

Supporting Operation in

Ad-Hoc Environments

Matthew John Storey

B.Sc. Hons. (Lancaster 1997)

Computing Department,

Lancaster University,

England

Submitted for the degree of Doctor of Philosophy,

October, 2002.

i

Abstract

Supporting Operation in Ad-Hoc Environments

Matthew Storey

Computing Department,
Lancaster University, UK.

Submitted for the degree of Doctor of Philosophy,
September, 2002.

The increasing availability of devices with processing and communication

capabilities, such as PDA’s and mobile phones, has led to a desire to use various

combinations of these devices for new and as yet unrealised operations. Not only are

mobile devices expected to offer facilities like email and web browsing but also more

demanding operations such as video encoding and playback. Attaining these

operations within a stationary environment with high specification workstations is

non-trivial; achieving this in a mobile environment with low power devices such as

PDA’s is a much more complex challenge.

The challenges posed in a mobile environment are diverse; this thesis focuses on the

desire to operate in an ad hoc environment, one that is composed of devices that are

capable of some form of computation as well as being able to communicate with one

another. Operation within this ‘active environment’ requires the ability to know what

resources are available in the environment and provide a means for manipulation of

these resources.

This thesis examines the currently available architectures for the detection and

manipulation of resources in an active environment leading to a describing of the

novel approach taken to help resolve these issues. The MARE approach described in

this thesis is a novel combination of tuple spaces and mobile agents for enabling

operation within active environments. The design and implementation of the MARE

approach are detailed prior to performing an evaluation of the MARE approach for

operating within an active environment. This evaluation highlights MARE as a

ii

solution to facilitating operation within active environments. MARE is shown to

operate favourably particularly in respect to resource discovery and configuration

without reliance on a communications infrastructure, being sympathetic to bandwidth

limitations and offering facilities to reconfigure resources to better suit environmental

changes.

The overall hypothesis of this thesis is that through utilising tuple spaces and mobile

agents in an active environment resource discovery and configuration can be

achieved, and that this approach offers operation without reliance upon static servers

and is capable of adaptation whilst utilising a minimum of communication bandwidth.

iii

Declaration

This thesis builds upon the work carried out by Dr Stephen Wade examining the tuple

space paradigm for operation within a mobile environment [Wade’99].

This thesis has been written by myself, and the work reported herein is my own. The

following documented research has been carried out at Lancaster University.

The work reported in this thesis has not been previously submitted for a degree in this,

or any other form.

iv

Acknowledgements

The process of completing a Ph.D. thesis is a very personal journey; however it does

require the help and support of many others to successfully complete the task. Here I

wish to express my thanks to all who have been involved in supporting me during the

completion of my Ph.D.

I would like to begin by thanking Professor Gordon Blair who has been my supervisor

for the last three years. His guidance and continued support and encouragement

throughout the process of writing this thesis is immeasurable. I would also like to

thank Professor Doug Shepherd for helping me gain a position as a member of staff

within the computing department at Lancaster University three years ago. Your

support, kind words and long chats coupled with the trust you placed in me and the

freedom you have given me is very much appreciated. Dr. Adrian Friday has been a

long suffering friend whom has been a great source of encouragement as well as help

through the maintenance of the L2imbo tuple space implementation. There are many

other people to thank from within the Computing Department at Lancaster, most

notably Dr. Lee Johnston and my long suffering office colleagues, Dr. Keith Mitchell

and more recently Dan Prince whom I thank for your patients and encouraging words

and understanding when things are fraught.

Providing some light relief to the process of completing a Ph.D. has been Fylde

College at Lancaster University, where I hold the position of dean. I have spent many

an hour with you all in the college office and bar winding down after a long day in the

department it is a pleasure to hold a position within the college.

I fully appreciate the support of my entire family, especially my grandparents and

parents Chris and Derek for providing me with a good educational foundation and

letting me disappear to the north to gain my university education. Your gift of a

computer when I was a child has fuelled my desire to know how it works and how to

fix it when it breaks leading me to where I am today.

The process of completing a Ph.D. is not easy and the person that has stood by me

throughout the process bearing the brunt of the ups and downs has been my fiancée

v

Gill. Your love and support has been greatly appreciated, I would not have reached

this point without the stability you have provided me and unwavering encouragement.

I look forward to being your husband.

To you all, thanks!

vi

Table of Contents

Chapter 1 ...1

 Introduction ..1
1.1 Overview...1
1.2 Mobile Computing ..2

1.2.1 Introduction ...2
1.2.2 Hardware Support..2
1.2.3 Application Support ..6

1.3 Active Environments...7
1.4 Motivating Scenario ..8

1.4.1 Basic Rescue..8
1.4.2 Multimedia Enhanced Rescue ...9
1.4.3 Issues ...10

1.5 Aims ..11
1.6 Thesis outline ..12

Chapter 2 ...13

 Platform Support..13
2.1 Introduction ...13
2.2 Mobile Distributed Systems ..14

2.2.1 Extended Distributed Systems...14
2.2.2 Targeted Distributed Systems..18
2.2.3 Analysis ...20

2.3 Resource Discovery...21
2.3.1 Service Location Protocol ...21
2.3.2 Simple Service Discovery Protocol...22
2.3.3 Jini ...23
2.3.4 Summary ...25

2.4 Mobile Agents ...26
2.4.1 Introduction ...26
2.4.2 Mole ..27
2.4.3 Concordia ..28
2.4.4 ARA ..30
2.4.5 TACOMA..32
2.4.6 Lime ..33
2.4.7 Agent Tcl...34
2.4.8 Aglets ..34
2.4.9 Java-To-Go..35

vii

2.4.10 Analysis ...35
2.5 Summary ...36

Chapter 3 ...37

 Resource Discovery...37
3.1 Overview...37
3.2 Resource Discovery...38
3.3 Tuple Space Paradigm...39

3.3.2 Tuple Space Enhancements ...42
3.3.3 Tuple Space Implementations ...44
3.3.4 Analysis ...48

3.4 Summary ...49

Chapter 4 ...51

 The Design of MARE ...51
4.1 Introduction ...51
4.2 Resource Discovery and Configuration...52

4.2.1 Resource Discovery...52
4.2.2 Resource Configuration...53
4.2.3 Analysis ...54

4.3 Major Design Issues ..56
4.3.1 Eval..56
4.3.2 Resource Advertising ..57
4.3.3 Resource Consistency..58
4.3.4 Agent Execution ..59
4.3.5 Agent Movement ...60
4.3.6 Agent Loading...62
4.3.7 Agent Communications ...62
4.3.8 Interoperability ..63
4.3.9 Bandwidth Consumption ...64
4.3.10 Analysis ...65

4.4 Architecture...68
4.4.1 Overview ...68
4.4.2 Key Components ...69
4.4.3 Analysis ...71

4.5 Summary ...71

Chapter 5 ...73

 Implementation...73
5.1 Introduction ...73
5.2 Implementation Language ...74
5.3 MARE Structure..74

viii

5.3.1 Tuple Space ...74
5.3.2 Resource Manager ...80
5.3.3 Communications..83
5.3.4 MARE Control ..84
5.3.5 Agent Wrapper ..85
5.3.6 Agents..85

5.4 Summary ...89

Chapter 6 ...90

 Evaluation ...90
6.1 Overview...90
6.2 Case Study: Emergency Multimedia ...91
6.3 Multimedia Enhanced Rescue Demonstrator ..92
6.4 Qualitative Evaluation...97

6.4.1 Resource discovery..97
6.4.2 Mobile Agents ...100
6.4.3 Resource Discovery and Configuration...105
6.4.4 Analysis ...106

6.5 Quantitative Evaluation...107
6.5.1 Introduction ...107
6.5.2 Resource discovery..107
6.5.3 Analysis ...110

6.6 Requirements Revisited...113
6.7 Summary ...114

Chapter 7 ...116

 Conclusion...116
7.1 Overview...116
7.2 Thesis Outline ...117
7.3 Major Contributions ..118

7.3.1 Definition and Analysis of the Active Environment ...118
7.3.2 Use of Tuple Spaces for Resource Discovery ...119
7.3.3 The Combining of Tuple Space and Agent Technologies ...120

7.4 Other Significant Findings ..120
7.4.1 The eval Operation ..120
7.4.2 Development of a Lightweight Agent Architecture ..121
7.4.3 Analysis of Current Middleware Solutions ...121

7.5 Future work ...122
7.5.1 Towards Large Scale Active Environments ..122
7.5.2 Extensibility of MARE..122
7.5.3 Securing the Active Environment..123
7.5.4 Refining the Tuple Space ..123

ix

7.6 Concluding Remarks ...124

References ...125

1. Appendix A ..135

 MARE: Application Programmer Interface ..135
8.1 Agent Interface..135
8.2 AgentRuntime Class..136
8.3 AgentRuntimeEnvironment Class ...139
8.4 QoSCallback Interface ..141
8.5 ResourceCallback Interface...142
8.6 ResourceDescriptor Class..143
8.7 UID Class ..145

2. Appendix B ..147

 Emergency Multimedia Demonstrator...147
9.1 Embedded Device Application..147
9.2 Mobile Agent ..148
9.3 User Interface ..149

x

Figures

Figure 1-1 Wide-area overlay networks with available communications technologies

[Stem‘99] ...4

Figure 1-2 Rescuers converging on an injured party ...9

Figure 2-1 Structure of object request interfaces [OMG’98].......................................15

Figure 2-2 DCE overall generic structure [Schill’95]..17

Figure 2-3 Odyssey client architecture [Satyanarayanan’94]18

 Figure 2-4 The Rover architecture [Joseph’95] ..19

Figure 2-8 Mole system overview [Baumann’98] ...27

Figure 2-9 Concordia architecture [Wong’97] ..29

Figure 2-10 Ara system architecture [Peine’97] ..31

Figure 2-11 TACOMA: File Cabinet and Briefcase with Folders [Johansen’95]32

Figure 2-12 Lime: migration of an agent [Picco’98] ...33

Figure 3-1 Communiction through a tuple space...40

Figure 3-2 Temporal decoupling ...40

Figure 3-3 Group communication..41

Figure 3-4 Multiple tuple spaces..43

Figure 4-2 Multiple MARE instances utilising a single tuple space stub....................60

Figure 4-3 Interoperability with existing devices ..63

Figure 4-4 Service discovery interoperability..64

Figure 4-5 MARE host environment ...68

Figure 4-6 MARE architecture ..69

Figure 5-1 Tuple Space Stub with different interface languages and run levels75

Figure 5-2 Registration for call backs in L2imbo...76

Figure 5-3 Inserting a tuple into the tuple space..77

Figure 5-4 Consuming a tuple from the tuple space ..77

Figure 5-5 Message format ..78

Figure 5-6 Sending a message ...78

Figure 5-7 Agent format ..78

Figure 5-8 Inserting an agent ...79

Figure 5-9 Resource structure ..80

Figure 5-10 Resource descriptor ..80

xi

Figure 5-11 Resource bundle ...81

Figure 5-12 Static call to insert a resource descriptor..81

Figure 5-13 Resource descriptor helper class ..82

Figure 5-14 Communications component control routes...83

Figure 5-15 Agent decompressed and executed ..84

Figure 5-16 Agent interface ...86

Figure 5-17 Agent to display status ...88

Figure 5-18 Insertion of an agent into the MARE system ...88

Figure 6-1 Scenario illustration ...91

Figure 6-2 Emergency rescue devices ...92

Figure 6-3 Starting MARE and inserting resources...93

Figure 6-4 Emergency rescue agent...94

Figure 6-5 Emergency rescue process ...95

Figure 6-6 Initial resource monitor ..96

Figure 6-7 Rescuer view with multiple resources and resource in use........................96

Figure 6-9 Resource descriptor generation ..100

Figure 6-10 Agent with resource availability call-back...104

Figure 6-11 Inserting an agent ...104

xii

Tables

Table 1-1 Mobile devices...3

Table 3-1 Standard Linda primitives ...42

Table 4-1 Key design issues ..66

Table 6-1 MARE issues summary ...106

1

Chapter 1

Introduction

1.1 Overview

The emergence and development of technologies such as wireless modems, Private

Mobile Radio (PMR), wireless LANs, IrDA and the developing Bluetooth technology

is leading to a much wider acceptance and usage of mobile computing. Mobile phones

are an example of the endorsement of mobile technologies that are commonplace in

our society offering both voice and data capabilities. The increasing adoption of

mobile computing is generating a heterogeneous pool of communication capable

devices in the surrounding environment both in terms of mobile and static systems.

Discovering and utilising devices in such a highly populated environment requires an

approach capable of adapting to the continually changing availability and diversity of

devices. This thesis investigates operation in a dynamic mobile environment

containing a plethora of communication capable devices. The research presented is

focused on the discovery and manipulation of services and devices to enable and

enhance operations in an active environment as outlined in more detail later in this

chapter.

This chapter outlines mobile computing and the issues associated with performing

operations within a mobile environment. An active environment is defined and a

scenario presented offering an illustration of the growing need to be able to operate in

2

such an environment. This chapter concludes by outlining the aims of the thesis and

remaining structure.

1.2 Mobile Computing

1.2.1 Introduction

Mobile computing is playing an increasing role in everyday lives with mobile devices

such as laptops and personal digital assistants (PDA’s) are used both in work and

recreational environments. The number and type of devices available form a

heterogeneous collection offering and utilising different resources and operating

systems. The availability of near constant connectivity through the use of wireless

technologies such as Bluetooth [Bluetooth‘99], GSM, GPRS and WaveLAN

[AT&T‘93] enables a device to be able to utilise resources whilst being mobile. The

vision of ubiquitous computing is being realised through the wide scale adoption of

mobile devices populating surrounding environments with devices offering

functionality to users. Weiser offers this view of ubiquitous computing:

"Ubiquitous computing is the method of enhancing computer use by making many

computers available throughout the physical environment, but making them

effectively invisible to the user" [Weiser‘93]

The heterogeneity of devices highlights the need to consider resource availability and

interoperation techniques between devices of similar and differing type. This section

provides an overview of the hardware and software developments forming a current

mobile computing environment.

1.2.2 Hardware Support

The classical view of a computer being a powerful mainframe or desktop machine

connected to a fixed network of some form is changing with the development of

laptops and PDA’s offering functionality comparable to desktop systems. The

emergence of more powerful mobile devices such as handheld and palmtop computers

is challenging the dominance of desktop machines for mainstream computing

applications opening possibilities for mobile applications to develop. The devices

outlined in Table 1-1 show the differences in mobile devices (including the

increasingly important class of wearable devices).

3

Device
(Example)

Weight
(kg)

Hardware (Common) Operating System

Laptop

> 1.5 LCD screen, keyboard,
PCMCIA / USB/ serial /
parallel ports, hard disk,
cd-rom, floppy drive

UNIX, Windows 9x / NT /
2000 / XP, Mac OS

Handheld

(Psion series 5)

< 0.5 LCD screen, keyboard, PC
card / serial, compact flash
storage

Symbian EPOCH32,
Windows CE

Palmtop

(Palm V)

< 0.2 LCD screen, serial port Palm OS, Windows CE

Databank

(Rolodex REX)

< 0.05 LCD screen, keyboard,
512KB storage

Custom

Wearable Varied Display, communications,
very individual systems

UNIX, Windows 9x / NT /
2000 / XP, custom

Table 1-1 Mobile devices

The physical attributes of mobile devices such as available connectivity,

computational power, storage and interaction methods differ from those typically

available to desktop machines. These attributes require careful consideration when

operating within a mobile environment often requiring some adaptation to best suit

user and system requirements.

4

Satelite (40Mb/s)

GSM (9.6kbit/s)
TETRA (28.8kbit/s)

Wavelan (11Mb/s)

Bluetooth (1 Mb/s)
IrDA (4Mb/s)

Figure 1-1 Wide-area overlay networks with available communications

technologies [Stem‘99]

Connectivity can be seen as a contributing factor to the operation of a device. Within

built up areas technologies such as GSM, GPRS and WaveLAN may be available

offering up to 11Mb/s, whereas in more remote areas solutions such as GSM may be

the only available medium offering bandwidths in the order of 9.6Kbit/s. The

potential to be able to utilise different communication types to maintain connectivity

can be seen in Figure 1-1. Mobile connectivity in such an environment is typically

variable and often intermittent due to the movement of a device through areas of

differing type and fluctuating connectivity. An example of this can be seen in the

migration of a user from a 11Mb wireless LAN environment on to a 9.6Kbit/s GSM

connection and then moving into an area of no connectivity such as a tunnel. The

handoff between connection types has to be considered carefully aiming to avoid a

disconnection period without causing undue financial or performance costs and

inconvenience to the user. Mobile devices are typically powered by battery offering a

limited lifespan of the device requiring careful consideration of connectivity options

on this basis.

5

Computational power of a device is often low or restricted to preserve battery power.

The less power required by a device the longer it can operate on the same power

source or the smaller the power source can be to maintain the same operational time.

The operations that can be performed upon a device should be considered carefully to

aid in the longevity of operational time. Techniques used in devices to save power

include the slowing of the processor [Intel‘96] or the placing of peripherals into a

standby or a powered down mode. The entire device may also be turned off for

periods of inactivity in an attempt to maximise operational life.

Storage capacity of a mobile device’s working memory or storage area for data is

typically limited compared to desktop machines ranging from a few kilobytes through

to a few megabytes. Technologies offering thousands of megabytes of storage for data

such as the Microdrive™ from IBM [IBM‘00] lessons the importance of available

storage however still offering far less storage than typical desktop machines. The

restrictive storage capacity of most devices means that careful thought must be

applied to the development of applications in terms of physical storage consumed

both for applications, data storage and runtime memory usage. Techniques such as

compression of data can be employed however consideration must be made to the

tradeoffs against the extra time and computational power required to operate on such

data.

Interaction methods employed by mobile devices include the more traditional

keyboard and mouse pair as well as touch screens, assorted novel keypads, gestures

and voice activations. Techniques for gaining contextual information by extending

devices to include location, heat, light, accelerometers and pressure sensors are also

extending the array of interaction methods potentially available to devices alleviating

the need for a large display [Hinckley‘00].

The previously outlined attributes require careful consideration in mobile systems

despite developments such as larger storage capacities, novel interaction devices,

more powerful batteries and bigger processors. The development of current mobile

systems is spawning the deployment of smaller devices facing similar issues to those

previously outlined. The newer smaller class of device is being developed for uses

such as environmental monitoring [Kahn‘99], [Gellersen’02], [Schmidt’99].

6

1.2.3 Application Support

Mobile applications such as tourist guides [Davies’99], parcel delivery tracking,

traffic monitoring [TrafficMaster’02] and field worker support systems [Friday’96]

have been and continue to develop exploring the possibilities offered by mobile

computing. Experience in developing applications for traditional fixed network

systems is filtering into mobile systems, examples of which include modifications

made to network protocols, file systems and existing middleware platforms.

The most evident protocol used in fixed networks and mobile networks alike is the

Internet Protocol (IP). However the current version four was not designed with the

rigours of operation in a mobile environment in mind. IPv4 assumes the ability to

form a direct connection from one host to another through a structure based on

groupings of machines into subnets. When a mobile host moves out of a subnet into a

new one it is required to gain a new IP address related to its new location. In order to

address mobility, IP solutions have been defined that gain a temporary address in the

new subnet [Perkins’92], [Ioannidis’93]. In addition solutions such as I-TCP

[Bakre’95] and Snoop TCP [Amir’95] operate over the IP layer making use of routers

at the edge of wireless networks to provide retransmission and forwarding of IPv4

packets. These solutions help in reducing hand off times, and retransmission costs

between subnets when gaining a new address aiding in overall performance and

efficiency. Finally the IPv6 protocol and mobile IPv6 extensions have been developed

with mobility in mind employing a similar, however more refined approach, to

previous IPv4 solutions to handle mobility [Perkins’96], [Finney’99].

Distributed file systems are used extensively in systems for the sharing of resources.

Solutions such as the Network File System (NFS) [Sun’89] and the Andrew File

System (AFS) [Satyanarayanan’85] enable this in real time however they offer little

support for disconnected operation. In contrast disconnected operation has been

addressed by systems such as Bayou [Demers’94] and CODA [Mummert’95], through

caching or hoarding of records and files for synchronisation upon reconnection. The

reintegration of information back into the primary store is complex due to the

potential merging of multiple changed copies, this is exacerbated by long periods of

disconnection requiring complex algorithms and often user interaction to resolve

conflicts.

7

The heterogeneity of systems in terms of type and operating system has exposed

issues in carrying out operations between devices. Approaches addressing this

heterogeneity have been made through middleware offering an abstraction layer

between the operating systems and the applications. Such systems include CORBA

[OMG‘98], DCE [OG’99], RM-ODP [ISO’98], DCOM [Microsoft’98] and Java RMI

[Sun’02] offering a means of sharing tasks between different machines and operating

systems through the use of a common interaction method. The techniques employed

to enable middleware to operate in mobile environments include application code base

size reduction such as can be seen in implementations such as PalmORB [Román’99]

and UIC [Román’01]. The use of buffering of interactions on the edges of mobile

environments provides a means of reducing the impact of disconnections that occur

whilst mobile.

This thesis is focussed on enabling the discovery and manipulation of resources in a

mobile environment. This thesis describes middleware as operating between

applications and the underlying operating systems. This is a convenient place to

address the discovery and manipulation of resources providing all applications with

resource availability information and will be the focus of the remainder of this thesis.

Further exploration of existing middleware systems can be found in chapter 2 of this

thesis.

1.3 Active Environments

The diversity that can be found in the computational devices that surround and aid in

the daily lives of many people is immense. The increasing development of hardware

that is typically smaller, faster, lighter with a greater longevity in usage has provided

users with the ability to utilise computing technology in new and previously

unimagined ways. The shear number of available devices that can be envisaged in an

environment is expanding. It is foreseeable that these devices may desire interaction

with one another to achieve a goal. Mobile phones and PDA’s are now commonplace

with greatly varied operating systems and available peripherals. The issues exposed in

how the devices will be aware of and utilise each other is compounded by the almost

inevitable lack of communication infrastructure. The lack of freely available

structured infrastructure for communication leads to a need for devices to be able to

8

form an ad hoc structure to facilitate interaction with one another. This thesis defines

an active environment as follows.

‘An active environment is a loosely coupled, ad hoc grouping of a

number of communication capable heterogeneous devices. The

population of this group is highly dynamic where there is a high

frequency of membership changes.’†

Examples of such an environment can be seen at meeting points with or without

structure, for example meeting rooms or corridors where several people come together

bringing devices such as laptops, PDA’s, phones and other assorted peripherals. As

well as physical devices, users may bring software services that may be of use to other

members such as encryption, manipulation and compression functionality. The active

environment has a dynamic membership requiring constant adaptation in usage of

available resources compensating for the changes in the operational environment. The

active environment is more than an ad hoc grouping that is formed and then

disbanded; a further more detailed example of an active environment is described in

the following section.

1.4 Motivating Scenario

The British Lake District is renowned for its beauty and tranquillity crossed by narrow

winding roads and walkways through both rugged and sparse terrain. The beauty of

this area attracts many visitors intent on walking, running, cycling and climbing. With

such outdoor activities in a beautiful and yet harsh environment come the almost

inevitable accidents requiring the attention of the rescue services such as the mountain

rescue team. In this section we describe a rescue performed by the mountain rescue

team and issues raised by the introduction of multimedia support for the rescuers.

1.4.1 Basic Rescue

Upon the discovery of a person in distress a group of rescuers are dispatched to seek

out the person and aid in recovery and treatment. The rescuers are dispatched from

different locations travelling often by differing means. The rescuers converge upon

the distressed party involving trekking across open terrain and rugged terrain such that

climbing may be required (see Figure 1-2). Once the rescuers locate the distressed

† For the purposes of this thesis it is assumed that an active environment has a significant number of devices

in the range 10-10,000 and that changes are frequent. Consideration of larger active environments is beyond

the scope of this thesis. (See also Section 7.5.1)

9

party they converge forming a grouping of skills before bringing the distressed party

to a point where they can be transported to a hospital for further treatment.

Figure 1-2 Rescuers converging on an injured party

In this environment there is a high likelihood of harsh weather in the form of wind,

rain, sleet and snow requiring the rescuers to operate in a harsh terrain with typically

unsympathetic weather conditions. Equipment carried by the rescuers is both for the

distressed party and the rescuers amounting to a considerable quantity of equipment.

The weight of such equipment is of paramount importance as excessive weight can

hamper the progress of the rescuer.

