(g)-2(i) in the supplementary material show the increase in accuracy in

terms of mean square error of estimates of the parameter. For the fixed number

of changepoints scenario the difference is negligible but, for the linearly increasing

number of changepoints scenario, the difference is relatively large.

Figures 4(a)-4(i) in the supplementary material show the proportion of correctly iden-

tified changepoints against the number of falsely detected changepoints. The fixed

number of changepoints has the highest detection rate for the fewest falsely detected

changepoints. This decreases as the number of changepoints increases through square

root to linear increases. In all examples PELT has, for the smaller false detection

rates, a higher correct detection rate than Binary Segmentation.

Figure 5 compares the timings of the Binary Segmentation algorithm with PELT. In

all examples, Binary Segmentation is computationally quicker.

2. Application to Dow Jones Index

We now use PELT to analyse data from the Dow Jones Index. The Dow Jones

index has been studied in part by many authors including Hsu (1977) and Berkes

et al. (2006). Following these authors, Figure 6 in the supplementary material shows

the daily closing returns from 1st October 1928 to 30th July 2010 defined as Rt =

ct+1/ct−1, where ct is the closing price on day t. Previous authors have modelled the

Dow Jones daily returns as a change in variance which seems reasonable from Figure 6

in the supplementary material. We also take this approach to analysing the data and

set the cost function as twice the negative log likelihood. As in previous analyses we

shall assume that the returns follow a Normal distribution with constant (unknown)

mean and piecewise stationary (unknown) variance. The changes in variance identified

by the PELT and Binary Segmentation methods using the SIC penalty are shown as
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vertical lines in Figure 6 in the supplementary material. The PELT method identifies

82 changepoints and the Binary Segmentation method identifies 65. The difference

in the overall cost function between PELT and Binary Segmentation is 300.1. If

we implement Binary Segmentation so as to find the same number of changepoints

as PELT, the resulting difference in the log-likelihood for the two segmentations is

59.4. For this data, the decrease in speed from the Optimal Partitioning method

to the PELT method is by a factor of 14. For information, PELT identified 82

changepoints of which 32 were in common with optimal Binary Segmentation and 44

were in common with Binary Segmentation for the same number of changepoints as

PELT.

3. Changes in Mean and Variance within Normally Distributed Data

Simulation Study The simulation study here will be constructed in a similar way

to that of Section 4.1 from the main text. It is assumed that the data follow a Normal

distribution with mean and variance depending on the segment. As previously we

shall take the cost function as twice the negative of the log likelihood. Note that for a

change in mean and variance, the minimum segment length is two observations. For

a specific segment the cost is

C(y(τi−1+1):τi) = (τi − τi−1)

log(2π) + log

 τi∑
j=τi−1+1

(
yj −

∑τi
k=τi−1+1 yk

(τi − τi−1)

)2
+ 1

 .

(1)

We consider scenarios of varying data lengths: n=(100, 200, 500, 1000, 2000, 5000,

10000, 20000, 50000). For each value of n we consider three scenarios for the number

of changepoints, m: a linearly increasing number of changepoints, m = n/100; the

number of changepoints increasing with the square-root of n, m = b
√
n/4c; and a

fixed number of changepoints, m = 2.
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These changepoints are distributed uniformly across (2, n−2) with the only constraint

being that there must be at least 30 observations between changepoints. Within

each of the 9 scenarios (varying n) we have 1,000 repetitions where the mean for

each segment is a realisation from a Normal distribution with mean 0 and standard

deviation 2.5. Thus 95% of the simulated means are within the range [-5,5]. As for the

change in variance simulation study, the variance parameters for each segment are a

realisation from a Log-Normal distribution with mean 0. We consider three standard

deviations log(50)
2

, log(10)
2

and log(20)
2

. These parameters are chosen so that 95% of the

simulated variances are within the ranges
[
1
5
, 5
]
,
[

1
10
, 10
]

and
[

1
20
, 20
]

respectively.

Figures 7, 8 and 9 in the supplementary material follow the format of Figure 2 from

the supplementary material repeated for the change in mean and variance sceanarios.

Each row depicts a different method for comparing the PELT and Binary Segmen-

tation algorithms. The first row is computational time; the second is difference in

likelihood and the third is MSE of parameter estimates. The results are broadly

similar to their counterparts for the change in variance example. One notable differ-

ence is that the MSE for the variance parameter in the change in mean and variance

sceanarios tends to be larger than for the change in variance sceanario.