1.4.2 Multimedia Enhanced Rescue

Through the development of a multimedia demonstrator project [Candy’98] the

rescuers were augmented with multimedia systems aimed at enhancing the facilities

available to the rescuer. Improvements included TETRA communications equipment,

audio / visual capabilities, GPS compasses and medical monitoring equipment.

Equipment provided to the rescuer includes a wearable computer consisting of a

PC104 computer running Linux providing a point at which multiple devices can be

connected such as TETRA communications equipment [ETSI’95], still and motion

cameras, a medical monitor (PROPAQ [Allyn’02]) and GPS compass. The wearable

is placed inside the back pack allowing some protection from the harsh surrounding

elements whilst being less intrusive to the rescuer when carrying out a rescue. The

peripheral devices are powered on and off as required to conserve battery life. The

peripheral devices are heavy and often financially expensive resulting in a distribution

of devices between rescuers.

1

2

3

1 Rescuer

Injured

10

With the multimedia enhancements the rescue of the injured party will start with the

dispatch of the rescuers from separate locations with a subset of attachable devices.

The distribution of devices amongst rescuers is due to the need to distribute weight

between rescuers to limit the effect on progress of the rescue. The rescuers can keep

in contact through the use of TETRA equipment gaining the location of themselves

and other rescuers through the use of GPS compasses. Images may be gathered and

transmitted between users from the digital motion and still cameras when required.

Upon reaching the distressed party injuries can be captured by the cameras and

encoded for transmission to interested parties such as hospitals who can then plan for

the arrival of an injured party with some idea of the state of the arriving patient. The

injured party can then be monitored feeding information to the hospital from the

medical monitoring equipment as the rescue progresses.

1.4.3 Issues

This scenario has focussed upon an emergency service carrying out a rescue with and

without multimedia enhancements. This scenario although focused upon the

emergency services brings into focus other possible scenarios that could be envisaged

forming an active environment. Other examples of active environments can be seen in

any grouping or meeting such as a coffee break, lunch, informal meetings like the trip

home in a bus, train or traffic jam. More subtle interactions can be achieved when

moving through an area such as walking along a corridor, moving past a group of

individuals, driving past other vehicles. The diversity of devices available and the

possibility of static systems such as embedded servers to be within a grouping pose

challenges to be addressed in discovery and facilitating interaction between these

systems and making optimal use of surrounding resources.

11

1.5 Aims

This chapter has defined an active environment in which many communication

capable devices can be present at any given time. This thesis aims to explore issues

associated with operating within an active environment specifically the discovery and

manipulation of resources. This thesis aims to:

• Explore in depth the active environment characteristics and requirements.

• Investigate techniques for resource discovery, focussing on the applicability of

such techniques for operating within an active environment.

• Examine, in full, approaches for performing efficient discovery and

manipulation of resources in an active environment.

These aims will be explored by taking the following steps:

• Examining existing approaches to discovery and configuration of resources in

a hostile environment exploring weaknesses and strengths of each approach

when applied to operating within an active environment.

• Exploring a novel approach for service discovery utilising the knowledge

gained regarding existing approaches examined previously.

• Construction of a prototype of the novel approach previously outlined.

• Evaluate the prototype implementation against existing approaches before

concluding on the suitability of such an approach for active environments.

This thesis will show that current solutions to operating within a mobile environment

do not meet the requirements of an active environment, additionally proposing a

solution that is designed to address these requirements. This will be achieved after a

detailed examination of existing systems that address discovery of resources and

systems that enable the manipulation of resources.

12

1.6 Thesis outline

This thesis examines the issues surrounding operation within an active environment

proposing a means for discovery and manipulation of services and devices despite the

unpredictable availability of them. Chapter 2 introduces mobile computing and

address the differences between mobile and fixed environments. Chapter 3 then

examines the desire to discover services and devices further examining methods of

facilitating operation within a mobile environment. Chapter 4 introduces MARE a

proposed architecture to aid in the discovery and operation within an active

environment. Chapter 4 details the development of MARE whilst chapter 6 evaluates

MARE offering concluding comments in chapter 7.

13

Chapter 2

Platform Support

2.1 Introduction

The previous chapter examined mobile and active environments noting that the

majority of software operating within a mobile environment was not necessarily

targeted specifically for it. Through examination of the active environment described

in the previous chapter some issues have been highlighted relating to the discovery

and manipulation of services. These operations are often performed as part of a

middleware system offering an abstraction over underlying services. This chapter

introduces and examines current mobile computing research, particularly middleware

solutions developed specifically for mobile environments and as extensions to

existing static environment solutions. The chapter then moves on to explore two key

issues poignant to current research in mobile computing, i.e. discovery of services in

the surrounding environment and agent technologies developed for fixed and mobile

systems.

14

2.2 Mobile Distributed Systems

The development of distributed mobile systems has been largely focused on making

existing software work on mobile systems; such approaches include extensions to

CORBA [OMG’98], DCE [OG’99] and RM-ODP [ISO’98]. Other solutions that have

been specifically designed to operate within a mobile environment include Odyssey

[Satyanarayanan’94] and ROVER [Joseph’95], these approaches and others will be

explored in the following section.

2.2.1 Extended Distributed Systems

Distributed systems developed for static networks typically consisting of servers and

workstations were not targeted for the mobile environment where issues such as low

bandwidth, intermittent connectivity, low computational power and small storage

capacity are expected. Systems have been typically extended to better suit a mobile

environment the most prevalent are explored in this section.

Common Object Request Broker Architecture and its Derivatives

Developed by the Object Management Group (OMG) as part of its effort to encourage

use of object oriented techniques, the Common Object Request Broker Architecture

(CORBA) [OMG’98] has been developed as an object based model of a distributed

system. CORBA makes use of strongly typed interfaces to objects using an Interface

Definition Language (IDL) to define the types used for interacting with an object.

Interaction between objects is carried out though the Object Request Broker (ORB)

forming a communication method for interaction between multiple objects of multiple

languages and locations (Figure 2-1).

15

Figure 2-1 Structure of object request interfaces [OMG’98]

Extensions to CORBA have been developed aimed at supporting operation in a

mobile environment. The Adapt project [Fitzpatrick’98] was developed from

collaboration between Lancaster University and BT Labs; it was aimed at supporting

mobile multimedia applications. This work developed QoS based adaptation through

extending CORBA by adding stream interfaces, explicit bindings and open bindings.

Stream interfaces are typed flows of data that have both control and data interfaces.

Explicit Bindings can be used instead of implicit bindings placing more control over

the formation of a binding with the programmer. Open bindings in effect enable the

examination and manipulation of a binding and its sub components enabling

adaptation to occur.

Using CORBA to facilitate a means of manipulating data flow can also be seen in

systems such as the Reactive Adaptive Proxy Placement (RAPP) architecture

[Seitz’98] and the Architecture for Location Independent CORBA Extensions

(ALICE) Project [Haahr’99]. RAPP aims to support mobility through carefully

placing of proxies using CORBA as a means of distributing the proxies to the most

applicable location dependent on the operations being carried out, a example of which

is the placement of a proxy near to or on a server for data intensive operations and

near to a weak client for computationally intensive operations. Much of this work has

16

focussed on the placement of proxies with consideration to adapting the role and

placement depending upon the status of QoS information. ALICE in contrast outlines

mobility gateways placed at the edge of wireless networks acting as a point for proxies

on behalf of mobile nodes.

Solutions targeted for small mobile systems such as PDA’s include LegORB

[Román’00] and PalmORB [Román’99] developed at the University of Illinois at

Urbana-Champaign. These implementations offer a CORBA ORB small enough to

execute on a Palm Pilot™ or Windows CE device. This work implemented a subset of

the CORBA 2.0 functionality in effect reducing to only client side functionality of the

ORB. Further work developed the Universally Interoperable Core (UIC) [Román’01].

The UIC is capable of generating small footprint solutions capable of incorporating

multiple personalities such as a CORBA ORB or Java RMI [Sun’02] in a single

implementation. The configuration of personalities allows for them to be included

statically at compile time or dynamically at run time or a hybrid mix of the two

approaches. These solutions offer compact implementations well suited to resource

poor mobile devices. The solutions can be dynamically configured enabling the

development of What You Need Is What You Get (WYNIWYG) systems. In essence,

minimal solutions that contain or can obtain the elements required for a particular

application to execute

Mobile DCE and Derivatives

The Distributed Computing Environment (DCE) [OG’99] was initially developed by

the Open Software Foundation (OSF) which became The Open Group. The group

aimed to develop a complete distributed computing infrastructure providing a

scalable, secure environment capable of locating and utilising users, services and data

within a heterogeneous environment. Extending DCE to operate within a mobile

environment, Mobile DCE was developed at the University of Technology Dresden

aiming to make mobility transparent to applications [Schill’95]. This was attempted

through utilising domain managers acting as controlling authorities for station

managers positioned upon fixed or mobile nodes. The use of domain and station

managers provides a buffer allowing the ability to manipulate interactions to aid in

handling disconnection and node movement as can be seen in Figure 2-2. Through the

development of mobile DCE and related technologies it was found that transparent

17

operation is difficult to achieve and that further information from the application level

is desirable [Adcock’99].

Figure 2-2 DCE overall generic structure [Schill’95]

RM-ODP and Derivatives

The Reference Model of Open Distributed Computing (RM-ODP) was created by a

joint effort from the International Standards Organisation (ISO) and the International

Telecommunications Union – Telecommunications sector (ITU-T). The RM-ODP

defines a framework for distributed internetworking, interoperability and portability.

The standard defines functions that provide services including a type repository,

trader and relocator. These functions provide a means of storing and redistributing

type, interfaces and location based information.

The development of ANSAware [APM’93] from the Advanced Networked System

Architecture (ANSA) [APM’89] generated a partial implementation of the RM-ODP

model. This system was further extended to better suit the mobile environment by the

Mobile Open Systems Technologies (MOST) for the utilities industry platform at

Lancaster University in collaboration with EA technologies [Friday’96]. The MOST

platform implemented QoS-Managed bindings enabling querying of QoS parameters

as well as attaining call-backs on QoS changes from a binding. Explicit bindings were

implemented allowing more control over the formation of bindings; support for low

18

bandwidth communications media such as GSM was implemented through the

development of Serial User Datagram Protocol (S-UDP) which the QoS enabled

protocols QEX and G-QEX utilise. The MOST system enables an open approach

allowing adaptation to changes within the system.

2.2.2 Targeted Distributed Systems

The following systems have been developed with mobility as a primary target

environment although undoubtedly influenced by distributed systems developed for

relatively static environments such as those previously examined.

Odyssey

Developed from work on the Andrew File System (AFS) and subsequent CODA

[Satyanarayanan’90] file system, Odyssey [Satyanarayanan’94] is a set of extensions

for mobility implemented in both the Unix operating system internals and system call

level. The Odyssey architecture is formed from typed storage areas or volumes known

as tomes that store data of the specified type. Odyssey provides an API of system calls

providing the ability to negotiate a window of tolerance, receiving a notification upon

exceeding of the tolerance. The architecture defines wardens that act as type specific

managers and a viceroy that oversees the generic operations and administration of the

wardens and clients. The system can be extended to have new wardens added to

manage resources. Figure 2-3 shows the Odyssey client architecture with two

Wardens installed.

Figure 2-3 Odyssey client architecture [Satyanarayanan’94]

19

Rover

The Rover toolkit developed at the Massachusetts Institute of Technology (M.I.T.) is

aimed at supporting the development of mobile applications [Joseph’95]. Rover

combines Queued Remote Procedure Calls (QRPC) and Relocatable Dynamic Objects

(RDO) that are akin to mobile agents examined later in this chapter to provide

services for roving mobile applications. RDOs are imported, invoked and exported to

and from servers based either on a pessimistic approach whereby RDOs are locked or

an optimistic approach whereby conflicts from operations carried out on the RDOs are

resolved upon reconnection. The QRPC defines a means of allowing non-blocking

remote procedure calls to continue whilst a host is in a disconnected state, this is

achieved through storing RPC interactions for replaying when the target becomes

available upon reconnection. Figure 2-4 shows the three layers (application, system

and transport) and core components (access manager, object cache, operation log and

network scheduler) supporting disconnected operation in the Rover architecture.

 Figure 2-4 The Rover architecture [Joseph’95]

Bayou

Developed at Xerox PARC, Bayou supports data sharing amongst mobile users

aiming to support application specific conflict detection, resolution and providing

application controlled inconsistency [Demers’94]. The architecture prescribes to

lightweight distributed storage on mobile devices allowing the distribution of data

across multiple mobile devices. This is achieved through the careful replication of

data with one primary copy and potentially many sub copies that may move between

20

hosts. This approach describes the reaching of eventual consistency where changes

are propagated upon availability of connectivity such that the primary and all copies

are identical.

2.2.3 Analysis

This section has examined systems developed from static network implementations

and systems developed specifically for the mobile environment. Systems developed

by extending existing approaches typically exhibit large implementations that are

better suited to larger more powerful devices. Attempts such as the development of

PalmORB, LegORB and UIC address the mismatch in resources available for the

execution and those required in mobile devices.

One serious problem is that the synchronous RPC mechanism utilised by the

previously examined systems can be disrupted at any time in a mobile environment.

Attempts to address this issue can be seen as modification of RPC traffic such as

buffering in ROVER, MOST and mobile DCE compensating for disruptions in RPC

interactions. Other approaches include local caching of data and reintegration policies

upon reconnection to the system as employed by Bayou, however, this approach and

the approach made by mobile DCE poses problems in the reintegration of the cached

data with a server version. This reintegration of data may also require user defined

policies or user interaction to handle conflicts. The ability to adapt and operate within

the surrounding environment is clearly useful and can be seen clearly in Odyssey with

the negotiation of a window of tolerance.

In general the target of the previously examined systems is weak connectivity or short

periods of disconnection often viewed as a graceful operation by detecting the

degradation of connectivity. These systems do not inherently take advantage of

surrounding resources preferring to operate with the resources they currently utilise.

These systems address key issues when operating within a mobile environment

demonstrating features such as adaptation to QoS changes, reintegration strategies for

data access, interoperability with existing systems and distribution of operations

between hosts. The examined systems do not offer an elegant unified approach thus

warranting further examination in this area.

21

2.3 Resource Discovery

The ability to know which resources are available to a given host is the role of a

service discovery protocol. Service discovery protocols that are prevalent include SLP

[Verizades’97], SSDP [Goland’99] and Jini [Sun’02a] [Arnold’00]; these will be

examined in more detail in this chapter.

2.3.1 Service Location Protocol

The Service Location Protocol (SLP) is designed to aid the discovery of resources for

a user who does not necessarily know the specific location of the service they require

[Veizades’97], [Guttman’99]. This protocol is aimed at enterprise networks with

multiple shared services; it has not been aimed at global / Internet resource discovery.

Other systems including Salutation [Salutation’99] make use of the SLP protocol by

default when locating services in preference to its own service location protocol.

There are two operational modes for SLP either with or without a directory agent. The

directory agent is a repository for services such that a client can interact with a

directory agent to discover services. The second mode of operation is used when a

user agent cannot locate a directory agent therefore a user agent requests directly from

the services using a service specific multicast address to request a specific type of

service.

Operation with a directory agent is when a client generates a user agent the user

agent will generate a multicast request to gain the location of a directory agent. If this

fails the user agent enters a mode of operation that does not require a directory agent.

The directory agent can also advertise its presence infrequently making itself

available to user agents. The service agents acting on behalf of the services wishing to

advertise their presence discover a directory agent in the same manner. A service

agent registers with the directory agent when present and updates their registration

periodically. The interactions can be seen in Figure 2-5.

User Agent
Discovery

Agent

Service

Agent

Figure 2-5 Operation with a directory agent

22

Operation without a directory agent requires the user agent to multicast its requests

for a service to a predefined service specific multicast address that is responded to by

appropriate service agents using a unicast response. Figure 2-6 illustrates the multicast

request with multiple service agents responding to the request. If a directory agent is

detected the service or user agents will register with and make use of the directory

agent.

The SLP approach provides scalability for an increased number of service agents

through the use of directory agents acting on behalf of multiple services. The use of

directory agents does not preclude the use of direct interaction with service agents. A

service is classified through its scope relating to the type of service.

When operating in an active environment the availability of a directory agent is

unlikely due to the constantly changing content of the environment, requiring the

reliance upon communication between user agents and service agents. In order to

maintain a current view of surrounding services, a periodic multicast request for

services from the user agent is required responded to by appropriate services using a

unicast response. This can lead to the generation of a large number of requests and

responses consuming potentially high quantities of available bandwidth.

2.3.2 Simple Service Discovery Protocol

The Simple Service Discovery Protocol (SSDP) [Goland’99] provides a mechanism

for the discovery of services by networked clients with little if any configuration

required. SSDP is an integral part of Universal Plug and Play (UPnP) [Microsoft’00]

User Agent

Service

Agent

Service

Agent

Figure 2-6 Operation without a directory agent

23

initially developed by Microsoft. UPnP offers more than a service discovery protocol

although the other features are outside of the scope of this section.

Operation can be viewed as client driven where clients request services or service

driven whereby services update the information held by clients. Exchanged messages

are in a HTTP format [Goland’00].

Service advertisements are performed upon generation of a service and periodically

thereafter. A service announces its presence by multicast upon creation. The message

consists of its type, expiry time, a unique identifier and a URL for accessing the

service. The service is required to re-advertise itself within the expiry time otherwise

the service should be deemed no longer available.

A client requests a type of service by multicasting a search request consisting of the

type of service required or a request for all services. Each client that matches the

request sends a unicast UDP message consisting of a unique identifier, type, expiry

time and a URL for accessing the service back to the requesting client.

The specification for SSDP stipulates that a discovery multicast message should be

transmitted three times to help to guarantee receipt by an appropriate client. For each

arriving discovery message three response sets of six messages are required. Thus the

number of messages produced for a client requesting a service from a single source

can yield twenty one messages, of which three will be multicast discovery requests.

As all responses are unicast UDP messages two clients requesting the same service

will generate twice the number of responses.

2.3.3 Jini

Jini from Sun Microsystems [Sun’02a] provides a system for a client to locate and

interact with services. Examined here is the ability to locate services for interaction by

a host.

To advertise a service two protocols are used named discovery and join. During

discovery a service will try and locate a lookup service; this is achieved by a multicast

request for lookup services to identify themselves. Upon discovery of a lookup

24

service the service should join a lookup service gaining a lease that requires the

service to update its entry in the lookup service before the lease expiry.

When a client wishes to use a service a lookup protocol is used. This involves the

locating of a service by its type and perhaps its attributes from the lookup service. The

service object containing the methods to enable interaction between the service

provider and itself is loaded into the client. Once loaded the client and the server can

interact directly using any available interaction method, as shown in Figure 2-7.

 In the absence of a lookup service Jini can resort to direct interaction with the service

providers. It is possible to run a copy of the lookup server upon each participating

node to form a distributed system that is not reliant upon a centralised server

approach. Services can be represented by proxy to be able to be advertised if they are

not capable of running the Java Virtual Machine and associated Jini services. A client

can also register for the receipt of events in a similar manner as the service discovery,

requiring lease renewal of the event registration and allowing the introduction of

agents into the event path to allow for operations such as store and forward,

combining and splitting of events. The Jini specification considers the desire for

mobile hosts to interact considering the restrictions such devices place on

applications. The specification however also assumes the existence of a network of

reasonable speed and low latency, the active environment examined in this thesis will

not provide such an environment.

Figure 2-7 Jini Lookup Service interactions

Client

Service Object

Service Provider

Service Object

Service Attributes

Lookup Service

Service Object

Service Attributes

1. Service Object and

Attributes copied to

Lookup Service

2. Lookup service queried

and matching service

object copied to Client

3. Direct interaction between

client and Service provider

25

“The Jini system federates computers and computing devices into

what appears to the user as a single system. It relies on the

existence of a network of reasonable speed connecting those

computers and devices. Some devices require much higher

bandwidth and others can do with much less--displays and

printers are examples of extreme points. We assume that the

latency of the network is reasonable. ” [Sun’02a]

The practical implementation of Jini is relatively large and complex and although

useful in larger systems it can currently be seen as a restriction upon smaller devices

that may not have the resources to run the Jini system. The formation and disbanding

of ad hoc groupings means that central lookup services will have fluctuating

availability. When a lookup service is unavailable the clients are required to perform

their own service lookups rather than talking directly to the lookup service. Detecting

the absence of and operating without a lookup service produces extra communication

overhead.

2.3.4 Summary

This section has concentrated on examining three prevalent service discovery

protocols, SLP, UPnP and Jini. Note however that they have not been directly targeted

for a mobile environment or the active environments outlined in the introduction to

this thesis

The use of a server structure can be seen as a restriction in an active environment is

unlikely to yield the correct server type due to constant membership changes. The

back off strategies employed by these technologies place more computational

overhead on a participating host as well as generating extra communications through

operating in a synchronous manor.

An active environment does not lend itself to a service being available for long

periods of time. There is a desire to be aware of the availability of a service and the

arrival of other services that may meet the demands of the operation being undertaken

as well if not better than the currently utilised service.

26

2.4 Mobile Agents

2.4.1 Introduction

The devices that are present within an active environment can be viewed as often

being devices of a low power or restricted resources. In order to carry out operations

on such devices in a similar manner as high power devices requires computation to be

offloaded or shared between hosts. A technique for achieving this is explored in this

section, namely mobile agents.

A mobile agent can be seen as a piece of code that is capable of movement to a host

and execution at that host. The agent may travel to more than one host in order to

complete its task. Mobile agents are commonly used for: -

• Distribution of processing through utilisation of other hosts.

• Fault tolerance through distribution of agents to carry out the same task.

• Reduction in bandwidth required by moving agents towards data sources for

processing rather than moving large amounts of data across a network.

• Performing operations whilst a user has terminated an interactive session.

These attributes of mobile agents have made them particularly attractive to

researchers examining mobile environments. In such an environment not only is the

agent mobile but the environment in which it operates also changes. The potential

hostility found in a mobile environment in terms of bandwidth, processing and

connectivity can be addressed by the use of mobile agents. An agent can be sent to a

more powerful node for execution or multiple agents may be produced to distribute

the desired operation, this option also introduces a level of fault tolerance through the

duplication of agents. The limited bandwidth with typically high latencies found in a

mobile environment leads to a desire to move operations closer to the largest data

source offering potential performance and reliability increases. A host can launch an

agent and power down leaving the agent to carry out tasks on the originators behalf.

Mobile agents are typically written in portable code such as Java [Gosling'00] and Tcl

[Raines’99] to execute the agents on hosts with differing operating systems. For larger

27

tasks more than one agent may be used and this leads to a desire for the agents to

communicate with one another. What follows is an examination of several key mobile

agent systems, namely Mole [Baumann’98], Concordia [Wong’97], Aglets [IBM’99],

Agent Tcl [Gray’96], ARA [Peine’97], TACOMA [Johansen’95], Java-To-Go

[Li’96], and Lime [Pico’98].

2.4.2 Mole

Developed at the University of Stuttgart and named after the project mascot

[Baumann’98], Mole is a Java based middleware for the communication and

execution of mobile agents on a standard Java virtual machine. The Mole system

shown in Figure 2-8 offers an environment with a resource manager, directory service

and a global naming scheme.

Figure 2-8 Mole system overview [Baumann’98]

The resource manager provides facilities for accounting and control of resources such

as time at a location, network bandwidth and CPU time.

The directory service provides information on services on the local machine, such as

agents. Each agent has a unique identifier based on twenty four bytes made up of two

reserved bytes, two bytes for the port number being utilised, twelve for the IPv6

address of the host followed by two counters of four bytes each representing a system

counter incremented on restarts and crashes as well as handling overflow from the

lower four byte incrementing counter.

When an agent is created it is initialised and placed into the Mole system whereby an

accepting node will call a prepare function on the agent prior to starting the agent. The

28

agent may register for a regular call-back from the system called a heartbeat to act as

a trigger for the agent to potentially perform some operation, the heartbeat will

continue until the die operation is called by the agent. The agent can migrate to

another host through calling migrateTo that causes the agent to be suspended while

the agent is serialised and moved before restarting. If an error occurs during moving

or the target host cannot accept the agent an error message is received by the source

host.

Communication between agents is performed through the use of badges attached to

the agents identifying the agent as capable of receiving communication targeted at the

badge. An agent may have more than one badge and the same badge can be worn by

multiple agents providing the ability to perform group communications.

Mole uses Java serialisation for migrating agents between hosts. This has a side effect

in that an agent cannot take its execution stack with itself. This means that a mole

agent must compensate for the loss of execution state and recover when restarted. The

agent programmer is responsible for maintaining state inside the agent. Code servers

are used for storing class information required by the agent when it is generated or

moved. If a code server crashes or is unavailable, the source of the agent may be

asked for the classes required if it is available.

2.4.3 Concordia

Developed by Mitsubishi Electric Information Technology Center America,

Concordia is a Java based mobile agent system [Wong’97]. Concordia has several key

components, which interact to form a runtime environment for mobile agents. These

components shown in Figure 2-9 include control for security, administration,

persistent storage, events and migration.

29

Figure 2-9 Concordia architecture [Wong’97]

The administration manager watches all other components with the view to recovery

upon an error such as a system crash, also providing a graphical interface to the

system.

Persistence has been introduced through the persistent store manager; agents as well

as system state are stored by utilising Java serialisation. Using serialisation in this

manner allows the system to be recovered to the point at which the serialisation was

performed upon an event such as a system crash.

The conduit server controls agent transfer; when an agent calls the conduit server with

a request to move the conduit server propagates the agent to the destination Concordia

system providing the entry point function for the destination host to use. The

destination and function to call is specified in an itinerary that moves with the agent.

All classes required by the agent are transported with the agent for loading when the

agent is restored. The transmission of all the required classes with the serialised agent

30

can lead to large transmissions upon the migration of an agent however removes the

reliance of an agent upon another host.

Working with the local conduit server is the queue manager that is responsible for

reliable transport of agents performing queuing of agent transfers inbound and

outbound and handshaking with the remote queue manager. The queue manager is

designed to facilitate fast recovery from errors by employing careful storage of state

in a storage friendly manner.

Security is controlled by the security manager based upon users rather than creator’s

permissions placing the same permissions on the entire agent rather than the

individual constructors of the constituent classes. Security in Concordia is employed

in storage through the encrypting of stored information and in agent transmission

through the use of SSLv3 protocol

Agent interaction is handled by two schemes i.e. asynchronous distributed events and

agent collaboration. The events are managed and distributed to interested parties by

the event manager while agent collaboration requires the programmer to construct an

AgentGroup that enables agents to share information upon meeting.

2.4.4 ARA

Under development at the University of Kaiserslautern, Ara is an agent system that is

not restricted to a specific language providing the agent language is capable of

providing an interface that the Ara system can interact with [Peine’97].

31

Figure 2-10 Ara system architecture [Peine’97]

Movement of agents is achieved with the capture of the internal state of the agent that

then migrates transparently. Ara does not prescribe to attempting to shutdown and

restore external relationships, instead relying upon the migration of an agent to be

between two similarly equipped places. During the migration security is paramount

both in terms of the admittance and hosting of agents as well as the encryption of the

agent during transport.

Agent communication can be performed between different hosts using an

asynchronous messaging system or through an application specific manner. Local

interactions can be performed through the use of a service point where agents can

subscribe and interact on the same host.

The utilisation of a resource is controlled by an agent’s allowance of access to

resources such as the CPU, memory, network bandwidth etc. This allowance can be

capped at creation of the agent to restrict the creator’s liability as well as being used

as an entry bond to a host of the resources it requires. Ara also defines a means of

transmitting an allowance between agents. The agent itself may also move if it

discovers that the host it has been resumed upon is not capable of supporting its

resource requirements. The transmission of agents can also utilise encryption methods

such that authentication of the agent is required at the arrival of a host. Persistence is

introduced as a means of fault recovery by allowing an agent to produce a check point

32

version which is stored and can be used as a means of rolling back in the event of

system failures.

2.4.5 TACOMA

TACOMA (Tromsø And Cornell Moving Agents) is a system developed by Tromsø

University and Cornell University supporting agents written in C, Tcl/Tk, Perl,

Python, and Scheme [Johansen’95], [Jacobsen’99].

Data and state including code is stored in folders that an agent may access. Folders are

defined as being stored in a static storage called a file cabinet or in mobile storage

called a briefcase shown in Figure 2-11. This provides the agent the ability to leave

data at a site in folders within a file cabinet until required whilst taking information

with the agent in a briefcase. The briefcases can be signed using PGP (Pretty Good

Privacy) and decoded by servers with the correct key providing a mechanism for

incorporating some security into TACOMA.

Figure 2-11 TACOMA: File Cabinet and Briefcase with Folders [Johansen’95]

Agent communication is facilitated through a meet operation specified by the agent to

meet another specified agent and exchange a specified briefcase. In order to meet at a

location a location is specified in the briefcase and then the meet operation is called

on the briefcase containing the code and data.

The design of TACOMA is well suited to supporting multiple agents written in

multiple languages making it a more generic environment capable of supporting a

more heterogeneous pool of hosts. The desire to meet a specific agent or at a specific

location forms a reliance upon an entity that can conceivably be unavailable within an

active environment.

33

Development of TACOMA Lite for operation on small devices such as the Palm and

Windows CE PDA required the refining of the TACOMA API to better suit the

facilities offered by the devices [Jacobsen’97]. This implementation uses the same

techniques as TACOMA also utilising technologies such as Short Message Service

(SMS) and e-mail to encapsulate agents. To address disconnection issues TACOMA

Lite assumes the existence of a hostel on a stable host, typically the synchronising

host of the PDA for an interaction point between PDA and the rest of the world.

2.4.6 Lime

LIME [Picco’98] is a system that utilises the Linda [Carriero’89] tuple space

principals discussed in more detail later in this thesis in combination with mobile

agents.

An agent has an interface tuple space associated with the agent that moves with the

agent when it is migrated containing information specific to the agent and unsent

information from the agent. Interacting agents utilise a transitively shared tuple space

forming a federated tuple space that can be spread over multiple hosts providing they

are capable of communications forming a federated tuple space. Each host provides a

host-level tuple space for all agents on that host to share and all hosts share a

LimeSystem tuple space that is read only for agents containing information on agents.

Figure 2-12 shows the migration of a Lime agent with transiently shared tuple spaces

encompassing physical & logical mobility.

Figure 2-12 Lime: migration of an agent [Picco’98]

34

The carrying of information can generate large agents potentially holding key

information required by other agents that may not have been transmitted; this could be

exacerbated if the agent is lost by system failures destroying the information. The use

of the tuple space provides decoupling of hosts removing the reliance upon directed

communications.

2.4.7 Agent Tcl

Developed at Dartmouth University and extended further under the name of D’Agent,

Agent Tcl is an agent system for the distribution and execution of agents [Gray96],

[Gray’02]. This architecture supports multiple languages including Java and Tcl with

facilities to use agents written in other languages. Agent Tcl has been extended to

facilitate operation within a mobile environment [Gray’96a].

The Agent Tcl approach uses fixed permanently connected dock machines that acts as

a buffer for the mobile host. When the mobile host is contactable the system interacts

directly. Upon disconnection operations from the fixed network requiring access to

the mobile host are placed in local storage at the dock for the mobile host until a

connection is detected. When a mobile device is migrating an agent, the agent is

stored in local storage by the mobile host’s dock master awaiting reconnection for the

agent to be able to move. The internal state of the agent is captured, encrypted and

digitally signed before transmission.

Navigation of agents utilises a hierarchical structure whereby agents can query a

database for information about an agent they require use of to discover its location.

The database is developed through navigation agents that traverse the mobile

environment gathering information on agents and locations sharing it with hosts they

may visit.

2.4.8 Aglets

IBM has developed and implemented an agent system called Aglets [IBM’99]

designed to operate using web technologies and implemented in the Java language.

Aglets are generated and initialised before being placed into the environment where

they are consumed and executed by a willing node. Upon registration at a node the

aglet receives callbacks upon certain events such as when an aglet is to be cloned,

35

dispatched, retracted, deactivated, disposed and desired to migrate. The notification of

a migration is required due to the use of standard Java serialisation such that an aglet

can store its state ready for migration. Aglets are capable of transmission utilising a

fetching of required classes on demand or through the encompassing of required

classes with the serialised aglet during transmission. Aglets may be stored for latter

retrieval providing a means of persistent storage. Communication between agents is

performed through a proxy that is generated at the same time as the aglet.

Communication is carried out on the same host making the proxy responsible for

forwarding the messages to the recipient aglet that may be located on a separate host

providing location independence for the aglet. Security is provided by means of

examining the source of the aglet classes for the correct execution permissions.

2.4.9 Java-To-Go

Java-To-Go is a simple architecture for experimentation with mobile agents

developed at University of California Berkeley [Li’96]. Agents are executed in Hall

Servers that form the runtime environment for mobile agents. A ClassLoader is

provided for each agent to load the required classes. The Agents that require extra

classes can be collected from Class servers. Both the Hall servers and the Class

Servers are at well-known locations exposing weaknesses in the potential for the

Class servers to become unavailable rendering the agent unusable.

2.4.10 Analysis

This section has focused on agent based systems operating in static and mobile

environments. These systems facilitate the movement of agents between environments

and hosts either by allowing an agent to choose the most appropriate host

(autonomous agent) or by directing an agent at run time or by a pre arranged route.

The active environment outlined by this thesis is not suitable for many features of the

previously examined agent systems, most notably the reliance on stable servers for

operations. Java-To-Go and Mole have reliance upon hosts for gaining classes

required by an agent when it arrives at a host. Whilst this approach saves in the

transmitted agent size it forms a reliance that cannot be guaranteed in an active

environment. TACOMA and Ara require a specified meeting point to perform agent

interaction requiring a host to be stable for the duration of a meeting. Agent Tcl uses

36

its dock machine for interaction where the dock machine is placed on a static or

highly available network. Aglets require the hosts that the agent has previously visited

to execute a proxy such that communications can follow the agent. Aglets requires all

hosts the agent has visited to remain available to relay communications to the agent.

Lime offers a different approach utilising a tuple space for interactions and migration

of all associated data with an agent. When the Lime agent migrates associated data

with that agent are moved as well. Other agents may wish to utilise the data

encapsulated and moved with the agent causing the removal of critical data from a

working environment.

2.5 Summary

This chapter has introduced currently available distributed systems targeted at

operation in a mobile environment. The chapter has investigated two key aspects of

performing operations within a mobile environment, service discovery and utilisation

of services. Through the examination of existing systems it is clear that an approach is

required that exhibits several key features to operate in an active environment.

• The removal of reliance upon a server based architecture as the nature of

mobility produces fluctuating connectivity and periods of disconnection. This

style of system can be seen in mobile agent systems relying on servers for

meeting and storage of classes. Service discovery protocols also make heavy

use of servers storing service descriptions. Furthermore reliance on static

servers should be avoided.

• Using a minimal amount of bandwidth in keeping an updated view of

resources and the transmission of agents.

• Adaptation to environmental changes to make better use of available resources

as can be seen in existing mobile distributed systems such as Odyssey by

notification and adaptation to changes.

The previously examined approaches to resource discovery and agent systems have

shown a potential for discovery and configuration of resources. The following chapter

will outline the approach taken by MARE to achieve discovery and configuration in

an active environment using resource discovery and agent systems.

37

Chapter 3

Resource Discovery

3.1 Overview

The previous chapter examined methods of operation within mobile distributed

systems examining in particular service discovery and agent based systems. Through

this examination, the lack of support for discovery in ad hoc environments has been

highlighted noting that existing approaches focus on discovery of services in static

networks before adapting these solutions for mobile environments.

This chapter revisits the resource discovery approaches examined in the previous

chapter before proposing a novel approach to resource discovery, namely the use of

tuple spaces. The tuple space paradigm is then examined including suggested

enhancements before examining individual implementations. This chapter concludes

by examining the attributes of the tuple space paradigm for operation within an active

environment before selecting an approach to be used as a resource discovery

mechanism within an active environment

38

3.2 Resource Discovery

This thesis has examined service discovery protocols that provide processes with

information of the services requested. Within discovery protocols physical devices are

often seen differently to services. As in Jini, MARE views devices and services as

one, in the case of Jini as services and MARE as resources. Both approaches make the

assumption that both devices and services expose an interface that can be utilised by

processes thus making no distinction between them.

The service discovery protocols examined in the previous chapter have a preference

for operation within a centralized architecture. They aim to introduce scalability

through the collection of data at central points requiring a single query to a server

rather than multiple requests to many hosts; however reliable servers are typically

unavailable within an ad hoc environment. The UPnP, SLP and Jini service discovery

approaches are heavily reliant on the synchronous query / response approach

generating two or more interactions for a single query. These approaches specify that

a host responds to a multicast request for information with a unicast response. As

several clients may be interested in the same service, multiple multicast requests and

unicast requests are made for a service. This approach produces a potentially large

amount of traffic especially when retransmission strategies are employed

[Microsoft’00]. The caching of service information can be seen as advantageous as

requests can be satisfied locally requiring no external access. However the

information within a mobile environment requires continual updating due to the

dynamic arrival and departure of resources potentially requiring a highly effective

caching policy.

In order to address the issues raised previously a different approach to service

discovery is required for operation within a dynamic mobile environment. There is a

body of work examining the potential for adapting tuple spaces for facilitating

operations in distributed and mobile environments [Wade’99] [Johanson’02]. What

follows is an examination of the tuple space paradigm as a candidate for enabling

service discovery in an active environment.

39

3.3 Tuple Space Paradigm

Gelernter et al conceived the tuple space paradigm in the mid-1980’s at Yale

University calling their implementation Linda [Gelernter’85], [Carriero’89]. The

paradigm has been researched extensively in the parallel and artificial intelligence

domains and more recently the potential of operating in distributed and mobile

environments has been explored. The tuple space was developed to offer a means of

interaction in concurrent systems other than message passing and shared variables.

The approach offers an abstraction allowing the insertion, reading and removal of data

from any participating host.

Tuple space

A tuple space can be viewed as an abstract shared space where processes on one or

more hosts can insert and query data. In effect the shared space is analogous to

distributed shared memory between one or more participating processes across one or

more hosts.

Tuples

A tuple is a typed data structure consisting of a number of fields of either an actual or

formal type. A formal field within a tuple is a field that has a type with no associated

value. In contrast an actual field consists of type and value information. A third field

type exists that consists of an active tuple differing from the previously examined

passive tuples. The active tuple contains operations to be carried out on the tuple

within the tuple space eventually forming a passive tuple. Once a tuple is placed

within a tuple space it can only be destroyed or modified by removal from the tuple

space before reinsertion if required.

Anti-tuples

To search a tuple space a means of creating a template for tuples to be matched

against is required. The templates are termed anti-tuples consisting of actual and

formal fields to be matched against other tuples. Actual fields are matched fully whilst

formal fields act as a field to be matched against type only. The anti-tuple may match

with more than one tuple in which case a matching tuple is chosen at random. An

anti-tuple can be seen as destructively removing tuples from a tuple space or as a non-

destructive query upon the tuples returning a copy of a matched tuple. Figure 3-1

40

shows the interactions of a producer and consumer on a tuple space, emphasizing the

requesting of tuples from a tuple space using an anti tuple to subsequently match

tuples against.

Figure 3-1 Communiction through a tuple space

Temporal decoupling

A tuple space is seen as offering temporal decoupling through its ability to act as a

persistent store for tuples. This storage of tuples means that a host can insert tuples for

consumption at a future time by the same or another process (See Figure 3-2). Anti-

tuples can also be placed into a tuple space prior to the production of the matching

tuple. This is unlike existing RPC mechanisms that, unless employing buffering in

some way, require the explicit formation of a connection between client and server.

Figure 3-2 Temporal decoupling

Spatial decoupling

As processes do not have to directly interact with one another, a tuple space can be

seen as providing spatial decoupling whereby the location of a process is irrelevant to

the tuple space. This decoupling enables transparent support of group interaction

through the use of a tuple space. In particular, a process can produce tuples that can be

transparently read by multiple clients (see Figure 3-3). In the event of failure of a host

the tuple space can compensate through utilising other hosts holding the same

information introducing a level of fault tolerance into the tuple space.

Tuple Space

Producer Consumer

Anti Tuples Tuples

Tuples
T

uple Space

Host A

Host B
Anti Tuple

Tuple

Tuple

Time

41

Figure 3-3 Group communication

Communication

Interaction between processes acting upon a tuple space has been defined as

generative communications when interaction is exclusively carried out through a tuple

space [Gelernter’85]. In this approach communication between processes is typically

anonymous however directed communication can be achieved through the use of

identification fields inside a tuple such that a tuple can be uniquely identified

[Friday‘99].

Application Programmer Interface

The application programmer interface (API) available to tuple space programmers

typically consists of four operations in(), rd(), out() and eval() (see Table 3-1).

Tuple Space

Producer

Consumer

Anti Tuples

Tuples

Tuples

Consumer

Tuples

Anti Tuples

42

Primitive Description

in Blocking operation to remove a tuple from a tuple space, an anti-tuple
is placed into the tuple space to be matched causing the return of the
matching tuple.

rd Blocking operation to return a matching tuple non-destructively from
a tuple space. An anti-tuple is placed into the tuple space that is then
matched against a tuple returning a copy of the tuple.

out A non-blocking operation to insert a tuple composed of a number of
formal and actual fields.

eval A non-blocking operation to insert an active tuple composed of a
number of formal / actual parameters and fields to be evaluated
eventually forming a passive tuple.

Table 3-1 Standard Linda primitives

The four operations were initially designed as functions in the C programming

language providing a simple yet powerful interface for distributed programmers.

Further extensions to the API have been made for manipulation of tuple spaces and

will be examined later in this chapter.

3.3.2 Tuple Space Enhancements

Linda was the initial implementation of the tuple space paradigm that offered a single

tuple space with a simple API consisting of four simple yet powerful commands

outlined in Table 3-1. The participating processes in the tuple space have access to all

of the global tuple space. The tuple space paradigm defined by Gelernter et al has

been developed further, notably through the development of multiple tuple spaces,

bulk primitives and distributed implementations. Each of these enhancements will be

examined in turn below.

Multiple tuple spaces

Tuple space implementations have been developed that support multiple tuple spaces

as opposed to a single global tuple space [Davies’98] [Hupfer’90] [Bakken’94]

[Carriero’94] [Rowstron‘96]. Utilising multiple tuple spaces enables the tuples to be

logically grouped into different tuple spaces allowing interested parties to participate

in tuple spaces that contain information of interest to them (Figure 3-4). The use of

43

multiple tuple spaces helps reduce unintended aliasing of tuples where tuples are

consumed non-intentionally because they match the template of an anti-tuple

[Hupfer’90]. Performance can also be gained through the partitioning of tuples into

multiple tuple spaces. The internal matching being performed in a tuple space is

therefore on a reduced number of tuples.

Figure 3-4 Multiple tuple spaces

Extensions to the application programmer interface

As previously mentioned the initial Linda API consisted of in(), out(), rd() and eval()

operators providing the ability to add, remove, copy and evaluate tuples in a tuple

space. These operators have been seen by many tuple space implementers as

restrictive leading to the development of operators capable of exploiting multiple

tuple spaces, multiple tuples and non blocking operations. The creation and

destruction of tuple spaces has been examined in a number of differing ways

considering attributes a tuple space may require such as if the tuple space is local or

global to a particular process or machine, and other non functional properties such as

security, fault tolerance or persistency attributes. Operations that manipulate multiple

tuples such as insertion or removal in one operation are also found in many tuple

space implementations. These operations often make use of multiple tuple spaces such

that an operation can move or copy multiple tuples from one tuple space to another

with a single operation call. Non blocking operations such as inp() and rdp() requiring

examination of the tuple space to determine if an operations has completed have been

developed. As noted by some tuple space implementations these operations are not

precisely defined, leading to hard to predict behaviour. An example of the

unpredictable behaviour of inp() and rdp() is proving that no tuple in the tuple space

matches the request made. The whole tuple space would have to be searched whilst

locking all interactions on the tuple space until the search completes

Tuple Space

Host A Host B Tuple Space

Tuple Space

44

Distributed tuple space implementations

Distributed tuple space implementations aim to reduce the reliance upon a single host

spreading or replicating tuples across multiple hosts. This provides the potential for a

tuple space system to offer a level of fault tolerance. There is also potential to aid

performance by caching or placing tuples near to the host requiring the tuples thus

providing a local and potentially faster access to tuples within the tuple space. This

distribution however adds complications in maintaining consistency across tuple

spaces. For example, the removal of a tuple from a centralised tuple space can

potentially offer a guarantee that the tuple has been removed whilst removing a tuple

from a distributed system requires all hosts to agree that the tuple has been removed.

3.3.3 Tuple Space Implementations

Implementations of the tuple space paradigm have been developed offering differing

features. Some prominent tuple space implementations are examined below.

Bauhaus Linda

Developed at Yale University Bauhaus Linda [Carriero’94] aims to generalise Linda

by eliminating the distinction between tuples and tuple spaces considering the tuple

space to be a set that can contain other sets hence providing support for multiple tuple

spaces. This idea is further extended to allow the standard Linda operations in(), out()

and rd() to act not only on single tuples but also on sets of tuples, offering support for

the addition or removal of tuple spaces. Bauhaus Linda makes no distinction between

tuples and anti-tuples utilising simple set inclusion rather than a more complex type

and position of matching members of a tuple. The distinction between active and

passive tuples is removed allowing the insertion using the out() operator removing the

need for the eval() operation. Bauhaus Linda aims to provide a simpler view of the

tuple space paradigm than the initial Linda implementation reducing the API

providing support for multiple tuple spaces through overloading of its API.

Law-Governed Linda

Minsky et al at Rutgers University have developed Law-Governed Linda (LGL)

[Minsky’94] providing a Linda model adhering to rules that control behaviour on and

in the tuple space model. LGL supports three operations in(), out() and rd() on a

single shared tuple space providing support for multiple tuple spaces by allowing the

45

shared tuple space to be divided into named sub spaces with associated criteria. The

division of the shared tuple space effectively provides multiple tuple spaces accessed

by processes meeting the required sub space criteria enforced by the LGL law. LGL

offers a relatively simple API whilst internally enforcing its law onto the tuples / tuple

spaces it contains, supporting the claim of introducing safety into tuple space

communications by making invalid operations illegal.

Melinda

Developed at Yale University, Melinda [Hupfer‘90] also aims to extend the tuple

space paradigm set out by Gelernter et al to encompass multiple tuple spaces. The

approach considers tuple spaces to be first class objects allowing operations to act on

a tuple space as they would on a tuple. A tuple space may also have various

parameters associated with them, for example fault tolerance, priority, protection and

security. A tuple space is treated as a partially evaluated entity referred to as a live

tuple space image. The tsc() (tuple space create) operation is added to generate a tuple

space with optional properties defining the behaviour of the tuple space. The tsc() call

does not return execution back to the calling program remaining live until the tuple

space is destroyed.

The York Linda Kernel

Developed at the University of York, the York Linda Kernel [Douglas’95] has been

targeted at running Linda across a network of transputers, each running a tuple space

manager. The four Linda primitives in(), out() rd() and eval() are implemented as well

as the collect primitives providing a means of manipulating multiple tuples within a

single call to the tuple space. Each tuple space manager must be able to communicate

with all other tuple space managers. A tuple is sent to one of the tuple space managers

making removal of a tuple predictable as only one copy exists. The partitioning of

tuple space managers would make tuples on either side of the partition unavailable to

the other; this however breaks the requirement that a tuple space manager must be

able to see all other tuple space managers. The York Linda Kernel provides a local or

remote tuple space offering access to one or multiple processes respectively. Local

tuple spaces are stored on the local machine.

46

Bonita

Bonita developed at the University York [Rowstron’97] defines a set of primitives for

distributed coordination addressing weaknesses in previous approaches holding back

the performance of tuple space operations. Although not specifically targeted at a

particular tuple space system, the primitives assume the availability of a system

capable of multiple tuple spaces. The proposed primitives provide the functionality of

in(), out(), rd(), inp(), rdp(), collect() and copy-collect() in four primitives:

rqid = dispatch(tuple space, tuple | [template, destructive | non destructive])

This is an overloaded primitive allowing the insertion of tuples or templates (anti-tuples) of a

destructive or non destructive nature into a specified tuple space. When an anti-tuple is

inserted, a request identifier (rqid) is returned that can later be used to test if the operation has

completed. The rqid can then be used to copy or remove the tuple. This operation in effect

provides a non blocking in() of a tuple or anti-tuple as defined in Linda using the rqid to check

for completion of the desired operation.