4. Changes in Mean within Normally Distributed Data

The simulation study here will be constructed in a similar way to that of Section 4.1

from the main text. It is assumed that the data follow a Normal distribution with

mean depending on the segment. As previously we shall take the cost function as

twice the negative of the log likelihood. We consider 4 data lengths: n=(500, 5000,

50000, 500000). For each value of n we consider the two scenarios for the number

of changepoints, m: a linearly increasing number of changepoints, m = n/100 and a

fixed number of changepoints, m = 2.
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These changepoints are distributed uniformly across (1, n−1) with the only constraint

being that there must be at least 30 observations between changepoints. Within each

of the 3 smalleset scenarios (varying n) we have 100 repetitions and for the largest n

we have 10 repetitions. In each repetition the mean for each segment is a realisation

from a Normal distribution with mean 0 and standard deviation 2.5. Thus 95% of

the simulated means are within the range [-5,5]; the variance was set to 1.

This small scale simulation study was conducted to compare the computational time

of PELT with the computational time of another exact method called the Pruned

Dynamic Programming Algorithm (PDPA) from Rigaill (2010). Unfortunately the

PDPA algorithm cannot handle multiple parameter problems such as a change in both

the mean and the variance and, through contact with the authors, we dicsovered that

it also could not identify changes in variance. Hence, this small scale study considering

changes in mean.

As both methods are exact they result in the same segmentation, it is simply the

computational time and memory requirements that differ. Table 1 reports the average

computational time for each n (with non-overlaping confidence intervals) where PELT

is computationally quicker in all but the largest fixed changepoint sceanario. It should

also be noted that for the largest length of data (n = 500000), PDPA required 8Gb

of memory in the fixed data and 50Gb in the linearly increasing sceanarios. PELT

required less than 256Mb of memory in all sceanarios.
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Table 1: Average Computational Time (std dev. in brackets) for a change in mean.

Length of data (n) 500 5,000 50,000 500,000

Linearly Increasing

PELT
0.00085 0.00739 0.07628 0.94730

(0.00039) (0.00086) (0.00376) (0.3353)

PDPA
0.33381 34.53683 3437.02234 336829.94150

(0.07515) (2.44199) (92.21506) (2627.57174)

Fixed

PELT
0.00011 0.07257 7.11876 594.9286

(0.00034) (0.02013) (2.03860) (178.4677)

PDPA
0.16442 1.98294 24.92679 270.6696

(0.04932) (0.41821) (4.79901) (58.0634)

5. PROOF OF THEOREM 3.1

Assume that (5) from the main text is true. Then

F (t) + C(y(t+1):s) + β +K ≥ F (s) + β

=⇒ F (t) + C(y(t+1):s) + β +K + C(y(s+1):T ) ≥ F (s) + β + C(y(s+1):T )

=⇒ F (t) + C(y(t+1):T ) + β ≥ F (s) + β + C(y(s+1):T ),

by (4) from the main text. Hence, it follows that t cannot be a future minimiser of

the sets

ST :=
{
F (τ) + C(y(τ+1):T ) + β, τ = 0, 1, . . . , T − 1

}
, T > s

and can be removed from the set of τ for each future step.

6. PROOF OF THEOREM 3.2

The proof of Theorem 3.2 has two parts. Firstly we show that the expected computa-

tional cost is bounded by nLn, where Ln is the expected number of changepoint-times
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stored (i.e. not pruned) when analysing the nth observation. Secondly we show that

under assumptions (A1)–(A4) limn→∞ Ln <∞.

Introduce notation G(y(s+1):t) to be the minimum value of the cost function (3), from

the original text, for data y(s+1):t. So, as previously defined, F (t) = G(y1:t). We will

consider pruning on the more stringent condition that changepoint t − j is removed

at iteration t if

C(y(t−j+1):t) > G(y(t−j+1):t). (2)

That fact that this is a more stringent condition, comes from (6) from the original

text, noting that F (t) ≤ F (t − j) + G(y(t−j+1):t) as the latter is the smallest overall

cost for segmentations that include a changepoint at t − j, and remembering that

for our choice of C(·), K = 0. Furthermore the computational cost of PELT will be

bounded above by the method which prunes using this condition.