Rqid = dispatch_bulk(tuple space 1, tuple space 2, template, destructive | non-

destructive)

This primitive provides for the destructive move or non destructive copy of multiple matching

tuples from tuple space 1 to tuple space 2 providing a request identifier to examine the

operation.

Arrived(rqid)

Allows a request identifier to be queried returning true or false as to the arrival of a tuple as

defined by the request identifier creating primitive.

Obtain(rqid)

Unlike the previously examined primitives obtain() is a blocking primitive waiting for the

completion of the primitive that created the request identifier.

These primitives provide a non blocking set of operations addressing the same

concerns that inp() and rdp() examined previously. The inp() and rdp() primitives

provide a polling mechanism of the entire tuple space whereas Bonita can collect

results near to the requesting host. The arrived() primitive can simply consult the local

47

system allowing it to manage the marking of completed requests avoiding the

continual polling of an entire tuple space. When considering a distributed tuple space

implementation these operations reduce reliance on blocking operations. These

operations whilst detecting tuples can generate less traffic throughout the tuple space.

FT-Linda

FT-Linda provides multiple tuple spaces of private or shared scope allowing access

by single or multiple processes respectfully [Bakken’94]. A tuple space can be

defined as being volatile or stable, the latter offering a tuple space capable of

withstanding a node failure at the price of greater management overhead, in effect

producing a distributed tuple space system.

JavaSpaces

Developed by Sun Microsystems JavaSpaces [Sun‘99] offers a tuple space

implementation built using Jini [Sun’02]. JavaSpaces utilises the Jini system to run a

tuple space as a service on a server in a centralised manner facilitating multiple tuple

spaces by using multiple services. There are four operators exposed to the JavaSpace

programmer write(), read(), take() and notify(). The first three are analogous to the

in(), rd() and out() operations found in Linda. The notify() operator provides a means

of inserting a template for receipt of an event when the template is matched. Two

other operators exist, readIfExists() and takeIfExists() providing the equivalent to the

non blocking rdp() and inp() operators. Through the running of a JavaSpace service

on all participating nodes, distribution of tuple spaces can be achieved thus reducing

potential bottle necks at central servers. This technique can also be seen as offering a

local tuple space through running a Java Space service on a local machine.

T Space

A TSpace [IBM‘99a] is an implementation of a tuple space offered by IBM

incorporating features from the database community such as transactions, persistency,

flexible queries and XML support. TSpace operations include write(), waitToTake(),

take(), waitToRead() and read() which are roughly analogous to out(), in(), inp(), rd()

and rdp(). Other supported operations include scan(), equivalent to a copy-collect()

operation, and capable of returning a matching set of tuples. eventRegister() provides

a callback upon a (Write, Delete/Update) operation on a certain tuple type. There is

48

also a countN() operation that performs an operation similar to the scan() operation

except returning the number of matching tuples. A TSpace system consists of servers

capable of holding multiple TSpaces in effect providing a centralised multiple tuple

space implementation; running the service on a local machine can also provide a local

tuple space.

L2imbo

Developed at Lancaster University L2imbo [Davies‘98] is a distributed tuple space

implementation offering the four standard Linda primitives as well as the non

blocking operations inp() and rdp(). Multiple tuple spaces are supported in both local

and remote formats supporting the collect() and copy-collect() operations. L2imbo

also supports callbacks from the tuple space by placing an anti-tuple into a tuple space

and receiving a callback upon addition or removal of a matching tuple. Fully

distributing the tuple space across all participating hosts provides a local store of

tuples providing matching firstly from the local store, reducing the need to contact

remote hosts to satisfy request performance. If a host becomes disconnected from the

network upon reconnection the host listens for changes made to the tuple spaces such

as inserted or removed tuples. The local cache is updated to incorporating these

changes eventually making the local cache consistent providing eventual consistency.

The L2imbo implementation also offers unique withdrawal of tuples, a method

whereby each tuple will be removed from the tuple space once rather than potentially

being removed multiple times by multiple hosts. Tuple spaces are distributed across

multiple hosts with each host maintaining a cache of the tuple space such that requests

will be satisfied locally when possible increasing performance and communication

overheads. Through the development of the L2imbo approach it was noted that the

tuple space was not best suited to end-to-end communications as the lack of a bound

communication path makes it difficult to monitor and adapt to changes in QoS. It was

noted that the tuple space approach represents part of the communication solution

requiring explicit bindings with QoS [Wade‘99], in essence the tuple space is not best

suited to directed communications.

3.3.4 Analysis

This section has focussed on examining the tuple space paradigm as a potential

resource discovery mechanism for active environments. The tuple space paradigm

49

describes a shared space that tuples can be inserted, removed and read from using the

in(), out() and rd() operations respectively. These blocking operations have been seen

as restrictive spawning the examination of non blocking operations such that a process

does not have to block until the operation completes. Bonita, JavaSpaces, TSpaces

and L2imbo have developed operations to address this issue. A desire for multiple

tuple spaces to enable the grouping of related information into a single space or assign

properties to a tuple space such as persistency or security has also been explored in all

the examined implementations. The API calls have also been examined aiming to

provide a more intuitive interface to the tuple space. The examination has resulted in

renaming the in(), out() and rd() operations as can be seen in JavaSpaces and TSapces.

L2imbo also aims to address the distribution of a tuple space to improve performance

and fault tolerance by careful caching of tuples. JavaSpaces has also aimed to address

this issue however the relationship it has with Jini is not clear and in practice the

reliance of JavaSpaces on Jini makes the approach inappropriate for active

environments as outlined in chapter 2 of this thesis.

The L2imbo implementation offers non blocking operations, bulk primitives, multiple

tuple spaces and a fully distributed approach making it of particular interest as a

mechanism for resource discovery within an active environment.

3.4 Summary

Through the exploration of existing service discovery protocols in the previous

chapter it is clear that the majority of focus has not been directed at mobile devices

wishing to perform service discovery operations. A different approach that harnesses

the experience and benefits from the current service discovery techniques is required

when operating in an active environment. This chapter has focussed on the tuple space

paradigm as a candidate for facilitating resource discovery in a mobile environment.

The benefits of using a tuple space for service discovery are a combination of the core

properties of anonymity, spatial and temporal decoupling. These properties allow the

natural use of group communications between multiple hosts utilising a tuple space.

This allows a request to be serviced by any host with the appropriate information

without the need to form explicit connections. These properties also allow a host to

place information into a tuple space for retrieval at a later point in time by a host that

may not currently be participating offering a degree of communication persistency.

50

It is proposed that resource discovery can be achieved through a distributed tuple

space approach and configuration of such resources will be best achieved through the

utilisation of mobile agents. The L2imbo implementation of a distributed tuple space

system offers a comprehensive list of operations and a truly distributed approach

allowing for the continued operation of a system despite partitioning of a tuple space.

The following chapter explores the benefits of combining the tuple space paradigm

with agent technologies to perform discovery and configuration of resources in an

active environment. The chapter will then outline the design of a prototype to explore

the potential benefits of such integration.

51

Chapter 4

The Design of MARE

4.1 Introduction

The active environment has been introduced in chapter 1 providing a description of an

environment that has a constantly changing membership with a lack of structured

communications infrastructure. An example of the active environment was also

outlined emphasizing the importance of knowing the availability of resources and

being able to interact and configure such resources. Chapter 2 has highlighted

weaknesses and strengths in systems designed to discover and manipulate services

when applied to an active environment. A novel approach for the discovery of

resources has been examined in chapter 3 offering the tuple space paradigm and more

specifically the L2imbo implementation as a resource discovery mechanism.

This chapter describes the MARE (Mobile Agent Runtime Environment) approach to

resource discovery and configuration in an active environment [Storey‘00],

[Storey’02]. The chapter draws together the discovery of resources through the use of

the tuple space paradigm and configuration through the use of mobile agents. An

analysis of the combination of these technologies is undertaken relating to the initial

goals of the thesis. The chapter then outlines the MARE key design decisions before

examining the architecture describing the role of each constituent component in turn.

52

4.2 Resource Discovery and Configuration

4.2.1 Resource Discovery

Current service discovery approaches have been previously examined in this thesis

concluding that, whilst such approaches are undoubtedly useful within static networks

and useable within mobile networks, they appear unable to operate effectively and

efficiently within an active environment.

A resource discovery mechanism operating in a mobile environment must offer a

robust system capable of addressing the requirements highlighted previously in this

thesis. The resource discovery mechanism must operate without reliance upon server

based architectures allowing the discovery of resources without the use of static

servers. Resource discovery should be performed in a manner that consumes a

minimal amount of bandwidth whilst being capable of adapting to operate within an

active environment.

This thesis has introduced the tuple space paradigm concluding that this paradigm

offers the potential to provide a resource discovery mechanism for operating within an

active environment. In particular it has been proposed to use the L2imbo tuple space

implementation as a means of resource discovery in an active environment. The

L2imbo approach incorporates the key characteristics of the tuple space paradigm that

makes it an attractive proposition for resource discovery in an active environment

through the key features of anonymity and spatial and temporal decoupling.

Furthermore to these core characteristics the L2imbo implementation offers a fully

distributed approach through the distribution and caching of information at

participating instances. The approach also incorporates a recovery mechanism to

allow a host to acquire updates, such as deletions and insertions to its local cache in

case of periods of disconnection. This comprehensive set of features offered by

L2imbo makes the system an attractive proposition for resource discovery in an active

environment. The approach however must be supported by a mechanism for

configuring and combining resources for performing tasks in an active environment

such as adaptation to environmental changes.

53

4.2.2 Resource Configuration

Once appropriate resources have been discovered the resources can be configured and

utilised. The interaction with resources can be made in a direct unmodified manner

such as direct calls to a device or through the use of proxies that can act as an

intermediary. The use of proxies allows transformation or caching of data into a more

applicable format for the environment a system may be operating within, for example

a video stream compressor can be used to save bandwidth as shown in Figure 4-1.

The techniques used to interact with a resource are dependent on the environment the

resource and interacting party are contained within. The environment this thesis is

primarily examining is the active environment. When considering the active

environment issues such as bandwidth and poor computational power lend weight to

considering distribution of operations between hosts. This thesis proposes a method of

performing the distribution of operations through utilising mobile agent techniques.

Mobile agent systems have been examined previously; through the analysis of these

systems the mobile agent approach offers many beneficial features for utilisation in an

active environment. Utilising resources in an active environment requires a solution

where resources can be dynamically configured, adapting the configuration as

required. Performing, monitoring and adjusting a configuration to maintain a

relationship between a resource and a consumer can be seen as a problem well suited

to autonomous mobile agents capable of seeking out and performing operations

without user interaction.

Mobile

host

Compression Agent

(Compressed stream)

Raw stream

Figure 4-1 Compression agent on mobile host

54

The examination of existing agent systems in chapter 2 typically used in static and

mobile environments outlines the major features of the respective systems. Chapter 2

concludes that an agent system must avoid reliance upon hosts as shown in agent

implementations that require a host to remain contactable for relaying of information

as seen in Aglets and Agent Tcl, class downloading as seen in Java-To-Go and Mole

and meeting points as seen in TACOMA and Ara. Agents will be required to be

autonomous to handle periods of disconnection, adapt to surroundings, detect

available resources and make appropriate use of them.

None of the systems examined previously allow simple incorporation with a third

party resource discovery mechanism, instead typically employing custom methods of

resource discovery. Movement of and communications between agents is also

performed by many differing techniques. To operate effectively in an active

environment the transport of agents and associated requirements must be done in an

efficient manner.

4.2.3 Analysis

This thesis proposes the merging of an agent system with the tuple space paradigm.

This is achieved in part with the use of the tuple space eval operation developed in

the original Linda implementation. The eval operation was intended to inject active

code within a tuple space for computation. This operation is often seen as a simple

operation designed to manipulate other tuples returning a tuple back into the tuple

space. This thesis argues that a less restrictive approach is required allowing an agent

to be inserted into the tuple space which has access to a broader range of operations.

The active code should have as much access as is required to perform its tasks which

may be more complex than simple tuple manipulations.

Revisiting the goals highlighted in chapter 2 the following examines the novel use of

the tuple space paradigm and an agent runtime environment to facilitate resource

discovery and configuration.

The removal of reliance upon a server based architecture as the nature of mobility produces

fluctuating connectivity and periods of disconnection

The use of the distributed L2imbo tuple space implementation allows operations to

continue despite periods of disconnection. Requests and insertion of tuples can be

55

carried out on the local cache for incorporation into the caches of other hosts when

they become available. The L2imbo approach transparently supports the notion of

eventual consistency within the tuple space. Hosts will ultimately gain a consistent

view of of the tuple space in their local cache through monitoring tuple traffic and

adjusting the local cache contents based on the operations that are seen. Update such

as deletions and insertions of tuples, piggybacked on normal tuple traffic reduces the

number of connections required if transmission of updates occurred separately. The

removal of reliance upon static and central servers is achieved through the use of the

L2imbo distributed tuple space where central servers are not used. MARE uses the

tuple space to advertise the resource descriptions at periodic intervals in a proactive

manner. The approach not only provides updates to all participating hosts but also

provides information about resources that a user may be unaware of but may be of

interest to the host.

Using a minimal amount of bandwidth in keeping an updated view of resources and the

transmission of agents

Attaining awareness of new resources in an active environment is achievable using

existing service discovery techniques by performing a request for all information. The

extra communications produced in a synchronous approach with multiple responses

for a single resource, as can be seen in the UPnP approach examined in chapter 2, is

clearly undesirable in a low bandwidth environment. MARE adopts an asynchronous

advertisement of resources. Agents are placed in the tuple space once and then moved

by the tuple space to all participating hosts. The agent is formed of a set of

requirements and descriptive elements followed by the agent’s executable code

including associated code bases. Whilst the code base adds size to the transmitted

agent it allows the agent to construct an instance without requiring extra

communications acquiring required code base. This approach does not prohibit the

ability to acquire code from remote hosts; however by default the agent will be

migrated with its required code base.

56

Adaptation to environmental changes to make better use of available resources

The MARE system makes use of tuple spaces in particular incorporating a local tuple

space that contains local system information. Each agent executing upon the host is

made aware of system changes that are placed within the local tuple space. The use of

the local tuple space provides a level of awareness as to the status of the local system

such that an agent can adapt to the detected changes. Further to the local detection of

changes, the availability of resources is relayed to the executing agents providing the

agent with a list of resources that could be used instead of its current resources. This

enables the agent to choose a better resource or a set of resources that can be

combined to provide a more appropriate resource.

The MARE approach aims to explore and develop the tuple space paradigm approach

combined with mobile agents particularly targeted at active environments. The details

of the approach adopted by MARE are explored in more detail in the remainder of

this chapter.

4.3 Major Design Issues

The merging of the tuple space and agent technologies is a novel approach to resource

discovery and configuration. The combining of the technologies offers an efficient

method of discovery through the use of the tuple space paradigm and utilising agent

technology, providing a flexible mechanism for configuring and maintaining the

availability of resources in an active environment. Some core aspects of the

combination of these two technologies have been explored in this Chapter. This

section aims to examine other major design decisions.

4.3.1 Eval

Eval was introduced in the tuple space paradigm as a means of distributing

computation between multiple nodes. A specific tuple type is inserted into the tuple

space and executed by a participating node often leaving a result in the tuple space in

the form of a tuple. The approach has been implemented both as a specific operation

call similar to an out() operation or as a specific tuple type that could be inserted by

using the out() command. Further descriptions of the eval approaches can be found in

chapter 3 of this thesis.

57

MARE implements eval as a new data type which avoids extending the L2imbo API

with a specific eval() operation. The new data type can be used in the same way as

other data types in L2imbo in the generation of tuples. The insertion of such a tuple is

performed by calling out() with the tuple as a parameter. This approach enables a

node to consume and run the operations contained in the eval field of the tuple.

Note that the contents of the eval field may not be a simple routine and may require

code bases to be present to execute, such as other classes. To enable MARE to

execute the contents of an eval field a method of making available the required classes

has been implemented. MARE offers three approaches to moving associated code

bases in an eval field.

I. The movement of only the core class relying on all required classes to be present

at the consuming node.

II. The transportation of all required classes generating a larger eval field however

all required components are available at the consuming node.

III. The implementation of a bootstrap mechanism that acquires the required classes

at runtime, this offers a smaller eval field however requires the required classes

to be available to the consuming node.

By default the MARE approach seamlessly takes all required classes within the eval

field which allows for disconnected operation. In the active environment disconnected

operation can be expected and is preferred as no further fetching of classes is required

and no reliance on a node having all required classes is assumed. MARE can take

either a new class or an initialised class that has been paused with associated runtime

state. Upon starting at a participating node a common interface is used to restart the

class.

4.3.2 Resource Advertising

Knowing what resources are available to perform an operation is clearly desirable in

any environment; the method in which a host discovers what resources are available

to it is not trivial in static networks with static resource repositories and large

quantities of available bandwidth. Discovery of resources in an active environment

58

where bandwidth is a premium resource and availability of any host cannot be

guaranteed is clearly a more complex scenario. The discovery of resources previously

explored in this chapter is achieved in conventional service discovery techniques by a

request and response approach as can be seen in SLP and UPnP. This approach is

supplemented by announcements of the changing of a service’s status such as removal

as can be seen in the UPnP approach. In the case of SLP a request is made and a

single response issued. However in the case of UPnP a request is issued three times

followed by multiple responses for each request. The MARE approach is designed to

reduce the overhead of continually requesting all available resources by proactively

announcing all resources allowing all listening hosts to have knowledge of all

available resources.

4.3.3 Resource Consistency

Having knowledge of available resources is important in utilising them, however

maintaining a consistent view of resources is also vital in adapting usage to best suit

changes in the operational environment. Within a static environment the changes in

operational environment are typically infrequent. In contrast in an active environment

maintaining a consistent view of resources is an issue complicated by constantly

changing resource availability. Gaining a view of all resources allows the most

appropriate resource to be used when a choice of resources is available. In the SLP

approach continual requests and responses would provide a consistent view of

resources, whilst in UPnP the same operation with multiple requests and responses is

required. UPnP supplements the asynchronous discovery approach with

announcements of a resource to try to alleviate the need for continual requests for

resource updates. A request can be targeted at a specific type of resource reducing the

amount of responses produced. However, to gain an impression of all available

resources, a request for all resources must be made producing one or more requests

with multiple responses. Within the MARE approach resources are announced on a

periodic basis through the tuple space. The announcement serves to make every

listening host aware of all available resources. The proactive approach to resource

discovery enables a host to be made aware that a new type or instance of a resource

exists. The awareness of all available resources enables the acquisition of information

and potential utilisation of as yet unknown resources. A resource once received by the

MARE instance is maintained and marked with an expiry time that is greater than the

59

announcement period. This allows the MARE instance to detect the availability of a

resource by updating the expiry time when a resource is next announced and remove

it from its cache if the expiry time is exceeded. All executing agents in the MARE

instance are made aware of the arrival of a new resource and the removal of a

resource determined by the lack of an update announcement. To minimise the number

of connections required, resources from the same host are grouped into resource

bundles reducing the number of connections required to transmit the resource

descriptions. The bundling of resources can also be made more efficient by

compressing the stream incurring additional overhead at the recipient and source in

performing the compression / decompression. MARE supports the use of bundling of

resources and compression transparently to the agents executing within the MARE

instance.

4.3.4 Agent Execution

An agent needs to be executed in a safe manner both in terms of the agent towards the

executing host but also the host affecting the agent. An agent is therefore required to

trust the host and the host in turn must trust the agent before execution begins.

Approaches typically focus on the protection of the executing host rather than the

executing agent. Mole and Concordia use permissions associated with the agent to

allow access to system objects such as IO routines providing a level of protection for

the system against malicious damage instigated by the requesting agent. The use of

the L2imbo tuple space implementation allows multiple instances of MARE to

execute utilising a single instance of the L2imbo as shown in Figure 4-2.

60

Figure 4-2 Multiple MARE instances utilising a single tuple space stub

In particular the approach depicted in Figure 4-2 allows multiple MARE instances to

execute at different priority or security levels. Having multiple instances of MARE

running in different security levels allows the execution of agents in an appropriate

environment, for example an agent with a low level of trust determined by a host may

choose to execute that agent in a restricted environment of low permission status. The

overhead of running multiple MARE instances is minimal as all instances share the

same distributed tuple space instance allowing the reuse of tuple space data such as

resources and agents.

4.3.5 Agent Movement

The use of mobile agents to perform operations on behalf of a user at an appropriate

point within a system requires the agent to be able to migrate to that point. The

movement of code is not simplistic, particularly when state is also required to be

moved with the agent. The movement of an agent has further associated issues

requiring further examination including, the size of a transmitted agent, access to

required resources and timeliness in achieving access to resources. The runtime state

of an agent is typically not captured as this requires the storage and rebuilding of the

runtime environment the agent was executing in. An agent is either run in a stateless

mode such that it can be stopped, migrated and restarted without loss of information

or sent notification that it will be stopped such that the agent can store its state.

Further to this the tuple space can also act as a repository for state information of the

agent. Allowing an agent to avoid serialising itself instead placing its state in the tuple

space and then running a bootstrap mechanism to reload the agents state and continue

execution.

Tuple Space

MARE

Agents

MARE

61

The Agent systems examined previously in chapter 2 use assorted techniques to move

agents. Targeting of an agent at a particular machine either prior to construction as

can be seen in Concordia with the use of an itinerary or from one host to a neighbour

as shown in Aglets can be seen as unwise if the target host becomes unavailable. The

availability of a host for a sustained period of time is unlikely in an active

environment. The target of an agent’s migration is not the only consideration; the

reconstruction of the agent requires careful consideration. An agent of a reasonable

level of complexity is likely to consist of more than one element or code base such as

classes and libraries. Whilst many are likely to be present on a participating host such

as system libraries, many will not, such as user developed classes. This issue is

examined in agent systems examined in chapter 2 through class servers which hold a

repository of classes, the movement of required elements with the agent or fetching

from the source of the agent. These approaches suffer in an active environment

through the lack of available servers for class downloading, increased transmission

size and potential for the source of an agent to become unavailable.

The MARE approach places the agent into the tuple space that then disperses the

agent to all participating hosts. This approach makes the agent available for all

listening hosts to execute. There is no required itinerary and no specified target for the

agent, instead letting the description carried with the agent enable the decision to load

and execute the agent. Each agent is executed only once controlled by the L2imbo

tuple space allowing the removal of an item from the tuple space only once. Agents

carry with them any code base required for execution which may consist of classes or

libraries. As highlighted in chapter 1 when examining the active environment the

reliance on a central server is unwise; the combining of the code base with the agent

removes a reliance on the source of an agent. This adds stability to the MARE

approach at the expense of some bandwidth overhead of transporting agents with their

code base. MARE also allows agents to load classes once they have started the

execution providing the agent has the correct permissions on a host to perform such a

task. An agent is migrated by either the MARE instance or by the agent itself. The

MARE instance makes a request to the agent to make itself ready for migration before

performing the actual migration. If the agent has not complied with the request, the

MARE instance will stop and serialise the agent. However this can result in the loss of

62

state of the agent. The agent itself can also place itself back into the MARE instance

thus allowing both parties to perform the migration of an agent.

4.3.6 Agent Loading

Consuming of an agent by a host is complicated by not just the mechanics of

unpacking, reassembling and instantiating an agent but also the decision to do so on

behalf of both involved parties, namely the host and the agent. The decision to

consume an agent is made through not only the resources the agent requires being

available on the host but also the host’s willingness to accept and execute the agent.

There are also associated security issues related to the trust the agent has in the host

and the host in the agent and this should be maintained throughout the lifetime of the

agent on the host. Agent systems examined in chapter 2 address the loading of agents

relying on available resources on the executing host. The agent moves when further

resources are required or operations are completed. The agent approach adopted in

MARE allows agents to be executed in a MARE instance after meeting a set of

criteria transmitted with the agent. This allows the system to gain an initial set of

requirements to decide if the agent is appropriate to be executed within the instance of

MARE before actually executing the mobile agent. In turn, once the agent is executed,

it too can examine the MARE system to examine the chances of a successful

execution. The criteria for loading an agent will be visited in detail in the following

chapter.

4.3.7 Agent Communications

Interaction between agents is desirable for performing an operation requiring more

than one agent such as searching where synchronisation may be required.

Communication between agents in systems examined in chapter 2 is achieved by

several techniques. Meeting at a specific location before exchanging information as is

the case in TACOMA. Utilisation of proxies on each visited node as a route to the

agent, as is the case for Aglets. These approaches suffer from a lack of

communications infrastructure where such meeting points or communications relays

can become unavailable before a meeting or communication takes place. Mole uses a

different approach based on badges attached to each agent allowing the direction of

information at the specified badge. Multiple badges can be used and shared between

different agents and the Mole system controls relaying of messages. MARE adopts a

63

similar approach to Mole utilising badges that are carried by agents and revealed to

the MARE instance upon arrival allowing the MARE instance to direct messages to

the correct agent. The messages are transmitted through the tuple space distributed to

all listening hosts. MARE encourages the transport of bulk communications such as

multimedia streams through other techniques rather than through the tuple space (this

is explored later in section 4.3.9). Other communications subsystems including peer

to peer communications are not restricted; however they are limited in their use by the

level of permissions an executing agent has on the MARE instance.

4.3.8 Interoperability

Allowing interoperability with resources not capable of executing an instance of

MARE expands the number of available resources to the MARE system. Furthermore

providing interoperability with existing agent and resource discovery systems such as

SLP and UPnP is also a desirable feature. The MARE system has multiple options

available to resources wishing to participate but unable to execute a full environment

despite the minimal requirements of the environment. For example a digital camera

can be attached and act as a resource on an executing MARE host by placing a stored

agent into the MARE environment to act on behalf of the resource as shown in Figure

4-3.

Figure 4-3 Interoperability with existing devices

Interoperability with existing standards can be achieved through the use of agents

acting as a proxy between discovery protocols and agent systems. Whilst this level of

Host executing
MARE instance

Communications device
executing a MARE instance

connected directly

Digital camera connected
through a host running a

MARE instance

64

interoperability is not a goal of the MARE system such interoperability can be

achieved through utilising agents as wrappers for other discovery services as depicted

in Figure 4-4. This approach also offers the ability to execute and deploy agents

targeted at other systems such as TACOMA or Mole by in effect running an agent in

MARE encapsulating agents of other systems. The ability to perform such

interoperation does however bring drawbacks in effect adopting the undesirable

features found in existing systems explored in Chapter 2 such as inefficient use of

bandwidth and reliance on central servers. In effect these approaches use a MARE

agent as a proxy for resources enabling operations to be performed with devices that

have inadequate facilities to execute a full MARE instance. Such resources include

legacy devices without computational and communication capabilities as well as

software that cannot be rewritten to utilise the MARE environment.

Figure 4-4 Service discovery interoperability

4.3.9 Bandwidth Consumption

The consumption of bandwidth is a prime concern within mobile networks which

utilise low bandwidth communication mediums. Considering the active environment

described in chapter 1 the consumption of bandwidth is also a major concern. The

approaches to service discovery and agent systems explored in chapter 2 address

bandwidth consumption by multiple techniques. The combining of tuple spaces and

agents is a novel approach thus incorporating techniques from both areas is required.

The use of the tuple space for resource, message and agent traffic and not for bulk

data streams is inline with the conclusions by Wade et al [Wade’99] as outlined in

chapter 3 when examining the L2imbo approach. The tuple space is not best suited to

Agent

MARE

SLP/UPnP/Jini

Agent

65

bulk communications such as multimedia streams. Instead it is more useful for the

transmission of control information. MARE upholds this by offering methods for

message passing between agents through the tuple space addressed by the identifiers

associated with each agent. Further bulk communications is possible by allowing

agents to utilise communications interfaces such as point to point connections, agent

access permissions allowing.

4.3.10 Analysis

The MARE approach to resource discovery and configuration has been refined in this

section by examining areas of importance when operating in the active environment

explored in chapter 1 and summarised in Table 4-1.

66

Design Issue Notes

Eval Provides the fundamental ability for
executable code to be moved through the
tuple space and consumed by MARE
instances, and hence facilitates integration
of tuple spaces and agents.

Resource Advertising Resources are advertised through the
tuple space. Resources can be grouped on
the same host to form resource bundles to
reduce the number of connections
required.

Resource Consistency Resources are kept consistent through
periodic announcements.

Agent Execution Agents are executed at MARE instances
of which there may be more than one on
any given host.

Agent Movement Agents are transported through the tuple
space with related code and state to
alleviate further interactions after the
initial movement of the agent.

Agent Loading Agents are checked for appropriate
criteria before loading and in turn check
the environment once loaded.

Agent Communications Agent communications are performed
through the tuple space by addressing a
UID which can relate to a single or group
of agents.

Interoperability Agents are used to interact between
different systems and act as a proxy for
small or incompliant devices.

Bandwidth Consumption Consumption is minimised for resource
discovery through a proactive
announcement of resources through the
tuple space. Bundling of resources
together reduces bandwidth and required
connections.

Table 4-1 Key design issues

67

The key areas addressed within this section include tuple space, resource, agent and

general environmental areas. The methods adopted by MARE to achieve awareness of

available resources and maintain a consistent view of resources available is achieved

through utilisation of the L2imbo tuples space. The eval data type has been added

enabling the movement of executable code through the tuple space. This has

facilitated agent movement and enabled seamless reconstruction of agents for

execution. Agents are moved through the tuple space and used for configuration and

manipulation of resources. Agent issues addressed in this section include the

movement, loading, communications and execution. Agents are moved with an initial

descriptor and required code bases through the tuple space. The agent descriptor is

read for suitability before being consumed by the MARE instance running at an

appropriate security level. The tuple space provides a mechanism for communication

between agents through the use of identifiers attached to the agents; however bulk

communications are discouraged through the tuple space. The design points also

address the interoperability with existing service discovery mechanisms and agent

systems. This interoperability is viable through the use of agents however introduces

the flaws in alternate systems that MARE is addressing in its approach.

68

4.4 Architecture

4.4.1 Overview

MARE has an architecture designed to be flexible allowing development of

components in isolation to one another. The design issues previously mentioned in

this chapter are able to be explored further within the separate components to help

ease development and testing times.

Figure 4-5 MARE host environment

The MARE approach requires each participating host to execute a tuple space stub

and MARE runtime environment. This enables each host to have a tuple space for

communications not only of resources and agents but for other application data that

can utilise the tuple space approach. The position of the MARE system operating on a

host can be seen in Figure 4-5, a further decomposition of the MARE system can be

seen in Figure 4-6

Operating System

Tuple Space

MARE

Agents

MARE

69

Figure 4-6 MARE architecture

The components have been designed such that they abstract over the surrounding

components allowing for the development and introduction of new components at

compile time if required. The abstraction can be seen as useful when trying different

communications techniques for agents and resources. The components that make up

the MARE architecture as shown in Figure 4-6 will now be defined in turn.

4.4.2 Key Components

Tuple Space

The tuple space implementation L2imbo provides the transport mechanism for agents,

resources and agent messages. Tuples of a specific format are used to define the type

of transmission and constituent structure. A single tuple space instance can support

multiple interactions; for example multiple MARE instances operating at different

permission levels as well as other undefined applications that can utilise the tuple

space system. The ability to serve multiple instances / applications from the same

instance provides a local point for resolution of queries that can be satisfied by

another local application.

Resource Manager

Resources and Agents are handled separately in the MARE architecture having

associated managers as seen in Figure 4-6. The resource manager receives and

Tuple Space

MARE Control

Communications

Agent Manager Resource Manager

Agent Agent

Agent Wrapper

70

transmits information regarding resources, passing information up to executing agents

and placing resource descriptions into the MARE environment. The manager is

responsible for announcing the resource details from the MARE instance periodically.

The manager is also responsible for the generation and transmission of resource

bundles to conserve on the number of connections formed when transmitting

resources discussed earlier in this chapter.

Agent Manager

The agent manager constantly listens for agents entering the tuple space. Upon the

detection of an agent, its requirements are checked against the constraints of the

MARE instance. If the agent requirements are acceptable, the manager acquires it and

passes it to the execution environment. The agent requirements are explored in more

detail in the implementation details in chapter 5. The agent manager can be set to not

receive agents when carrying out insertion of resources, agents or shutting down to

maintain consistency within the local system. The agent manager also handles the

forwarding of agent messages between instances of the execution environment both

local and remote, through the receiving and placing of messages into the tuple space

and the forwarding of appropriate messages to agents in the local MARE instance.

Communication

Acting as an interface between the MARE control above and the resource managers

below is the communication component. The communication component is

specifically aimed at allowing different managers to be used or integrated beside or in

place of existing managers. The component provides relaying of information from

multiple communication sources for example the resource and agent managers in

Figure 4-6 to the MARE control component.

MARE Control

The MARE control component examines agent requirements including the resources

that the instance of MARE has, evaluating if an agent can be executed against them.

The control component also delivers messages to the correct agents executing in the

MARE instance. The control of the migration of agents is carried out at this point in

the case of an event such as a system shutdown or changing of execution power

caused by an event such as power saving.

71

Agent Wrapper

The agent wrapper is used to control the agents’ operations and acts as an interface to

the MARE control. An instance of this wrapper is passed to the agent upon being

executed. This wrapper controls registering for receipt of messages such that more

than one agent can receive the same message by addressing it to a shared identifier. In

effect this component provides the interface to the underlying MARE system.

Agent

An agent implements a set of methods to allow the restarting and movement of the

agent. The agent will be able to be serialized and serialize itself into a stream of data

to be transported across a network. The agent will carry a set of requirements separate

to the agent itself when transported such that a host examining the agent can examine

the agent requirements without the overhead of reconstructing the agent and executing

it if the agent is inappropriate. Allowing agents to have access to system libraries

provides the agent programmer with freedom as to the operations of the agent

restricted by the agent’s permissions.

4.4.3 Analysis

The previously examined architecture outlines the components that make up the

MARE approach to resource discovery and configuration. The movement of agents

and resource information is maintained by the MARE resource and agent managers

respectfully. When an agent is accepted it is examined for applicability to execute

within the MARE environment before the agent is executed. When the agent is

running it may also examine the MARE instance as to its suitability for the executing

agent. Allowing both parties a say in weather the agent can execute at the current

location.

4.5 Summary

The MARE approach has been designed to make use of the tuple space paradigm and

mobile agents to facilitate a means of distributing and configuring resources. The key

design issues examined within this chapter are targeted at providing a means of

resource discovery and configuration within the active environment defined in

Chapter 1. This chapter has explored the MARE approach regarding its potential

efficiency when operating in an active environment through the use of tuple spaces

72

and mobile agents, and has outlined the MARE architecture and design decisions

made when developing the MARE approach. The MARE prototype implementation is

examined in the following chapter before evaluation of the MARE approach using the

prototype.

73

Chapter 5

Implementation

5.1 Introduction

The prototype MARE implementation has been constructed using the design issues

raised in the previous chapter. The prototype has been developed to address the

requirements highlighted in chapter 2 for operating in an active environment. The

prototype provides an approach that has no reliance on servers when performing

resource discovery and configuration in an efficient manner. Usage of minimal

bandwidth and being adaptable to environmental changes are also goals of the MARE

prototype.

This chapter describes the implementation issues related to the components in the

MARE architecture emphasising the techniques used within the MARE approach

including weaknesses and strengths.

74

5.2 Implementation Language

The MARE system is required to operate on multiple devices being capable of

migrating code with ease between MARE systems making the choice of

implementation language restrictive. The Java programming language was chosen due

to its widespread adoption on mobile devices, servers and desktop systems alike.

Examination of upcoming languages such as the Microsoft Common Language

Infrastructure (CLI) [Microsoft’01] may offer further choices. However at the time of

writing little support is available for this option on UNIX derivates and non Microsoft

powered handheld devices. MARE is written in the Java language. However

components, such as agents written in other languages can be used but will lack the

close integration with the MARE system. These components will require a level of

abstraction typically through the use of a proxy between MARE and the agent of a

different language.

5.3 MARE Structure

The structure of MARE has been introduced in Chapter 4 emphasizing the key

components and their respective roles. This section looks in more detail at how these

elements operate by examining the components in turn highlighting the prototype

MARE implementation interfaces. The components have been designed in a modular

fashion to aid in development of components for different or additional transport

mediums such as incorporating support for bulk communications seamlessly. This

ability is not explored in detail here except in overview. This chapter focuses on the

use of agents and tuple spaces as the primary communications medium for Agents,

resources and simple messages leaving directed communication to individual agent

programmers to implement.

5.3.1 Tuple Space

MARE is required to operate in an active environment consisting of heterogeneous

devices running different operating systems with different resources. The tuple space

implementation MARE uses is L2imbo this is written in ANSI C and ported to

Microsoft platforms as well as UNIX derivates. The L2imbo implementation provides

C, C++ and Java Interfaces; the Java interface was used in the development of

MARE.

75

There is only a requirement for a single instance of the L2imbo stub; the instance can

be accessed simultaneously by multiple instances of MARE or other applications as

shown in Figure 5-1. L2imbo provides methods for inserting and removing tuples as

well as the ability for the MARE instance to register with the tuple space stub for the

receipt of callbacks. The MARE implementation registers for the callbacks upon the

arrival or deletion of specified tuple types namely agents, messages and resources.

Figure 5-1 Tuple Space Stub with different interface languages and run levels

The API the MARE instance utilises consists of the Linda primitives, in, out, rd and

out. Bulk primitives collect and copy collect are implemented as well as non blocking

inp and rdp operations. Furthermore specific elements include the addition of

callbacks on the arrival or removal of a specific tuple type as demonstrated in the

simplified Resource manager code in Figure 5-2.

Tuple Space Stub

MARE

Application

(Guest)

Java

MARE

Application

(user)

Other

Application

(Guest)

Java C

76

Figure 5-2 Registration for call backs in L2imbo

The sample code in Figure 5-2 generates a handle to the Universal Tuple Space (UTS)

used as a known tuple space for all hosts. New tuple spaces can then be generated to

hold agents, messages and resource descriptions. This allows a MARE instance to

subscribe to tuple spaces of interest avoiding filtering messages form tuple spaces it is

package MARE;

import java.io.*;
import java.util.*;
import TupleSpaceAPI.*;

class ResourceManager implements java.io.Serializable,

java.lang.Runnable, TupleSpaceAPI.TupleCallback {
 //Tuple space handle
 private TupleSpace tupleSpaceHandle = null;
 //Handles for callbacks
 private int arrivedRegistration, deletedRegistration,

 //Callback methods
 public void TupleArrived(TupleSpace tupleSpace, Tuple newTuple)

{
 System.out.println("Resource descriptor = “ +

((StringArg)newTuple.getArgument(2)).toString());
 }
 public void TupleDeleted(TupleSpace tupleSpace, Tuple oldTuple)

{
 System.out.println("Resource descriptor = “ +

((StringArg)newTuple.getArgument(2)).toString())
 }

 public void run() {
 try {
 //initialise tuple space handle for UTS
 tupleSpaceHandle = new

tupleSpaceStub().use(TupleSpace.UTSHANDLE);
 //Add tuple type & format information (Data & String types)

tupleSpaceHandle.addTupleType("RESOURCE","DS");
 //Register for callbacks for the RESOURCE tuple
 arrivedRegistration = tupleSpaceHandle.register(this,

TupleSpace.TUPLE_ARRIVED, "RESOURCE");
 deletedRegistration = tupleSpaceHandle.register(this,

TupleSpace.TUPLE_DELETED, "RESOURCE");
 }
 catch (Exception e) {
 System.err.println("Error initialising tuple space.”);
 }
 }
}

77

not interested in. The example highlights the subscription for callbacks on a specific

type of tuple (RESOURCE) for deletion and insertion.

Figure 5-3 Inserting a tuple into the tuple space

Figure 5-3 illustrates the insertion of a tuple consisting of two arguments a data

argument for the unique identifier and a string argument for the resource descriptor. In

comparison the consumption of a tuple can be seen in Figure 5-4 where a blank tuple

is created for the consumed tuple contents to be placed within. The call used in the

consumption example is a blocking call however the same technique is used for non

blocking operations such as rdp and inp.

Figure 5-4 Consuming a tuple from the tuple space

The agent manager acts as an interface between the communication layer and the

tuple space. The manager offers the ability to detect the arrival and removal of agents

and messages from the MARE system. The management of transmitting agents and

messages from the MARE instance is also maintained by the agent manager

component. This role requires the manager to know how to decode and encode both

messages and agents.

………………
 if (tupleSpaceHandle != null) {
 Tuple t = new Tuple("RESOURCE");
 t.addArgument(new

DataArg(resourceUID.getBytes(),resourceLength));
 t.addArgument(new StringArg(resourceDescriptor));
 tupleSpaceHandle.out(t);
 }
………………

………………
 Tuple tuple = new Tuple("RESOURCE");
 tuple.addArgument(new DataArg());
 tuple.addArgument(new StringArg());
 tupleSpaceHandle.in(tuple);
………………

78

Figure 5-5 Message format

The message format shown in Figure 5-5 shows the target for the message identified

by the targets, unique identifier (UID) gained from the MARE system followed by the

message itself. The UID could refer to a single destination or a collection of recipients

that share the same UID to enable group communications. An agent wishing to

communicate with another agent uses the agent runtime handle passed to the agent

when the agent becomes instantiated as demonstrated in Figure 5-6.

Figure 5-6 Sending a message

The agent format shown in Figure 5-7 shows the agent, the unique identifier of the

agent and initial requirements for execution. The agent is transmitted with its classes

such that the agent consists of a grouping of required java classes that are user

generated with the agent class itself. The agent classes are extrapolated at runtime by

examining the agent class hierarchy. Each new class is placed in a data stream for

transmission with the agent by the MARE system.

Figure 5-7 Agent format

The insertion of an agent with an attached resource list can be seen in Figure 5-8. The

agent is assigned a unique identifier by the MARE runtime environment while the

agent is prepared for transmission.

 Data UID
Message

Agent

 Java Classes Agent Instance

 Resources UID Serialized Agent

……………
 agentRuntime.send(targetUID,message);
……………

79

Figure 5-8 Inserting an agent

The agent is serialised ready for transmission by the tuple space type added to the

L2imbo implementation whilst developing MARE called an EvalArg. The evaluation

argument has facilities to take the agent and serialise it and all related classes

automatically or just the agent class. In the prototype MARE implementation the

required resources are assumed to be described as resource unique identifiers. The

MARE approach is extensible where further definitions can be added such as a

description of the environment and runtime level required. Furthermore the prototype

only provides facilities for serialising the agent and all related classes at present,

however an override of the transmission method can facilitate a different method of

transmission.

5.3.1.1Eval

To facilitate the encoding of mobile agents the L2imbo Tuple space implementation

was extended to contain the eval data type. This enabled the transportation of

executable code through the tuple space facilitating the movement of mobile agents as

featured in the MARE approach. A mobile agent can consist of a single class.

However multiple classes are often required by a mobile agent. A consuming node is

required to reassemble and instantiate the agent at the recipient host. Three

approaches are highlighted in section 4.3.1, the movement of just the serialised agent

which relies on all required classes being present on the consuming node. The

movement of all classes required to reassemble the agent identified by examining the

agent being serialised. The third approach is to move the serialised agent which

gathers the required classes when being reconstructed from the tuple space or other

storage areas. MARE by default takes all the required classes with the agent. The state

of the agent is captured through Java serialisation and placed in the eval field. If

required the agents associated classes are identified through examining the serialised

agent. The classes are then collected in a binary format from the executing system

ready to be distributed. Upon reconstruction of the agent a Java class loader is used to

……………
 agentruntime.send(resourcesRequired, agent);
……………

80

identify and load the required classes from the appropriate store allowing the agent to

execute.

5.3.2 Resource Manager

Performing a similar role as the agent manager, the resource manager acts as an

interface between the communication layer and the tuple space. The resource manager

offers the ability to detect the arrival of new resources and removal of resources

passing on any new resource descriptions as well as any notifications of removed

resources to the upper layers for relaying to the executing agents on the MARE

instance. This role requires the manager to know how to decode and encode both

messages and agents.

Figure 5-9 Resource structure

The resource format shown in Figure 5-9 shows the unique identifier of the resource

followed by the resource description that is constructed by a resource and advertised

by a MARE instance. The descriptor is a series of key-value pairs as shown in Figure

5-10; the keys are separated by a semicolon and passed as an ASCII string. The

descriptor contains a few system pairs such as source address. The user defined

section is checked for syntactical correctness prior to transmission. However

interpretation of the content is left to the consuming MARE instance.

Figure 5-10 Resource descriptor

If the MARE instance has more than one host the resource may be part of a resource

bundle whereby the resource is grouped with other resources to reduce the number of

separate connections required to transmit all the resources held on a host. This can be

seen in Figure 5-11. The resources can be compressed to save transmission bandwidth

Descriptor -> Pair | Pair;Descriptor
Pair -> Key = value
Key -> DESCRIPTION | TYPE | IP | PORT | user-defined

 Descriptor UID
Resource

81

however this requires greater processing at both source and destination hosts to

compress and decompress the resource descriptors.

Figure 5-11 Resource bundle

Resources can be added to the resource manager through calls from an agent or from

an outside source by placing the resource description within the MARE system by a

static call to the MARE instance as shown in Figure 5-12.

Figure 5-12 Static call to insert a resource descriptor

A resource is assigned a UID when it is added to the MARE system upon the

generation of a valid descriptor. To aid in the correct construction of a resource

descriptor a helper class is part of the MARE system. The helper class shown in

Figure 5-13 consists of addition and removal of individual items as well as the ability

to take a transform into and out of a string representation of the resource descriptor.

 Descriptor UID

Resource Bundle

 Resource Resource Resource Resource

…………..
AgentRuntimeEnvironment.addResource(resourceDescriptor);
……………

82

Figure 5-13 Resource descriptor helper class

The current approach to resource descriptors within MARE is a simple key value pair

approach. The approach would benefit from a more generic approach to describing

resources for interaction, such an approach may utilise an XML descriptive language.

This thesis believes that the currently used key value pair approach is adequate for

testing purposes however admits this is an area that can benefit from further

examination.

The resource manager is responsible for maintaining the resource’s availability and

placing into the tuple space the resource the host contains periodically. Each resource

in the resource manager has an associated lease time based on time of arrival of a

resource. The lease time is set to be longer than the expected next beacon of

information. This allows for the beacon to refresh the timer. If a beacon is not

received during this period the resource will timeout and be removed from the active

list. The resource manager, upon detecting the failure of an update, passes a

notification to the MARE control of the change in resource availability and this will in

turn alert interested agents. It should be noted that ultimately a programmer must

allow for a resource being reported as present by the system and being unavailable at

the time of use. Such availability issues are due to the nature of the changing active

environment; a system cannot guarantee the availability of a resource within such an

environment without keeping an open channel to the resource and getting immediate

public class ResourceDescriptor
{
 // Create an empty descriptor.
 public ResourceDescriptor();
 // Construct a resource descriptor from a compliant string
 public ResourceDescriptor(String descriptor);

 // Generate a string from the resource descriptor
 public String toString();
 // Get descriptor as a string
 public String getDescriptor();
 // Get a specific value from
 public String getValue(String key);
 // Remove an item from the resource descriptor
 public void removeDescriptor(String key);
 //Add an item to the resource descriptor
 public void addDescriptor(String key, String value);
 //Get a hastable copy of the resource descriptor
 public Hashtable getPairs();
}

83

notification of communication failure. This would consume valuable resources, which

is clearly undesirable.

The L2imbo tuple space approach has no notion of an expiry time of a tuple that can

be user specified. Requesting the removal of a tuple from the tuple space generates a

message transmitted separately or piggybacked on a tuple announcement. The MARE

approach will place a deletion of a resource or resource bundle on the corresponding

next announcement. Due to precedence in transmission in the L2imbo tuple space

approach the tuple space maintains a consistent view of available resources with a

minor increase in tuple size and no extra connections are generated.

5.3.3 Communications

The communications component is positioned between the lower agent and resource

managers and the MARE control component. The component provides a separation

between control and data layers in the MARE implementation. The component

provides a small set of interfaces such that new agent and resource managers as well

as control components can be generated with ease. The development of different

managers can be achieved when interaction with other communications mediums with

differing characteristics. These can be used in place of, or alongside the tuple space

aware implementation used in the MARE prototype.

Figure 5-14 Communications component control routes

The communications component shown in Figure 5-14 is positioned between the

resource and agent managers and the MARE control component. This component

directs the specific request from the MARE control to the required manager as well as

Agent

Manager

Resource

Manager

Communications

MARE Control

Agents, Resources, Messages

Resources Agents, Messages

84

receiving information presenting a uniform interface to the MARE control

component.