Assume we are pruning with condition (2). For a positive integer j ≤ t, let It,j

be an indicator of whether a changepoint at time t− j is stored after processing the

observation at time t. The overall computational cost of processing the observation at

time (t+1) is 1+
∑t

j=1 It,j. Now as the data-generating process is time-invariant, and

our condition (2) just depends on data y(t−j+1):t, we have E (It,j) = Ej, independent

of t. So the expected computational cost is bounded by nLn where

Ln = 1 +
n−1∑
j=1

Ej,

the expected computational cost of processing the last observation.

Now we define L as the limit of Ln as n → ∞. We need to show this is finite. If it

is, the computational cost of a method using (2) to prune will have a computational

cost that is linear in n, and hence so will PELT. We will do this by showing that Ej

decays to 0 sufficiently quickly as j →∞.

Now (by choosing t = j) Ej is the probability that Ij,j = 1, which is that a changepoint
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at time 0 is not pruned after processing the jth observation. For Ij,j = 1 we need

C(1, j) ≤ F (j),

where C(1, j) is the cost associated with assuming a single segment for observation

y1:j and F (j) is the minimum cost possible for segmenting y1:j. Now we will define mj

to be the number of actual changepoints before time j, and τ1, . . . , τmj
their positions.

Furthermore we define τ0 = 0 and, with a slight abuse of notation, τmj+1 = j. Then

F (j) ≤
mj+1∑
i=1

[
C(y(τi−1+1):τi) + β

]
.

So

Ej ≤ Pr

(
C(1, j) ≤

mj+1∑
i=1

[
C(y(τi−1+1):τi) + β

])
.

Now define θi to be the value of the parameter associated with the true segment of

observation i; and θ̃i the value of the maximum likelihood estimate of the parameter

associated with the true segment of observation i:

θ̃i = arg max
θ

τl∑
k=τl−1+1

log f(yk|θ),

where l is defined so that τl−1 < i ≤ τl.

Now C(1, j) = −
∑j

i=1 log f(yi|θ̂j), where θ̂j is defined in Theorem 3.2 to be the

maximum likelihood estimate θ for data y1:j under an assumption of a single segment.

By the definition above, we also have

mj+1∑
i=1

C(y(τi−1+1):τi) = −
j∑
i=1

log f(yi|θ̃i)

So we can re-write

Aj︷ ︸︸ ︷
C(1, j)−

mj+1∑
i=1

[C(y(τi−1+1):τi) + β] =

Bj︷ ︸︸ ︷
j∑
i=1

[log f(yi|θ∗)− log f(yi|θ̂j)] +

Dj︷ ︸︸ ︷
j∑
i=1

[log f(yi|θi)− log f(yi|θ∗)]− (mj + 1)β+

Rj︷ ︸︸ ︷
j∑
i=1

[log f(yi|θ̃i)− log f(yi|θi)] . (3)
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First note that Rj ≥ 0. So Ej = Pr(Aj ≤ 0) ≤ Pr(Bj +Dj ≤ 0). Now we will bound

this probability using Markov’s inequality.

By (A1), and using that the expected number of changepoints is related to the ex-

pected segment length, E (Mj) = j/E (S) + o(j) (elementary renewal theorem), we

have

E (Bj +Dj) = E (Bj)+E (Dj) = E

(
j∑
i=1

[log f(Yi|θi)− log f(Yi|θ∗)]

)
−β j

E (S)
+o(j)

Thus, using (A4), we have that there exists c > 0 such that for sufficiently large j

E (Bj +Dj) > cj.

Now let B∗j = Bj − E (Bj) and D∗j = Dj − E (Dj). We now consider E
(
(B∗j +D∗j )

4
)
,

and show that this is O(j2). Now the Minkowski Inequality gives that

E
((
B∗j +D∗j

)4) ≤ [E((B∗j )4)1/4 + E
((
D∗j
)4)1/4]4

.

Now by (A1) E
(
(B∗j )

4
)

= O(j2), so we need only to show that E
(
(D∗j )

4
)

is O(j2), in

order for E
(
(B∗j +D∗j )

4
)

to be O(j2).

Define

Zi = log f(Yi|θi)− log f(Yi|θ∗)− E (log f(Yi|θi)− log f(Yi|θ∗)) ,

so D∗j =
∑j

i=1 Zi − β(Mj − E (Mj)). Note that Zi has the same distribution for all i,

and we will let Z denote a further random variable with this distribution.