5.3.4 MARE Control

The MARE control component is at the heart of the prototype MARE implementation

providing checks for incoming agents, instantiation of agents and destruction of

agents executing upon the MARE instance.

The component is passed a new agent by the communication layer to decide if it is

appropriate to execute the agent through examining the resource requirements. If the

resources are appropriate for the MARE instance, an agent wrapper is generated and

the agent is constructed and started in a new thread inside the agent wrapper as shown

in Figure 5-15. At this point a Java security profile [Sun’02b] can be applied to the

incoming agent inside the Java framework offering a finer level of security checks on

the constituent classes used by the agent.

Figure 5-15 Agent decompressed and executed

It is the task of the control component to monitor the environment the MARE instance

is executing in to decide if an agent is operating incorrectly and if so terminates the

offending agent. Whilst the detection of an inappropriately operating agent is

currently non trivial within the Java framework external factors can be detected such

as power status, connectivity and physical position. These can then be reported to the

MARE Control

Communications

CCC
CCC

C

A

C C

Running

agent

Agent / MARE interaction

R

Agent assembled

Agent

Agent passed to Control A – Agent

C – Class

R - Resources

85

MARE instance through a local tuple space. The use of a local tuple space for a

transport mechanism for system information generated by external components

provides information of use to the MARE instance. Indeed other MARE instances can

place information in a local tuple space allowing interaction between MARE

instances in an efficient manner requiring no external communications.

5.3.5 Agent Wrapper

The agent wrapper is generated by the MARE control component for the execution of

an agent. In essence the serialised incoming agent is finally constructed after being

accepted within the environment inside an Agent wrapper, the wrapper provides the

interfaces for interaction with the MARE control component and thus the MARE

implementation.

5.3.6 Agents

A MARE agent is a class that uses an interface that provides a set of functions for

interaction between the MARE instance and the executing agent. The interface also

inherits from a class defined in the tuple space designed to enable the serialisation and

de-serialisation of the class inclusive of its component parts such as other defined

classes.

86

Figure 5-16 Agent interface

The Agent interface shown in Figure 5-16 defines a run method for starting or

resuming an agent and agentEnvironment a method for passing a handle to the MARE

interface to the agent. A communications method, receive is supplied to allow the

MARE instance to direct communications to the executing agent. The close method is

/**
 * Base interface for generating an agent
 *
 * @author Matthew Storey
 * @version 1.1
 * @see java.lang.Runnable
 */
package MARE;
import java.io.*;
import TupleSpaceAPI.Eval;

public interface Agent extends Eval
{
 /*
 * Called to start / restart an Agent
 */
 public void run();

 /*
 * Called by MARE when arriving at a new Location to
 * provide an interface to the agent runtime environment
 * (access the agent wrapper)
 *
 * @param agentRuntime The agent runtime environment.
 * This variable may be used to interact with the local
 * runtime environment
 * @see MARE.AgentRuntime
 */
 public void agentEnvironment(AgentRuntime agentRuntime) ;

 /*
 * Called by the Agent Environment to request the agent
 * moves.
 */
 public void close() ;

 /*
 * Called by the agent runtime environment to let the
 * agent know of incoming data.
 * The agent may register for data from multiple sources
 * via calls to the agent runtime environment
 *
 * @param destination The destination of the data
 * @param data The data for the given destination
 * @see MARE.AgentRuntime
 * @see MARE.UID
 * @see java.lang.byte
 */
 public void receive(UID destination, byte[] data) ;
}

87

provided to allow the agent to be requested to serialise itself and migrate itself to

another host if required.

Within the standard release of Java the serialisation of an agent with its runtime

environment and associated state is not possible. In the MARE approach the calling of

the close method by the runtime acts as a trigger for serialisation allowing the

programmer to pause the execution of the agent and serialisation the agent. This

approach allows the programmer to decide which parts of the agent are required to be

moved and which can be discarded before moving to a new location. This enables a

higher level of control over the manner in which an agent is serialised and typically a

smaller footprint for the transmitted agent as only the required information needs to

be moved rather than the entire agent runtime. An agent can be forcibly terminated

through the Java threading classes. However this does not offer a clean way for state

to be preserved for restarting at a different location. The ability to stop the execution

of an agent and restart from the same execution point is not possible without a means

of stopping execution and storing state in the Java runtime environment.

An agent can be placed in the MARE system from both within an executing MARE

instance and from outside an executing MARE instance. An agent can be generated

by another agent with appropriate permissions and placed into the MARE system.

Alternatively an agent may be generated by an external application and placed into

the MARE system by utilising calls available in the MARE implementation. Inserting

an agent from outside an executing MARE instance effectively places a serialised

agent inside the tuple space for consumption by an executing MARE instance.

Figure 5-17 shows an example simple agent that once placed into the MARE system

will be consumed and executed displaying a message in all of its states, namely

running, being closed and receiving a message. The handle to the agent runtime is

passed to the agent once it has been consumed by a host and then the run method is

called which displays its message. If a message arrived addressed to the agent’s UID

the agent would be notified through the receive method and if the agent did more

work the close method may be called which would display an appropriate message.

88

Figure 5-17 Agent to display status

The insertion of the agent into the MARE system can be achieved without having to

initialise a MARE environment by inserting the agent directly into the MARE system

as shown in Figure 5-18. This example shows the insertion of the agent with no

defined prerequisites such as other resources.

Figure 5-18 Insertion of an agent into the MARE system

The agents are given a high level of freedom; once assembled the agent is restricted

only by the security permissions applied to the agent through a security manifest or

through the maximum permissions available to the MARE instance the agent is

running in. In effect this approach is providing the agent with all the permissions

associated with the environment the MARE instance is executing within. The ability

/**
 * Test agent for displaying status on executing host.
 *
 * @author Matthew Storey
 * @version 1.0
 * @see MARE.Agent
 * @see java.io.Serializable
 */
import MARE.*;

class TestAgent implements MARE.Agent,java.io.Serializable {
 /* Handle to agent runtime*/
 private AgentRuntime agentEnvironment = null;

 public void agentEnvironment(AgentRuntime agentRuntime) {
 agentEnvironment = agentRuntime;
 }
 public void close() {
 System.err.println(“Request to go”);
 }
 public void receive(UID destination, byte data[]) {
 System.err.println(“data arrived”);
 }
 public void run() {
 System.err.println(“I have arrived”);
 }
}

new AgentRuntime.addAgent(“”,new TestAgent());

89

to have multiple MARE instances on the same machine allows multiple instances in

different security levels.

5.4 Summary

The prototype implementation described within this chapter has been described by

examining each component of the architecture in turn. The operations each

component performs and the implementation issues associated with each component

have been examined. The generation of resource descriptions and agents have been

shown through an examination of code examples from the MARE system. This

chapter has explored the MARE prototype implementation, the validity of this

approach will be further examined in the following evaluation chapter.

90

Chapter 6

Evaluation

6.1 Overview

The previous two chapters have proposed the MARE design and described the MARE

prototype implementation. The majority of this chapter focuses on performing a

qualitative evaluation of the MARE prototype. The qualitative examination explores

resource discovery through the use of the L2imbo tuple space implementation and

resource configuration through the use of mobile agents. A quantitative evaluation is

also performed on the underlying resource discovery mechanism exploring the

efficiency of the MARE approach.

This evaluation aims to explore the hypothesis of this thesis that utilising tuple spaces

and mobile agents in an active environment enables resource discovery and

configuration to be achieved. The evaluation examines the core requirements of the

MARE approach exploring the validity of the approach described in chapter 4 for

operating within an active environment. To facilitate the evaluation the emergency

multimedia example from chapter 1 is further explored and refined. Finally the

requirements detailed in chapter 2 will be revisited at the end of this chapter aiding in

summarising the effectiveness of the MARE approach.

91

6.2 Case Study: Emergency Multimedia

The emergency multimedia example described in chapter 1 is referred to and used

throughout the evaluation performed within this chapter. The example explored is of a

rescue performed in the British Lake District where three rescuers converge upon a

stricken party. The rescuers and injured party desire knowledge of each other such as

resources they hold and can be utilised aiding in the rescue. The scenario is

summarised in Figure 6-1 illustrating four nodes each with a resource to advertise and

desiring knowledge of the remaining three hosts.

Figure 6-1 Scenario illustration

Expanding the illustration in Figure 6-1 further, the distressed party has a long range

communication device equipped with Bluetooth; an example of such a device is a

modern mobile phone. This device can be used initially to raise awareness of the

incident through a phone call and to act as a resource that can be utilised as a long

range communication device.

Each rescuer is equipped with a TETRA handset, a small embedded device with

Bluetooth and a connected device. Rescuer one has a medical monitor that interfaces

to the embedded device. Rescuers two and three also have embedded devices that are

connected to a digital video recorder and camera respectfully.

R 1

R 3 R 2

I 1

R – Rescuer

I – Injured

92

Note that although this chapter focuses on the emergency multimedia scenario, many

other scenarios can be envisaged exhibiting the attributes of an active environment.

Examples demonstrating a grouping with a dynamic membership exhibiting a lack of

communications infrastructure, requiring knowledge of surrounding resources and

facilities to effectively utilise these resources. Such examples can be seen in

groupings of communication capable devices such as office meetings, social

gatherings, vehicles stationary or moving. In all of these examples interaction can lead

to the discovery of new solutions to problems or enhancement of the situation, such as

in car navigation, general sharing of information, and utilisation of surrounding audio

video equipment.

6.3 Multimedia Enhanced Rescue Demonstrator

This section explores the construction of the emergency multimedia application as a

demonstrator for the MARE approach. The developed prototype has a user interface

device that can be powered on when required. To enable continuous advertising of

resources a rescuer also carries a small embedded device providing a point of

computation for mobile agents. A picture of the embedded device and user interface is

shown in Figure 6-2 removed from the backpack and clothing of the rescuer.

 Figure 6-2 Emergency rescue devices

93

The separate user interface and embedded device has led to the development of a

small user interface application and a mobile agent that acts on its behalf. The agent

collects information about available resources whilst executing on the embedded

device. The agent relays information to the user interface device for collection when

the handheld device is powered on; the link between the handheld and embedded

device is assumed to be available at all times.

To enable the advertising of resources and execution of mobile agents upon powering

up the embedded device it executes the L2imbo stub and starts a MARE instance. The

registration of any resources is performed as well as the insertion of the mobile agent

acting on behalf of the user interface. The code to start the MARE runtime and insert

some resources can be seen in Figure 6-3 illustrating the initialising of a MARE

instance, the insertion of an agent and the insertion of some resources.

Figure 6-3 Starting MARE and inserting resources

The MARE instance executing on the embedded device listens for resource

announcements from other devices whilst announcing resources it hosts. The mobile

agent executing in the MARE instance monitors available resources passing this

import MARE.*;

public class Go {

 public static void main(String args[]) throws Exception
 {
 //Initialise Agent Runtime Environment to accept agents

without a graphical environment.
 AgentRuntimeEnvironment.Go(true,false);
 //Insert Mobile Agent into running environment
 AgentRuntimeEnvironment.addAgent("",new

EmergencyRescueAgent());
 //Add resources (Still Camera, Digital Camera, GPS)
 AgentRuntimeEnvironment.addResource(new

ResourceDescriptor("DESCRIPTION=Still Camera
320x240;TYPE=VIDEO SOURCE;IP=10.0.10.10;PORT=3010"));

 AgentRuntimeEnvironment.addResource(new
ResourceDescriptor("DESCRIPTION=Digital Camera
320x240;TYPE=VIDEO SOURCE;IP=10.0.10.10;PORT=3020"));

 AgentRuntimeEnvironment.addResource(new
ResourceDescriptor("DESCRIPTION=GPS for rescuer
3;TYPE=GPS;IP=10.0.10.10;PORT=3030"));

 }
}

94

information to the user interface device. The associated code for this operation can be

seen in Figure 6-4.

Figure 6-4 Emergency rescue agent

The user interface application is started on the handheld device for receiving the

resource descriptions. Connection with resources and the interpretation of resource

information is performed on the user interface device allowing direct connection with

available resources. An illustration of the process can be seen in Figure 6-5

demonstrating two embedded devices with a mobile agent listening for available

resources passing this information to the user interface device. The user interface

import MARE.*;

public class EmergencyRescueAgent implements MARE.Agent,

MARE.ResourceCallback {
 private AgentRuntime agentRuntime = null;
 private java.util.Hashtable resources = null;

 public void agentEnvironment(AgentRuntime agentRuntime) {
 this.agentRuntime = agentRuntime;
 //initialise temporary available resource list.
 resources = new java.util.Hashtable();
 //register for resource callback
 agentRuntime.registerCallBack(true, this);
 }
 //Called when agent is about to close.
 public void close() {
 //de-register for callback before move.
 agentRuntime.registerCallBack(false, this);
 //Reset the variables (saves space when serialising agent)
 agentRuntime = null;
 resources = null;
 }

 //A new resource has arrived
 public void resourceArrived(UID resourceUID, String

resourceDescriptor) {
 //Add resource to our list
 resources.put(resourceUID, resourceDescriptor);
 }

 public void resourceRemoved(UID resourceUID, String

resourceDescriptor) {
 resources.remove(resourceUID);
 }

 public void run() {
 //transmit resources to userinterface.
 ………………
 }
}

95

device can then communicate with the resource directly, in the illustration a digital

still camera. Further code listings for the mobile agent and user interface application

are available in the appendices of this thesis.

Figure 6-5 Emergency rescue process

The user interface application can be seen clearly in Figure 6-6 where a single

resource is available. The agent running on the embedded device in the MARE

environment reports changes in available resources such as arrival and departure of

resources. The user interface device can power down whilst the agent acts on its

behalf relaying information to the user interface device when required.

Embedded

Device

Mobile Agent

Embedded

Device

Direct interaction with

available resource

Still and Digital

Camera

96

Figure 6-6 Initial resource monitor

Upon selecting an available resource it can then be utilised as shown in Figure 6-6.

Initially the application shows only the rescuers device but upon being in range of

another rescuer or the distressed party the application will show all available

resources as can be seen in Figure 6-7.

Figure 6-7 Rescuer view with multiple resources and resource in use

97

The construction of the emergency rescue demonstrator influences the following

qualitative and quantitative discussion of the MARE approach.

6.4 Qualitative Evaluation

6.4.1 Resource discovery

Being able to discover what resources are available is essential in making efficient use

of surrounding facilities. An example can be seen when a vehicle accident has taken

place, a passer by is searching for a communications device to call for emergency

support. The device may be integrated and hidden in some way making discovery of

the device unlikely unless it can be automatically discovered and utilised. This section

evaluates MARE with key issues when performing resource discovery, namely the

method of advertising an available resource, the maintaining of consistency and the

bandwidth consumed performing the discovery.

Resource Advertising

Resource advertising in MARE is performed by utilising the L2imbo tuple space

implementation to perform the distribution of resource descriptions between

interested parties. The MARE approach is proactive as it transmits periodically an

announcement of any resources a host has available. Approaches such as UPnP, Jini

and SLP work on a more synchronous approach of one or more requests followed by

one or more responses. These approaches make initial use of servers to act as

repositories of resources that can be interacted with directly instead of querying all

available hosts. The use of servers is usually advantageous in a static environment

where hosts and services are typically fixed or change infrequently. In a mobile

environment resources change more frequently and servers are less likely to be

available. In an active environment hosts and resources are often transiently available

making reliance on servers inappropriate. The active environment forces host to host

discovery, making a different approach to resource discovery desirable to address the

lack of infrastructure and constantly changing environment. In summary the use of the

L2imbo tuple space implementation in the MARE approach allows advertising of

resources to be performed in an ad hoc network.

98

Resource Consistency

MARE achieves consistency through each host periodically advertising its resources.

Every listening host that can hear the announcement can be assumed to be able to

communicate with the resource. Whilst the ability to communicate with the advertised

resource can be assumed, it should be noted that the host could have moved out of

range after the announcement so caution should still be exercised in utilising the

resource. In UPnP, SLP and Jini the use of central servers can lead to a resource being

advertised as available however being out of communications reach of a host as

shown in Figure 6-8. The server can see the client providing it with an announcement

however the client cannot see the resource it need to interact with.

When UPnP, SLP and Jini are operating in non server based mode maintaining a

consistent view of resources is possible through a request response mechanism. This

approach allows consistency when required however at the cost of extra bandwidth

consumption. This will be further explored in the quantitative evaluation later in this

chapter. MARE continually maintains a view of all available resources whereas

UPnP, SLP and Jini when operating in a non server mode rely on client requests to

update the available resources to a given host. The MARE approach is also proactive

in detecting a change in resource state reporting it back to executing agents. UPnP and

SLP require client actions unless a planned and advertised removal is performed

whereby the removed resource advertises its state change. In summary MARE offers

a simple approach to resource discovery where resources are advertised and timeout

such that a view of available resources is achievable with no interaction from a client.

Client Resource Server

Figure 6-8 Resource communication range

99

Bandwidth Consumption

MARE is designed for operation in an active environment where bandwidth is

currently a precious resource. MARE can offer a deterministic model of bandwidth

consumed performing discovery and consistency (this is further explored later in this

chapter). The approaches offered by UPnP, SLP and Jini provide less predictable

behaviour; the possibility of operation with one or more servers and requests upon

demand for resource descriptions emphasize this. There is potential for less bandwidth

consumption when performing resource discovery using available servers in a static

network. However the active environment is constantly changing making existing

server based approaches inappropriate. In the absence of server, UPnP and SLP

approaches utilise peer lookup techniques generating extra messages and thus

consuming more bandwidth. In contrast MARE adopts a combining of resource

descriptions into a resource bundle reducing the number of individual messages.

Furthermore MARE seamlessly supports compression of resource descriptions saving

bandwidth at the price of some computation at the end points of the communication.

Usage

MARE is targeted at performing not only resource discovery but also configuration.

The management of a resource is performed within the MARE system. A resource is

constructed using a helper class called ResourceDescriptor allowing a convenient

method for construction, encoding and decoding of resource descriptions Figure 6-8

demonstrates the generation of the still camera as shown in Figure 6-7. The resource

is inserted into an available MARE system either on the device advertising the

resource or a host executing the MARE system. In the case of the emergency rescue

the embedded device carried by the rescuer can be used. A resource descriptor is

generated and required key value pairs added prior to a static call to insert the

resource in to a running MARE instance. A unique identifier is returned for

identifying the resource for removal at a later date from the hosting MARE system.

100

Figure 6-9 Resource descriptor generation

A resource can be advertised by placing it into a MARE instance from within an agent

or from a static call. Once a resource is added to a MARE system it exists until it is

explicitly removed from the MARE system. The MARE instance advertises the

resource with other resources the system may be responsible for with no further user

interaction.

6.4.2 Mobile Agents

MARE provides the ability for resources to be configured by utilising mobile agent

techniques. The agent approach adopted in MARE can be utilised for configuration of

resources as well as user defined operations. This section will examine mobile agent

operations in a qualitative manner in comparison to existing key mobile agent

approaches.

Agent Generation

Mobile agents are generated and placed into an environment where they migrate to an

appropriate position to be executed. Mobile agent approaches such as Mole and

Concordia utilise an inherited class for routines key to interaction between the agent

and their runtime environment. In these approaches implemented methods include

initialisation, execution routine and stop routines. MARE also provides a class that is

implemented by an agent offering initialise, start, stop methods as well as a method

that is called by the runtime environment providing a handle to the MARE instance

allowing manipulation of the runtime for operations including registering for receipt

of message and system events.

Public static void main(String [] args) {
 //Generate a Digital Camera resource description
 ResourceDescriptor rd = new ResourceDescriptor();

 rd.addDescriptor(“DESCRIPTION”, “Still Camera 320x240”);
 rd.addDescriptor(“TYPE”, “VIDEO SOURCE”);
 rd.addDescriptor(“IP”, “10.0.10.10”);
 rd.addDescriptor(“PORT”, “3002”);

 //Add a resource to the MARE system (static call)
 UID uid = AgentRuntimeEnvironment.addResource(rd);
 ……………
 //Remove resource from the MARE system
 AentRuntimeEnvironment.removeResource(uid);
}

101

Agent Migration

Enabling an agent to migrate to an appropriate position in an environment is a

complex operation. An agent requires a method of storing itself or being stored in a

manner which can be transported to a new location. Further to this the agent may

require the carrying of some state between execution points. An agent also needs a

target destination for migration, this can be directed, however the lack of a reliable

structure in an active environment makes this impractical.

The storage of an agent for migration can be achieved through the movement of

source code for interpretation or compilation on the destination machine. This can be

seen in TACOMA and pre-compiled binary or intermediary language as used by Java

or Microsoft IL solutions. Java is used in Mole, Concordia and MARE allowing the

serialisation of code into a byte stream capable of movement to a new host. The Java

approach allows current variable state to be serialised as well as related classes to be

included where necessary for migration. Several approaches are adopted in mobile

agent systems including the migration of the core agent class allowing the requesting

of further required classes from a related host or repository of classes. Both of these

approaches are useful in conserving resources where there is a high probability that

classes are already available on an executing node. If the classes are not already

present then further fetching of classes will be required resulting in further

connections being formed and dependences made upon a specific host being present.

MARE moves the entire agent by default including all related classes, (explored

further below). This approach generates a potentially larger initial agent but removes

the reliance on other hosts as required for operation in an active environment.

The storage of state is typically not possible due to the complexity of moving the

current execution stack and any external links the agent may be utilising. The lack of

support for runtime state migration in languages such as Java leads to a technique

often described as ‘check pointing’. Check pointing is where an agent to be migrated

is notified that it will be migrated allowing it the opportunity to store its state in some

way prior to movement. Concordia, Mole and MARE all employ this approach.

The migration of agents is typically achieved through a targeted approach, such as

discovering a host or having a predetermined host to move an agent to; this can be

102

seen in approaches such as Concordia, aglets and TACOMA. This approach is not

appropriate in an active environment where a host cannot be relied upon to be

available. MARE uses a novel approach utilising the tuple space to distribute the

agent to any available host that can execute the agent. A list of requirements is

transmitted with the agent such as required available resources which helps determine

an appropriate host. The tuple space eval data type is used to transport the mobile

agent through the tuple space with associated data representing the resources required

for the agent to execute.

MARE incorporates features from other mobile agent systems extending and

modifying them for use primarily in the active environment. The default transmission

of agents including all associated state and classes required for execution to any

available node allows for periods of disconnection and an opportunistic approach to

execution. MARE allows extensibility of this approach through the utilisation of the

tuple space to maintain classes and state for a migrating agent to be collected upon

execution of the agent allowing a reduction in the transmission size of the agent.

Other uses of the tuple space include the transportation of events and messages that

can be placed in and consumed from the tuple space at any participating host at any

time.

Agent Execution

The execution of a mobile agent requires a successful migration of the agent and its

constituent components before an agent can be consumed. Mobile agent systems such

as Mole and Concordia emphasize protecting the runtime from actions performed by

the agents. In contrast MARE aims to consider both the agent and the runtime when

operating. The consideration of both parties in execution helps prevent damage to the

agent or runtime environment. The MARE environment checks the agent when it is

consumed into an instance and likewise, once the agent is executed the agent can

check the instance for its applicability to run. If an instance or agent is not

appropriate, the agent can place itself or be placed back into the environment for

consumption at another host.

103

Usage

The use of mobile agents for performing operations in a mobile environment requires

a different style of programming to the standalone application model. Mobile agent

programming when applied to the active environment is well suited to applications

that can be broken into distinct components, or require specific resources that may not

be readily available. A developer is required to think in terms of what is required for

the application to execute and how an application can be decomposed into sub

components. While applications can still be monolithic and simply moved to a more

appropriate location for execution, there are benefits from decomposing a problem,

e.g. distributing an application to increase processing power or implementing

redundancy. Decomposing an application does impose extra overhead on the

developer in terms of code generation for resource specification, starting and stopping

an agent as shown in Figure 6-4. The extra effort is rewarded by the potential for a

more optimal use of available resources such as bandwidth and processing.

Agent programming should be as intuitive to an application programmer as any other

coding techniques they may be familiar with. To facilitate this MARE only requires

the agent to support a single class interface implementing the methods listed within it.

The agent can be extended to receive resource state callbacks through further

interfaces, as shown in Figure 6-10. The code example is a simplified version of the

agent run by each rescuer upon the embedded device they carry to collate resource

views and report back to the user interface client. The agent maintains a separate

thread for updating the user interface with the resource view when required.

104

Figure 6-10 Agent with resource availability call-back

The agent can be injected through a call from within the tuple space or by an

executing agent such that an agent can also place itself back into the MARE system

for migration to a different host. The insertion of an agent through a MARE call can

be seen in Figure 6-11. The example demonstrates the agent injected by a rescuer

initially onto the embedded device with no resources required for execution. Currently

the resources required by the agent for execution are formed in the same way as a

ResourceDescriptor, i.e. as key value pairs separated by a semi colon. This enables

the ResourceDescriptor helper class to be used for the generation of required resource

list. This is a simple approach that could potentially be extended through the use of a

self describing technique such as XML allowing a more dynamic data representation

with a large degree of extensibility.

Figure 6-11 Inserting an agent

The MARE system by default serialises the agent and its state prior to it being placed

into the L2imbo tuple space. This operation involves no further involvement by the

application programmer other than calling the addition method. The agent is then

assigned a UID allowing the agent to be uniquely addressed; further unique identifiers

//Generate the Agent
MyAgent myAgent = new MyAgent() ;
//specify any resourcesRequired
String resourcesRequired = “” ;
//Send the agent
agentRuntime.send(resourcesRequired, myAgent) ;

class MyAgent implements Agent, ResourceCallback {
//Agent interface methods
………
//Resource Callback methods
public void resourceArrived(UID resourceUID,String

resourceDescriptor) {
 //Update resource view
 }
public void resourceRemoved(UID resourceUID,String

resourceDescriptor) {
 //Update resource view;
 }
}

105

can be attached allowing the agent to register itself on arrival at a MARE instance for

the receipt of messages, in effect allowing an agent to have multiple addresses.

6.4.3 Resource Discovery and Configuration

The technologies previously discussed combine to form a basis for resource discovery

through the use of the tuple space and resource configuration through the use of

agents. Whilst agent systems have implemented resource discovery mechanisms for

static and mobile environments, MARE provides an approach targeted at operating in

an ad hoc or active environment. The MARE approach has a novel resource discovery

technique and through the use of mobile agents using the same transport mechanism

enables dynamic configuration of the available resources. The agent will receive

notifications of available and no longer available resources form the MARE instance

it is executing upon. An agent may then adjust its configuration accordingly and offer

different resources or add further agents into the MARE system.

106

6.4.4 Analysis

The issues examined here are summarised in Table 6-1 for operating in an active

environment.

Issue Notes Addressed

Resource Advertising MARE offers a proactive approach
incorporating resource bundling and
compression

YES

Resource Consistency Achieved through a non centralised
approach by announcements renewing
a host’s available resource list

YES

Bandwidth Consumption Minimal consumption achieved through
proactive resource announcements and
bundling

YES

Resource Usage A helper class is implemented mapping
to a simplistic key value pair
description.

LIMITED

Agent Generation A single inherited class allows the
generation of an agent.

YES

Agent Migration MARE uses Java byte code. The
migration is handled by the MARE
system with the aid of the L2imbo eval
operation. The migration technique can
be extended and controlled by the
application programmer.

YES

Agent Execution The agent’s and runtime environment is
checked for applicability to execute an
agent at a particular runtime level.

YES

Agent Usage A simple interface is extendable
allowing callbacks on system state
change such as resource availability
changes.

LIMITED

Table 6-1 MARE issues summary

This table emphasizes the author’s belief that the MARE approach addresses the key

issues, but accepts that further refinement of the approach can be performed. In

particular the descriptions of resources required for agents are simple key value pairs.

107

Whilst adequate for simple examples more complex resource requirements may

require an approach such as XML.

6.5 Quantitative Evaluation

6.5.1 Introduction

This chapter has performed a qualitative evaluation of the MARE approach for the

constituent technologies, resource discovery and mobile agents. To perform a more

comprehensive evaluation of the MARE approach this section aims to quantitatively

examine the MARE approach. This section emphasises the underlying resource

discovery technique that utilises L2imbo tuple spaces. The quantitative evaluation of

mobile agent usage within MARE is not performed as mobile agents within the

approach are autonomous and can react differently in any situation dependent on the

programmer / user requirements and environmental conditions.

To perform the quantitative evaluation a simple view of the case study examined

earlier in this chapter is used. Each host has a service relating to a physical device

such as a digital camera, long distance communications device, digital video camera

and medical monitor. Each of the hosts advertises their resources and aims to discover

all available resources that are held on the other devices. Further simplification will be

made by assuming all devices perform a discovery at or near the same time. This is a

scenario in line with a trigger for discovery such as a change in environment or a

power cycle. This example demonstrates a worst-case scenario where all resources

need to be discovered. However, this scenario illustrates a similar case where a host

moves into an existing ad hoc grouping and requests an update of all available

resources triggering an updating of all hosts.

6.5.2 Resource discovery

The quantitative evaluation will be performed by examining the interactions

performed by SSDP (Simple Service Discovery Protocol) the service discovery

component of UPnP, SLP and the discovery aspects of MARE.

108

UPnP

As described in chapter 2 UPnP utilises a discovery protocol called Simple Service

Discovery Protocol (SSDP). Each SSDP query in an ad hoc grouping will provide

three multicast requests, each responded to by three sets of unicast responses. Each

response set consists of three root device advertisements, two embedded device

advertisements and one service advertisement. Where the root device is typically a

description of the physical host, the embedded device is an attached component such

as a digital camera or GPS compass. The service advertisement provides information

regarding a service for example how to use an attached device. The number of

messages made between two hosts where one desires knowledge of the other can be

summarised as:

Messages = 3 x request + 3 x response sets

Messages = 3request + 3(3 x root device + 2 x embedded device + 1 x service)

Messages = 3 + 3(6) = 3 + 18

Messages = 21

This can be further simplified when considering one host desiring a complete view of

the surrounding resources from the surrounding hosts (n). This can be expressed as

follows.

Messages = 3 x requests + 3 x (n-1) x response sets

Messages = 3 x requests + 3 x (n-1) x (3 x root device + 2 x embedded device + 1 x

service)

Messages = 3 + 3(n-1)(6)

Messages = 3+18(n-1)

Messages = 3+18n-18

Messages = 18n-15

To further extend this to examine the discovery of all resources for all hosts the

expression needs multiplying by the number of nodes taking part in the discovery.

109

Messages = n (18n-15)

Messages = 18n2 – 15n

Relating to the test scenario, a single host requesting a view of the service held by

each of its surrounding neighbours will generate fifty seven messages. Thus, for all

hosts to achieve a consistent view of the services offered by its neighbours, a total of

two hundred and twenty eight messages are needed.

SLP

Providing a much simpler approach than SSDP, SLP will attempt to work with servers

which are unlikely to be found within an active environment due to changing

membership and resource poor hosts. The lack of servers offering a directory agent

requires all hosts to perform a multicast discovery followed by a unicast response to

facilitate a discovery operation. This approach generates an RPC style interaction

whereby each host multicasts a request for services and all other hosts respond with a

unicast response. For example a host generates one request to which each host (n)

generates a response. This can be expressed for a single host requesting information

from one other host as:

Messages = request + response

When applied to a number (n) of hosts this expression becomes:

Messages = request + (n-1) x responses

Further to this if every host requires updating then the expression becomes:

Messages = n x (request + (n-1) x responses)

Messages = n + n(n-1)

Messages = n+ n2-n

Messages = n2

110

Thus in this scenario a single host requiring its three neighbours to update it will

produce four messages whilst a complete update of all four hosts will require a total

of sixteen messages.

Jini

Jini operates by default through a lookup service that acts as a server style application

providing resource descriptions to hosts in request response manner. Operation

without a lookup service that is unlikely to be found in an ad hoc grouping due to its

operational requirements being in excess of many mobile devices. Making a

comparison with Jini can be done when forcing each host to run a lookup service in

effect performing peer lookup forcing direct interaction between client and server.

This approach is mentioned in the Jini specification in a limited amount of detail

making an educated calculation of figures currently infeasible.

MARE

MARE adopts a much simpler approach using periodic announcements of services

thus generating only four messages transmitted through a tuple space. Multiple

services on a host are combined into a single message containing multiple service

descriptions reducing the number of transmitted messages, message size permitting.

The L2imbo tuple space also acts as a cache whereby local requests can be satisfied

locally saving external communications.

Messages = n

6.5.3 Analysis

The total number of messages produced when performing the discovery of four

resources where each resource is held on a separate host can be seen in Figure 6-1.

Whilst this is a simplified example of resource discovery, it demonstrates the potential

for generation of large quantities of messages when performing a discovery. This

illustrates that MARE performs very favourably when compared to SLP with both

approaches producing far less messages then the SSDP approach utilised by UPnP.

111

Graph 6-1 Messages Produced in Resource Discovery

The resource discovery examination performed here only considers the costs of

discovering all available resources. The possibility of a full discovery being required

is high as frequent power cycles and movement performed by mobile hosts operating

in an active environment is high. A full discovery is also the only way to discover

resources that may not fall into specific type groups that can be utilised to achieve the

same goal in combination. MARE provides knowledge of all resources whereas the

other approaches require a number of requests to achieve the same goal unless

performing a full discovery. Clearly service discovery protocols can be optimised to

improve service discovery performance (e.g. SLP can use a directory agent). However

in ad hoc environments such techniques typically lead to increased startup costs for

example when a system must detect the absence of central resources. UPnP supports

announcement messages from services however to be effective these messages must

be transmitted frequently forming an approach similar to the approach taken by

MARE without message combining requiring less connections to be formed.

Resource discovery Messages

0

100

200

300

400

500

600

1 2 3 4 5 6
Hosts

M
es

sa
ge

s

UPnP

SLP

MARE

112

Messages Produced when Frequency of Anouncements Increases

0

2000

4000

6000

8000

10000

12000

Frequency (increasing)

M
es

sa
g

es

UPnP

SLP

MARE

Graph 6-2 Messages produced when frequency of updates increases

The impact of the frequency of announcement can be seen in Graph 6-2

demonstrating the impact of an increasing frequency on the number of messages

produced in an environment with only 4 nodes each with one resource. Graph 6-2

again demonstrates the high volume of messages created by UPnP and SLP when

compared to MARE. Further requests from clients performed in UPnP and SLP in

between the complete updates are not added to this graph. Further requests can be

seen as adding to the numbers of requests and responses generated and increasing the

UPnP and SLP message count. MARE uses a local cache to service requests for

resources generating fewer messages. As previously stated the need to request all

resources is necessary to gain a full picture of available resources that, although not

matching a client’s immediate needs, may be able to be combined to meet

requirements. For example when searching for a compressed video feed, a

113

compression agent could be utilised with a normal video source to provide the

required output.

6.6 Requirements Revisited

The evaluation performed previously in this chapter has focused on key issues

highlighted in the design and implementation chapters. This section relates the

evaluation performed in this chapter to the requirements highlighted in chapter 2.

The removal of reliance upon a server based architecture as the nature of mobility

produces fluctuating connectivity and periods of disconnection

The case study examined in this chapter has resources that are transient and may not

be available for long periods of time. The dynamic nature of this environment is not

well suited to server based architectures. Aspiring to the removal of reliance upon a

server based architecture MARE has been designed to be able to distribute agents and

resources using the L2imbo tuple space implementation. The L2imbo implementation

is decentralised allowing insertions and reading from the tuple space in isolation. The

implementation seamlessly updates the surrounding nodes when they are contactable

aiming to achieve eventual consistency.

Using a minimal amount of bandwidth in keeping an updated view of resources and

the transmission of agents

The amount of bandwidth consumed is an important consideration in any

environment, especially mobile environments where available bandwidth can be a

scarce commodity. MARE employs a proactive approach to resource discovery in that

every resource is advertised periodically. Where a host has more than one resource,

the resource descriptions are combined into a resource bundle before transmission. To

further aid in utilising the minimal amount of bandwidth, MARE can seamlessly

support compression of resource descriptions and bundles of descriptions. The

assumption in MARE is that a host requires a continual view of available resources

that is as accurate as possible. Traditionally a request is issued for available resources

and a response generated from a server or all hosts that have the resources requested.

This approach will not work if the server is missing or when the specific resource

requested is not available. Furthermore gaining a consistent view of resources can

result in many requests and responses from multiple hosts. The MARE approach

114

provides a continual update of all available resources such that each host periodically

announces its resources to all listening hosts. If a host does not receive the

announcement in the required time frame, the resource is deemed to be unavailable.

This approach also provides hosts with resource descriptions that they may not have

been looking for that can be used / combined to provide a resource they were seeking.

For example a request for a video source in h.263 format can be achieved by locating

a video source and an encoding agent that can process the stream to the required

format.

Facilitating adaptation to environmental changes to make use of available

resources

MARE adapts to environmental changes to enable more efficient use of available

resources. This is important within any environment especially in an active

environment where available resources change frequently. MARE reports any

changes in resource availability to interested agents in the runtime environment

through a call back mechanism implemented by the agent. Agents can also be used to

dynamically configure and reconfigure resources to be offered as other resources.

6.7 Summary

The qualitative evaluation performed on the MARE approach has examined both the

resource discovery and configuration aspects. Resource discovery, advertising and

maintaining of consistency has been examined favourably with other approaches. The

use of a proactive approach has enabled bandwidth saving features such as bundling

of resources and seamless encryption. The usability of the resource interfaces of

MARE has been examined using the emergency multimedia scenario. In the author’s

opinion MARE is simple and comfortable to users with basic programming abilities.

The qualitative approach also highlights the configuration of resources through the

use of mobile agents emphasising the generation, migration and execution combining

proven features from other agent systems for application in an active environment.

Again, in the author’s opinion the combination of features from different approaches

has led to an intuitive API making the generation and usability of agents a natural

operation for users. The quantitative approach has focused upon the resource

discovery aspects of MARE. This section highlights the efficiency of the MARE

approach when compared to other popular resource discovery approaches.

115

This chapter has revisited the initial requirements from chapter 2 highlighting how the

MARE approach has addressed these issues. Concluding remarks will be offered in

the following chapter regarding the analysis performed in this thesis, the MARE

approach and future directions for this work.

116

Chapter 7

Conclusion

7.1 Overview

This thesis has examined how resource discovery and configuration can be achieved

in an active environment where availability of resources is transient and bandwidth is

at a premium. An examination of resource discovery mechanisms has been performed

concluding that a new approach to resource discovery is required as well as a facility

to manipulate resources for the purposes of adaptation when operating in an active

environment.

The MARE approach is a novel approach combining tuple space and agent

technologies designed to address issues raised whilst examining resource discovery

techniques. The approach has been described and shown to address many of the issues

relating to operation in an active environment. This chapter summarises this thesis

highlighting the key contributions and areas of potential further study before offering

final concluding remarks.

117

7.2 Thesis Outline

The introductory chapter introduced the concept of an active environment

highlighting issues when operating within such an environment. The chapter

examined mobile computing devices and communications infrastructure that are

currently available and likely to be found in a mobile environment. The emergency

multimedia scenario was examined highlighting the rescue of a distressed party. This

introduced and highlighted the need for awareness of available resources and the

ability to adapt to utilise resources. The chapter concluded with initial aims of the

thesis and outlined the remainder of the thesis.

Within chapter 2 a survey of existing middleware was performed; particularly

platform support for mobile systems was examined. The chapter moved on to

examine in more detail two areas of mobile computing research, namely resource

discovery and configuration performed by mobile agent technologies. Through the

exploration of these areas it was concluded that resource discovery and configuration

techniques employed in static and mobile environments do not offer a solution for an

active environment.

Chapter 3 examined in more detail resource discovery through utilising tuple spaces.

The chapter examined the tuple space approach highlighting advances in the tuple

space approach from the initial Linda implementation. Such advances include the

development of multiple tuple spaces for partitioning of data; distributed approaches

that do not use server based interaction, local tuple spaces for inter process on the

same host and bulk primitives for operating on multiple tuples in a single operation.

The chapter concluded that the tuple space approach is a good candidate for the

distribution of resources amongst interested parties.

The MARE approach was introduced in chapter 4, highlighting the novel combination

of tuple space and agent technology to perform resource discovery and configuration.

The chapter highlighted the features of the tuple space and agent combination that

MARE adopts and developed to offer a solution well suited to operating in an active

environment. The chapter introduced the MARE architecture where the individual

modular components are examined. The modular approach allows for different

components to be developed in isolation to the remainder of the MARE system.

118

Chapter 5 discussed the MARE implementation examining the MARE prototype in

terms of the individual components of the architecture described in chapter 4. The

chapter discussed the overall component architecture examining issues related to each

component in turn.

An evaluation of the MARE approach is performed in chapter 6, in both a qualitative

and quantitative manner. The evaluation started by revisiting the emergency

multimedia rescue scenario outlined in chapter 1 of this thesis. The scenario was

examined and expanded to include the emergency rescue application. The scenario

and prototype implementation was referred to throughout the qualitative and

quantitative examination of the MARE approach. The evaluation emphasized the

ability for MARE to operate without reliance on server based architectures, operation

utilising a minimal amount of bandwidth and facilitating adaptation to environmental

changes. The chapter concluded that MARE offers an approach well suited to

resource discovery and configuration in an active environment.

The remainder of this chapter describes the contributions of the thesis and addresses

several areas of potential future work before offering some concluding remarks.

7.3 Major Contributions

7.3.1 Definition and Analysis of the Active Environment

The target area of this thesis has been operations within ad hoc environments where

membership of the grouping is dynamic. This type of environment has been termed in

this thesis as an active environment. An example of an active environment can be seen

in the scenario explored in chapter 1 of an emergency rescue. In this scenario a

number of rescuers converge at a given point carrying different equipment to aid in

the rescue. It is beneficial for devices to discover and interoperate without external

interference utilising surrounding resources seamlessly for the efficient rescue of the

stricken party. Further scenarios can be seen in other impromptu groupings formed in

the automotive world where cars meet in car parks, a traffic jam or simply when

passing on a road. Groupings of aircraft are on a much larger scale; however an ad

hoc group formed when flying in formation or when loading at an airport can be

envisaged. Such groupings are frequent and appear in everyday lives, the availability

119

of devices that are capable of communication leads to many diverse devices with little

or no structured networking.

The development of the MARE approach through practical experimentation,

published papers [Storey’00][Storey’02] and within this thesis has highlighted a

number of requirements for operating in an active environment. Such requirements

include removing reliance upon central servers, maintaining a consistent view of

available resources and operating whilst utilising a minimum amount of bandwidth. A

vast body of work has focused on facilitating operation within static and mobile

environments. Far less work has focussed upon peer to peer environments and less

still on operating in ad hoc environments. This thesis has highlighted these issues and

provides a basis for further analysis and examination of these requirements.

7.3.2 Use of Tuple Spaces for Resource Discovery

The lack of stable network infrastructure in mobile environments has led to diverse

techniques for performing interactions between member hosts. For example client

server interaction cannot be relied upon due to the high probability of disconnection.

Techniques for addressing disconnected operation include the queuing of messages

for replaying when a connection is re-established. When considering the active

environment a first step is considering the techniques employed in the static and

mobile environments. Through this examination an approach is required that offers

some resilience to disconnection and consideration to low bandwidth connections.

One such technique involves the use of a tuple space allowing operations to continue

within a mobile environment through periods of disconnection.

The L2imbo approach offers a fully distributed implementation removing the reliance

on central servers. The approach proves that the tuple space is a valid approach for

interactions within a mobile environment, but not necessarily for point to point

communications for such operations as large audio or video interactions [Wade’99].

This thesis applies the L2imbo approach to the active environment for the distribution

and management of resources but relying on other approaches for inter host

communications. The L2imbo implementation offers many attractive features for

performing such an operation due to its distributed design providing the removal of

reliance on servers. Maintaining consistency is achieved through synchronisation

120

when connected and bandwidth and priority constraints are satisfied. Partitioning of

communications into separate tuple spaces allows tuning into and out of areas of

interest. Furthermore the tuple space allows the generation and use of local tuple

spaces for the sharing of information upon the local host. These features make the

L2imbo implementation a good mechanism for distributing and managing resource

information.

7.3.3 The Combining of Tuple Space and Agent Technologies

This thesis has proposed the MARE approach that has involved the combination of

tuple space and agent technologies to better facilitate operations within an active

environment. The combination of the two technologies is novel and provides many

features desirable within an active environment, not only the features for distributing

resources as highlighted previously through the use of the tuple space but the ability

to manage and control resources. The use of agents allows adaptation to be performed

offering new resources built out of available resources to better suit a client. The use

of agents also allows the rebuilding of configured resources to better suit the

operational environment, for example when network bandwidth increases or a

resource becomes unavailable, further resources can be brought into use allowing

operation to continue seamlessly. This allows a user to generate an agent that can

operate on their behalf configuring resources autonomously if required.

7.4 Other Significant Findings

7.4.1 The eval Operation

The eval operation defined in Linda was used to insert active tuples into a tuple space

for computation within the tuple space placing a result within the tuple space for

collection or further manipulation. The initial L2imbo implementation had no support

for the eval data type and associated operations, support for eval was added to L2imbo

as part of the development of the MARE approach enabling the distribution of active

code. The L2imbo implementation seamlessly takes Java code and transforms it into a

format that can be moved through the tuple space. The eval data type is reassembled

by the tuple space when required. This ease of insertion and reconstruction can be

seen in the simplicity of inserting and consuming mobile agents as highlighted in the

evaluation performed in chapter 6. The approach was further refined to allow for a

121

choice as to the transporting of associated classes or not with the main code. This

option was provided due to the potential size that an agent may attain and the

flexibility offered by the loading of constituent classes from other sources. For

example constituent classes can be placed in the tuple space or at a central repository.

These approaches offer flexibility and potential bandwidth savings at the expense of

the potential failure of availability of constituent classes.

7.4.2 Development of a Lightweight Agent Architecture

The MARE approach utilises the tuple space as a transport mechanism for resource

descriptions. To facilitate the manipulation of these resources the use of mobile agents

has been adopted. After an examination of mobile agent systems developed for

operating in static and mobile environments, it was concluded that they are not

appropriate for operating in an active environment utilising tuple spaces. Amongst the

reasons for this are a reliance upon servers for constituent classes, static

communication meeting points and targeted migration. The likelihood of

disconnection and membership changes also makes the availability of servers and

specific hosts unlikely.

The MARE approach utilises the tuple space for transportation of mobile agents

through the use of the eval data type and associated operations detailed previously in

this chapter. Once an agent has been accepted for execution on a particular host it is

assembled and started in the user level the MARE runtime is operating in. More than

one MARE runtime can execute on a single machine allowing different runtime levels

when available for different MARE instances such as guest, user or administrator.

Both the agent and the runtime have the ability to move the agent through a request

and then if required a forced migration will take place which places the agent back

into the tuple space for consumption at an appropriate host. The approach is

lightweight allowing for further extensions such as more specific security settings and

refinement of dynamic class loading.

7.4.3 Analysis of Current Middleware Solutions

Through the development of the MARE approach an analysis of existing middleware

solutions has been performed in chapters 2 and 3 of this thesis. This analysis focussed

on resource distribution and agent execution environment. Through this analysis was

122

concluded that current middleware solutions do not fully consider operations in active

environments. This thesis serves as a survey of existing middleware approaches that

facilitate operations for resource discovery and configuration within an active

environment. Clearly there is further work in addressing the issues raised in operating

within an active environment highlighted by the examinations performed in this thesis

Existing approaches have a heavy reliance on client server interactions and assume

short term disconnection rather than complete termination of a connection, providing

only a basic level of support for when such an event occurs.

7.5 Future work

7.5.1 Towards Large Scale Active Environments

MARE has been designed specifically for operation within an active environment,

anticipating a small number of hosts. This thesis has not focussed on operating in an

environment where the number of hosts is large for example of the order of millions.

The impact of the number of hosts increasing can be seen as negligible to the tuple

space approach however the number of resources may also increase. This is due to

resources being proactive and hosts without resources simply listening for resource

announcements. The number of resources available will directly affect the amount of

bandwidth consumed. The consumption of bandwidth through resource

announcements has been simply addressed in the MARE approach by employing

compression and bundling of resources. Other techniques could include modifying the

time interval of resource update announcements to be at a dynamic interval to spread

the required bandwidth over a larger period of time and filtering at the tuple space

level of resources, messages and agents.

7.5.2 Extensibility of MARE

The resource descriptions and required resource list transmitted with MARE agents

are basic key / value pairs with a simple defined structure and user defined elements.