Under condition (A3) and results on moments of renewal processes from Smith (1959)

we have E ((Mj − E (Mj))
3) = O(j). Now as 0 ≤Mj ≤ j we have

E
(
(Mj − E (Mj))

4) ≤ jE
(
(Mj − E (Mj))

3) = O(j2)

Thus, using the Minkowski Inequality again we will have that E
(
(D∗j )

4
)

is O(j2)

providing E
((∑j

i=1 Zi

)4)
= O(j2).
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We have

E

( j∑
i=1

Zi

)4
 =

j∑
i1=1

j∑
i2=1

j∑
i3=1

j∑
i4=1

E (Zi1Zi2Zi3Zi4) .

If we condition on the position of the changepoints we have that, by independence

across segments:

E (Zi1Zi2Zi3Zi4) ≤

 E (Z4) if each segment contains an even number of i1, . . . , i4

0 otherwise.

Thus we get a bound on the fourth moment of
∑j

i=1 Zi in terms of the expected

value of the segment lengths of our changepoint process. Denote S
(j)
i = min{Si, j},

and note that for each segment to contain an even number of i1, . . . , i4 we need one

segment to contain all four values, or two segments to contain two each. If we know

S1, . . . , Sj this involves at most

3

mj+1∑
i=1

mj+1∑
k=1,k 6=i

(
S
(j)
i

)2 (
S
(j)
k

)2
+

mj+1∑
i=1

(
S
(j)
i

)4
possible combinations of i1, . . . , i4. Thus taking expectations with respect to S1,. . .,Sn

we get:

E

( j∑
i=1

Zi

)4
 ≤ E

(
Z4
)
E

(
3

mj+1∑
i=1

mj+1∑
k=1,k 6=i

(
S
(j)
i

)2 (
S
(j)
k

)2
+

mj+1∑
i=1

(
S
(j)
i

)4)

≤ E
(
Z4
)
E

(
3

j∑
i=1

j∑
k=1,k 6=i

(
S
(j)
i

)2 (
S
(j)
k

)2
+

j∑
i=1

(
S
(j)
i

)4)

≤ E
(
Z4
){

3E

(
j∑
i=1

(
S
(j)
i

)2)
E

(
j∑

k=1

(
S
(j)
k

)2)
+ E

(
j∑
i=1

(
S
(j)
i

)4)}

≤ E
(
Z4
) [

3j2E
(
S2
)

+ j2E
(
S3
)]
.

The last inequality uses that E
((

S
(j)
i

)4)
≤ jE

((
S
(j)
i

)3)
≤ jE (S3

i ).

This shows that there exists a K <∞ such that E
((
B∗j +D∗j

)4)
< Kj2. Now using

Markov’s inequality we have, for j large enough that E (Bj +Dj) > cj

Ej ≤ Pr(Bj +Dj ≤ 0) ≤ Pr(|B∗j +D∗j | ≥ E (Bj +Dj)) ≤
E
((
B∗j +D∗j

)4)
[E (Bj +Dj)]4

≤ Kj2

c4j4
.
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Thus we have Ej = O(j−2), and hence L = limn→∞
∑n

j=1Ej is finite, as required. �

The basic idea of the proof is to show that the probability of pruning t−j as the value

of the most recent changepoint before t goes to zero sufficiently quickly. This in turn

required considering the cost function we are trying to minimise, and considering the

distribution of the difference of this cost function assuming no changepoint between

t− j and t, and the cost associated with the true changepoint positions between t− j

and t. For more general cost functions and changepoint models, if we can show that

the expected value of this difference decreases linearly with j, but its fourth moment

increases only quadratically with j, then the same proof will show that PELT has a

linear computational cost.

7. PROOF OF THEOREM 3.3

Conditions on f imply that for m ≥ 0 and m̂ ≥ 0, f(m) ≤ f(m̂) + (m − m̂)f ′(m̂).

We also note that if minimising (8) from the main text gives m̂ changepoints then

it immediately follows that these will be the optimal changepoints under the criteria

(6) from the main text.

Now, for any given m we can minimise
∑m+1

i=1 C(y(τi−1+1):τi) with respect to the m

changepoints τ1, . . . , τm. Denote this minimum by C(m). Then we have that m̂

satisfies

f(m̂) + C(m̂) ≤ f(m) + C(m)

for any m = 0, . . . , n− 1.

Now using the concavity of f(·),

f(m̂) + C(m̂) ≤ f(m) + C(m) ≤ f(m̂) + (m− m̂)f ′(m̂) + C(m).

Rearranging this shows m̂f ′(m̂) + C(m̂) ≤ mf ′(m̂) + C(m), and hence that m̂ min-

imises (8) from the main text.
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Figure 1: Results for change in variance range [1/5,5]. The rows correspond to (a) Average

Computational Time (in seconds) for a change in variance, (b) Average difference in cost between

PELT and BS, (c) MSE. The columns correspond to, as n increases, (1) linearly increasing; (2)

square root increasing; (3) fixed number of changepoints. OP: blue, PELT: black, optimal BS: red,

subBS: orange.
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Figure 2: Results for change in variance range [1/10,10]. The rows correspond to (a) Average

Computational Time (in seconds) for a change in variance, (b) Average difference in cost between

PELT and BS, (c) MSE. The columns correspond to, as n increases, (1) linearly increasing; (2)

square root increasing; (3) fixed number of changepoints. OP: blue, PELT: black, optimal BS: red,

subBS: orange.
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Figure 3: Results for change in variance range [1/20,20]. The rows correspond to (a) Average

Computational Time (in seconds) for a change in variance, (b) Average difference in cost between

PELT and BS, (c) MSE. The columns correspond to, as n increases, (1) linearly increasing; (2)

square root increasing; (3) fixed number of changepoints. OP: blue, PELT: black, optimal BS: red,

subBS: orange.
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Figure 4: Change in variance: Proportion of correctly identified changepoints (within 10 of true

value) against the proportion of falsely detected changepoints with 2σ confidence lines. The columns

correspond to (a) n = 500, (b) n = 5, 000, (c) n = 500, 000. The rows are (1) linearly increasing, (2)

square root increasing and (2) fixed number of changepoints. (PELT: black, BS: red, SIC: blue dot)
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Figure 5: Change in variance: Average Computational Time and 2σ confidence band (in seconds).

The columns correspond to, as n increases, (1) linearly increasing; (2) square root increasing; (3)

fixed number of changepoints. The rows correspond to variance ranges (1) [1/5,5], (2) [1/10,10], (3)

[1/20,20]. PELT: black, BS: red.
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Figure 6: The Dow Jones index daily returns data with changepoints marked using (a) PELT and

(b) Binary Segmentation methods with the SIC penalty.
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Figure 7: Results for change in mean and variance range [1/5,5]. The rows correspond to (a)

Average Computational Time (in seconds) for a change in variance, (b) Average difference in cost

between PELT and BS, (c) MSE for mean (dotted) and variance (full) parameters. The columns

correspond to, as n increases, (1) linearly increasing; (2) square root increasing; (3) fixed number of

changepoints. OP: blue, PELT: black, optimal BS: red, subBS: orange.
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Figure 8: Results for change in mean and variance range [1/10,10]. The rows correspond to (a)

Average Computational Time (in seconds) for a change in variance, (b) Average difference in cost

between PELT and BS, (c) MSE for mean (dotted) and variance (full) parameters. The columns

correspond to, as n increases, (1) linearly increasing; (2) square root increasing; (3) fixed number of

changepoints. OP: blue, PELT: black, optimal BS: red, subBS: orange.
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Figure 9: Results for change in mean and variance range [1/20,20]. The rows correspond to (a)

Average Computational Time (in seconds) for a change in variance, (b) Average difference in cost

between PELT and BS, (c) MSE for mean (dotted) and variance (full) parameters. The columns

correspond to, as n increases, (1) linearly increasing; (2) square root increasing; (3) fixed number of

changepoints. OP: blue, PELT: black, optimal BS: red, subBS: orange.
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Figure 10: Change in mean and variance: Proportion of correctly identified changepoints (within

10 of true value) against the proportion of falsely detected changepoints with 2σ confidence lines.

The columns correspond to (a) n = 500, (b) n = 5, 000, (c) n = 500, 000. The rows are (1) linearly

increasing, (2) square root increasing and (2) fixed number of changepoints. (PELT: black, BS: red,

SIC: blue dot)
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