This approach whilst economic and simplistic does not offer easy expansion to allow

for a self descriptive approach to allow a more dynamic content and interoperability

between existing systems. The eXtensible Markup Language (XML) offers the ability

to perform such operations and is being widely adopted for describing data and

passing of information between diverse systems. Parsing an XML document in an

123

active environment where bandwidth and computational resources are scarce needs to

be examined and determined for possible benefits and drawbacks.

7.5.3 Securing the Active Environment

The security currently available in the active environment is basic. The environment

and agent check each other’s available and desired resources prior to execution and

the host may employ a Java ClassLoader to establish a level of security through

checking various aspects of an agent. An agent may also be used as a bootstrap for

further agents in a controlled manner. These approaches rely upon some prior

knowledge of acceptable security levels and signers of code bases, requiring updating

and monitoring at regular intervals allowing basic authentication when credentials are

available. Other techniques for verifying an agent’s credentials can be seen in

schemes that employ inferred trust where an agent is trusted by someone trusted thus

they must be trustworthy. This is an approach with limitations, such as if the trusted

party becomes compromised in some way then trust of a compromised host is

performed. Further examinations of security techniques that are appropriate for

operating in an active environment are clearly required.

7.5.4 Refining the Tuple Space

The MARE approach has utilised the existing L2imbo tuple space implementation

with the addition of the eval data type for transmission of active code. The tuple space

can control the forwarding of tuples through itself by tunnelling and forwarding

offering the potential for shaping agent and resource traffic. These features have not

been explored in depth in this thesis; however they do offer the potential to optimise

the tuple space for operating in active and mixed environments. A mixed environment

may occur when a participating host has a link to a static network. Using the host as a

conduit between the static and active environments can be achieved through

forwarding or tunnelling of tuples. Further refinement to the tuple space operations

can be developed such as the insertion of policies for the cleaning of stale tuples from

within the tuple space maintaining a consistent tuple space. Work in these areas has

been performed since the development of Linda and adapted and enhanced for

operation in new environments such as the mobile environment and now the active

environment. In summary further work can and should be undertaken in refining the

behaviour of the tuple space.

124

7.6 Concluding Remarks

The diversity found in computing environments is growing; the mobile computing

domain is occupied by a wide variety of devices with different characteristics. The

proliferation of communication capable devices and the increasing levels of mobility

are generating active environments where ad hoc groupings of diverse devices are

formed with a dynamic membership. Middleware has an important role providing the

ability for facilitating operations in mobile environments. This thesis has concluded

that existing middleware is not appropriate for operating in an active environment.

This thesis has proposed the MARE approach, a novel combination of tuple spaces

and mobile agents. This approach offers a middleware solution for allowing the

discovery and configuration of resources within active environments. This is done in a

manner that is sympathetic to the operational constraints of such an environment

including limited bandwidth, periods of disconnection and adaptation to change.

The author believes that through further construction, examination and modelling of

active environments the challenges and issues highlighted in this thesis can be

expanded. It is hoped that the community of researchers and enthusiasts at large will

build and develop the MARE approach, ultimately allowing users to utilise and

manipulate resources in an efficient manner in active environments.

125

References

[Adcock’99] P. Adcock, Supporting Mobile Applications in a Heterogeneous

Distributed Environment, Ph.D. Thesis, Distributed Multimedia Research Group,

Computing Department, Lancaster University, Bailrigg, Lancaster, LA1 4YR, U.K.,

1999.

[Allyn’02] Welch Allyn UK, Manufacturers of Propaq Medical monitoring systems

http://www.welchallyn.co.uk/, 2002.

[Amir’95] E. Amir, H. Balakrishnan, S. Seshan and R. Katz, "Efficient TCP over

Networks with Wireless Links", Proceedings of the 5th IEEE Workshop on Hot

Topics in Operating Systems (HotOS-V), Orcas Island, Washington, U.S., IEEE

Computer Society Press, 4th-5th May 1995.

[APM’89] APM Limited, ANSA: An Engineers Introduction to the Architecture,

Technical Document release TR.03.02, APM Cambridge Limited, Poseidon House,

Castle Park, Cambridge, CB3 0RD, U.K., November 1989.

[APM’93] APM Limited, ANSAware 4.1 Application Programming in ANSAware,

Technical Document RM.102.02, APM Cambridge Limited, Poseidon House, Castle

Park, Cambridge, CB3 0RD, U.K., February 1993.

[Arnold’00] Ken Arnold, Robert Scheifler, and Jim Waldo, The Jini Specification,

Second edition, Penguin Books (N.Z.) Ltd.; ISBN: 0201726173, November 2000.

126

[AT&T‘93] AT & T, Development of WaveLAN, an ISM band wireless LAN,

Technical Journal, pp. 27-37, July/August 1993

[Bakre’95] A. Bakre and B. R. Badrinath, I-TCP: Indirect TCP for Mobile Hosts,

Proceedings of the 15th International Conference on Distributed Computing Systems

(ICDCS), Vancouver, British Columbia, pp 136-143, 30th May-2nd June 1995.

[Baumann‘98] J. Baumann, F. Hohl, K. Rothermel, M. Schwehm, M. Straßer, Mole

3.0: A Middleware for Java-Based Mobile Software AgentsMiddleware'98 IFIP

International conference on Distributed Systems Platforms and Open Distributed

Processing, pp. 355-370, 1998.

[Bakken’94] D. E. Bakken, Supporting Fault-Tolerant Parallel Programming in Linda,

Ph.D. Thesis, Department of Computer Science, University of Arizona, Tucson,

Arizona 85271, U.S., 8th August 1994.

[Bluetooth‘99] Bluetooth, Bluetooth Specifications, http://www.bluetooth.com/, 1999.

[Candy ‘98] Ed. Candy et al, Emergency Multimedia, Simoco Europe Ltd., the

Langdale Ambleside Mountain Rescue Team, and HW Communications Limited,

Multimedia Demonstrator Programme funded by the Department of Trade and

Industry, 1989.

[Carriero‘89] N. Carriero and D. Gelernter, Linda in Context, Communications of the

ACM, Volume 32 Number 4, pp 444 – 458, 1989.

[Carriero’94] N. Carriero, D. Gelernter and L. Zuck, "Bauhaus Linda", Selected

Papers from the Workshop on Models and Languages for Coordination of Parallelism

and Distribution (ECOOP '94), Bologna, Italy, pp 66-76, July 1994.

[Chill’95] A. Schill and S. Kümmel, Design and Implementation of a Support

Platform for Distributed Mobile Computing, Distributed Systems Engineering

Journal, 2(3), pp. 128-141, 1995.

[Davies‘98] N. Davies, A. Friday, S. Wade and G. Blair, L2imbo: A Distributed

Systems Platform for Mobile Computing, ACM Mobile Networks and Applications

127

(MONET), Special Issue on Protocols and Software Paradigms of Mobile Networks,

Volume 3, Number 2, pp143-156, 1998.

[Davies’99] N. Davies, K. Cheverst, K. Mitchell, and A. Friday, Caches in the Air:

Disseminating Information in the Guide System, Proc. 2nd IEEE Workshop on

Mobile Computing Systems and Applications (WMCSA '99), New Orleans, U.S.,

IEEE Press, Pages 11-19, 1999.

[Demers’94] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer and B.

Welch, The Bayou Architecture: Support for Data Sharing Among Mobile Users,

Proceedings of the 1st IEEE Workshop on Mobile Computing Systems and

Applications (WMCSA '94), Santa Cruz, California, U.S., IEEE Computer Society

Press, 8th-9th December 1994.

[Douglas’95] A. Douglas, A. Wood and A. Rowstron, Linda Implementation

Revisited, Transputer and Occam Developments, IOS Press, pp 125-138, 1995.

[ETSI’95] ETSI, Radio Equipment System (RES) Trans-European Trunked Radio

(TETRA); Voice plus Data (V+D), Designer’s Guide, ETSI Work Programme

DE/RES – 0601, Subtechnical Committee (STC) RES 06, May 1995.

[Finney’99] J. Finney, Supporting Continuous Multimedia Services in Next

Generation Mobile Systems, PhD Thesis, Distributed Multimedia Research Group,

Computing Department, Lancaster University, Bailrigg, Lancaster, LA1 4YR, U.K,

September 1999.

[Fitzpatrick’98] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies and P. Robin,

Software Architecture for Adaptive Distributed Multimedia Applications, IEE

Proceedings - Software Vol. 145, No. 5, pp163-171 October 1998.

[Friday’96] A. Friday, Infrastructure Support for Adaptive Mobile Applications,

Ph.D. Thesis, Distributed Multimedia Research Group, Computing Department,

Lancaster University, Bailrigg, Lancaster, LA1 4YR, U.K., October 1996.

[Friday‘99] A. Friday, N. Davies, J. Seitz, M. Storey and S. Wade, Experiences of

Using Generative Communications to Support Adaptive Mobile Applications,

128

Distributed and Parallel Databases, Special Issue on Mobile Data Management and

Applications, Volume 7, pp1-24, Number 3, 1999.

[Gellersen’02] HW Gellersen, A Schmidt and M Beigl Multi-Sensor Context-

Awareness in Mobile Devices and Smart Artifacts, in Mobile Networks and

Applications (MONET), Oct 2002

[Gelernter‘85] D. Gelernter, Generative Communication in Linda, ACM Transactions

on Programming Languages and Systems, Volume 7, Number 1, pp 255-263, 1985.

[Goland’99] Y. Goland, T. Cai, P. Leach., Y. Gu, S. Albright, Simple Service

Discovery Protocol, IETF Draft. 1999

[Goland’00] Y. Goland, J. Schlimmer, Multicast and Unicast UDP HTTP Messages,

UPnP forum Technical Committee Draft

http://www.upnp.org/resources/specifications.asp, October 2000.

[Gosling'00] James Gosling, Bill Joy, Guy Steele and Gilad Bracha, The Java

Language Specification,Addison Wesley; ISBN: 0201310082, July 2000

[Gray’02] R. Gray, G. Cybenko, D. Kotz, R. Peterson and D. Rus. D'Agents:

Applications and Performance of a Mobile-Agent System. Software-- Practice and

Experience, 32(6):543-573, May, 2002.

[Gray‘96] R. Gray, Agent Tcl: A flexible and secure mobile-agent system,

Proceedings of the 1996 Tcl/Tk Workshop, pages 9-23, 1996.

[Gray‘96a] R. Gray, D. Kotz, S. Nog, D. Rus, and G. Cybenko ,Mobile agents for

mobile computing, Technical Report PCS-TR96-285, Dept. of Computer Science,

Dartmouth College, May 1996.

[Guttman’99] E. Guttman, The Service Location Protocol, IEEE Internet Computing

pp71-80, July 1999.

[Haahr’99] M. Haahr, R. Cunningham and V. Cahill. Supporting CORBA

Applications in a Mobile Environment. MobiCom '99: 5th International Conference

on Mobile Computing and Networking. Seattle, August 1999.

129

[Hinckley‘00] K. Hinckley, J. Pierce, M. Sinclair, E. Horvitz, Sensing Techniques for

Mobile Interaction, ACM UIST 2000 Symposium on User Interface Software &

Technology, CHI Letters 2 (2), pp. 91-100, 2000.

[Hupfer‘90] S. Hupfer, Melinda: Linda with Multiple Tuple Spaces, Research Report

YaleU/DCS/RR-766, February 1990.

[IBM‘99] IBM Corporation, Aglets Specification, http://www.trl.ibm.co.jp/aglets/,

1999.

[IBM‘99a] IBM Corporation, TSpaces: The Next Wave, Hawaii International

Conference on System Sciences (HICSS-32), 1999.

[IBM‘00] IBM Corporation, IBM MicrodriveTM, 1Gb Microdrive specification,

http://www.storage.ibm.com/hdd/micro/index.htm, 2000.

[Intel'96] Intel and Microsoft Corporation, Advanced Power Management (APM)

BIOS Specification, Revision 1.2, 1996.

[Ioannidis’93] J. Ioannidis and G. Q. Maguire, The Design and Implementation of a

Mobile Internetworking Architecture, Proceedings of the USENIX Winter

Conference, January 1993.

[ISO’98] International Standards Organization, Information Technology; Open

Distributed Processing; ISO Standard ISO/IEC 10746, 1998.

[Jacobsen’97] K. Jacobsen, and D. Johansen. Mobile Software on Mobile Hardware --

Experiences with TACOMA on PDAs. Technical Report 97-32, Department of

Computer Science, University of Tromsø, Norway, December 1997.

[Jacobsen‘99] K. Jacobsen, D. Johansen, Ubiquitous devices united: enabling

distributed computing through mobile code, SAC '99. ACM symposium on Applied

computing, pages 399-404 1999.

[Johansen‘95] D. Johansen, R. van Renesse, and F. Schneider, An Introduction to the

TACOMA Distributed System, Department of Computer Science, University of

Tromsø, Norway, Technical Report 95-23, 1995.

130

[Johanson’02] B. Johanson, and A. Fox, The Event Heap: A Coordination

Infrastructure for Interactive Workspaces, 4th IEEE Workshop on Mobile Computer

Systems and Applications (WMCSA-2002), Callicoon, New York, USA, June, 2002.

[Joseph’95] A. Joseph, A. deLespinasse, J. Tauber, D. Gifford and M. Kaashoek,

Rover: A toolkit for Mobile Information Access, Proceedings of the 15th symposium

on Operating Systems Principles (SOSP’95), Copper Mountain Resort, Colorado,

U.S., pp. 156-171, 1995.

[Kahn‘99] J. Kahn, R. Katz and K. Pister, Mobile Networking for Smart Dust,

ACM/IEEE Intl. Conf. on Mobile Computing and Networking (MobiCom 99),

Seattle, WA, August 17-19, 1999.

[Li’96] W. Li, D. Messerschmitt, Java-To-Go: Itinerative Computing Using Java,

Department of Electrical Engineering and Computer Sciences University of California

at Berkeley, 1996.

[Microsoft’98] Microsoft Corporation, Distributed Component Object Model Protocol

– DCOM/1.0 Specification, Microsoft Developer Network Library Document.

Available on the Internet at http://msdn.microsoft.com/

[Microsoft’00] Microsoft Corporation, Universal Plug and Play Device Architecture

Version 1, http://www.upnp.org/resources/documents.asp, June 2000.

[Microsoft’01] Microsoft Corporation, Common Language Infrastructure Standards,

http://msdn.microsoft.com/net/ecma/, December 2001.

[Minsky’94] N. Minsky and J. Leichter, Law-Governed Linda as a

CoordinationModel, Selected Papers from the Workshop on Models and Languages

for Coordination of Parallelism and Distribution, Bologna, Italy, pp 125-146, July

1994.

[Mummert’95] L. Mummert, M. Ebling and M. Satyanarayanan, Exploiting Weak

Connectivity for Mobile File Access, Proceedings of the 15th ACM Symposium on

Operating System Principles (SOSP), Colorado, U.S., ACM Press, Volume 29, pp

143-155, 3rd-6th December 1995.

131

[OG’99] The Open Group, http://www.opengroup.org/dce/, 1999.

[OMG‘98] Object Management Group, CORBA/IIOP 2.3 Specification, OMG

document formal/98-12-01, Object management group, http://www.omg.org/, 1998.

[Peine‘97] H, Peine, T. Stolpmann, In Kurt Rothermel, Radu Popescu-Zeletin, The

Architecture of the Ara Platform for Mobile Agents, (Eds.): Proc. of the First

International Workshop on Mobile Agents MA'97 (Berlin, Germany), 1997.

[Perkins’92] C. Perkins and Y. Rekhter, Shortcut Routing for Mobile Hosts, Mobile

IP Internet Draft, IBM Corporation, July 1992.

[Perkins’96] C. Perkins and D. Johnson, Mobility Support in IPv6, Proceedings of the

2nd ACM International Conference on Mobile Computing and Networking

(MobiCom '96), Rye Hilton, Rye, White Plains, New York, U.S., ACM Press, 10th-

12th November 1996.

[Picco‘98] G. Picco, A. Murphy, and Roman, Lime: Linda Meets Mobility, G.-C.,

Technical report no. 98-21, 1998.

[Raines’99] Paul Raines and Jeff Tranter, Tcl/Tk in a Nutshell, O'Reilly UK; ISBN:

1565924339, April 1999.

[Román’99] M. Román, A. Singhai, D. Carvalho, C. Hess, and R. Campbell,

Integrating PDAs into Distributed Systems: 2K and PalmORB., International

Symposium on Handheld and Ubiquitous Computing (HUC'99). Karlsruhe, Germany.

September 27-29, 1999.

[Román’00] M. Roman, D. Mickunas, F. Kon and R. Campbell, LegORB and

Ubiquitous CORBA, IFIP/ACM Middleware'2000 Workshop on Reflective

Middleware. IBM Palisades Executive Conference Center, NY, April 2000.

[Román’01]. M. Román, F. Kon, and R. Campbell, Reflective Middleware: From

Your Desk to Your Hand, IEEE Distributed Systems Online (Special Issue on

Reflective Middleware), Vol. 2, No. 5, July, 2001.

132

[Rowstron‘96] A. Rowstron, Bulk Primitives in Linda Run-Time Systems, University

of York, Thesis, 1996.

[Rowstron’97] A. Rowstron and A. Wood, Bonita: A Set of Tuple Space Primitives

for Distributed Coordination, Proceedings of the 30th Annual Hawaii International

Conference on System Sciences, Volume 1, IEEE Computer Society Press, pp 379-

388, 1997.

[Salutation’99] Salutation Consortium, Salutation Architecture Specification (Part-1),

Technical Report Version 2.0c, 1999.

[Satyanarayanan’85] M. Satyanarayanan, J. Howard, D. Nichols, R. Sidebotham, A.

Spector and M. West, The ITC Distributed File System: Principles and Design,

Proceedings of the 10th Symposium on Operating System Principles (SOSP), Orcas

Island, Washington, U.S., ACM Press, December 1985.

[Satyanarayanan’90] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel

and D. Steere, Coda: A Highly Available File System for a Distributed Workstation

Environment, IEEE Transactions on Computers, Volume 39, Number 4, pp 447-459,

April 1990.

[Satyanarayanan’94] M. Satyanarayanan, B. Noble, P. Kumar and M. Price,

Application-Aware Adaptation for Mobile Computing, Proceedings of the 6th ACM

SIGOPS European Workshop (Dagstuhl, Germany), 1994.

[Shill‘95] A. Schill and S. Kümmel, Design and Implementation of a Support

Platform for Distributed Mobile Computing, Distributed Systems Engineering

Journal, 2(3), pp. 128-141, 1995.

[Schmidt’99] A. Schmidt, K. Aidoo, A. Takaluoma, U. Tuomela, V. Laerhoven, and

W. Velde, Advanced Interaction in Context, In the Proceedings of the 1st

International Symposium on Handheld and Ubiquitous Computing (HUC '99),pp. 89-

101, Karlsruhe, Germany, Springer-Verlag. September 27-29, 1999.

[Seitz’98] J. Seitz, N. Davies, M. Ebner, and A. Friday, A CORBA-based Proxy

Architecture for Mobile Multimedia Applications, 2nd IFIP/IEEE International

133

Conference on Management of Multimedia Networks and Services (MMNS '98),

Versailles, France, 1998.

[Stemm‘99] M. Stemm, R. Katz, Vertical Handoffs in Wireless Overlay Networks,

ACM/Baltzer Mobile Networking and Applications (MONET), Special Issue on

Mobile Networking in the Internet, V 3, N 4, pp. 319-334, January 1999.

[Storey‘00] M. Storey, G. Blair, Resource Configuration in Ad Hoc Networks: The

MARE Approach, Third IEEE Workshop on Mobile Computing Systems and

Applications (WMCSA), Monterey California, 2000.

[Storey‘02] M. Storey, G. Blair, A. Friday, MARE: Resource Discovery and

Configuration in Ad Hoc Networks, MONET special edition, October 2002.

[Sun,89] Sun Microsystems, NFS: Network File System Protocol Specification,

Request for Comments (RFC) number 1094, Sun Microsystems, 1989.

[Sun‘99] Sun Microsystems, Jini, JavaSpaces Specification,

http://www.sun.com/jini/specs/, 1999.

[Sun’02] Sun Microsystems, Java Remote Method Invocation (RMI), Sun

Microsystems, http://java.sun.com/products/jdk/rmi/, 2002.

[Sun‘02a] Sun Microsystems, Jini Specification,

http://wwws.sun.com/software/jini/specs/index.html, 2002.

[Sun’02b] Sun Microsystems, Java Security, http://java.sun.com/security/index.html,

2002.

[TrafficMaster’02] TrafficMaster, http://www.trafficmaster.co.uk/, 2002.

[Verizades’97] J. Verizades, E. Guttman, C. Perkins, S. Kaplan, Service Location

Protocol, rfc2165, June 1997

[Wade‘99] S. Wade, An Investigation into the use of the Tuple Space Paradigm in

Mobile Computing Environments, Ph.D. Thesis, Distributed Multimedia Research

134

Group, Computing Department, Lancaster University, Bailrigg, Lancaster, LA1 4YR,

U.K., 1999.

[Weiser‘93] M. Weiser. Some Computer Science Issues in Ubiquitous Computing,

Communications of the ACM, 36(7):75-84, 1993.

[Wong‘97] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, B. Peet,

Concordia: An Infrastructure for Collaborating Mobile Agents, Mitsubishi Electric

ITA, First International Workshop on mobile agents, Berlin Germany, 1997.

135

1. Appendix A

MARE: Application Programmer

Interface

8.1 Agent Interface

Public Methods

void run ()
void agentEnvironment (AgentRuntime agentRuntime)
void close ()
void receive (UID destination, byte[] data)

Detailed Descriptions

void MARE::Agent::agentEnvironment (AgentRuntime
agentRuntime)
Called by MARE when arriving at a new Location to provide an interface to

the agent runtime environment

Parameters:

agentRuntime: The agent runtime environment. This variable may be

used to interact with the local runtime environment

See also: MARE.AgentRuntime

void MARE::Agent::close ()
Called by the Agent Environment to request the agent move.

136

void MARE::Agent::receive (UID destination, byte data[])
Called by the agent runtime environment to let the agent know of incoming

data. The agent may register for data from multiple sources via calls to the

agent runtime environmnet

Parameters:

To: The destination of the data

Data: The data for the given destination

See also: MARE.AgentRuntime , MARE.UID

void MARE::Agent::run ()
Called to start an Agent

8.2 AgentRuntime Class

Public Methods

AgentRuntime (AgentRuntimeEnvironment aRE, UID name, Agent a)
void run ()
void send (String resourcesRequired, Agent a) throws Exception
void sendResourceDescriptor (String resourceDescriptor) throws

Exception
void send (UID destination, byte[] data) throws Exception
void dataArrived (UID name, byte[] message)
void resourceArrived (UID resourceUID, String

resourceDescriptor)
void resourceRemoved (UID name)
void close ()
UID getName ()
void registerData (UID dataSource)
void registerCallBack (boolean register, QoSCallback callback)
void registerCallBack (boolean register, ResourceCallback

callback)

Detailed Descriptions

Constructor

MARE::AgentRuntime::AgentRuntime (AgentRuntimeEnvironment
aRE, UID name, Agent a)
Called when generating a new Agent to run

Parameters:

aRE The AgentRuntime which allows access to the agent system for multiple agents.

137

name The name of the Agent

a The agent itself

Member Functions

void MARE::AgentRuntime::close ()
Called by the agent to release the agent from the runtime environment. A

Clean shutdown

void MARE::AgentRuntime::dataArrived (UID name, byte
message[])
Called by the AgentRuntimeEnvironment to indicate a message has arrived

Parameters:

name The destination for the data

message The message transmitted

UID MARE::AgentRuntime::getName ()
Get the name of the running agent

Returns :

The UID of the agent

void MARE::AgentRuntime::registerCallBack (boolean
register, ResourceCallback callback)
Call to register for callbacks upon the delivery / removal of resources

Parameters:

register register for a callback true deregister for a callback false

callback class to receive callback

void MARE::AgentRuntime::registerCallBack (boolean
register, QoSCallback callback)
Call to register or de-register for a QoS callback

Parameters:

register register for the callback = true deregister for the callback = false

138

callback QoS callback instance

See also: QosCallBack

void MARE::AgentRuntime::registerData (UID dataSource)
register for the receipt of data from a given source

Parameters:

dataSource UID of the source of data

void MARE::AgentRuntime::resourceArrived (UID
resourceUID, String resourceDescriptor)
Called by the system when a resource is detected.

Parameters:

name The name of the resource

resource A handle to the resource

void MARE::AgentRuntime::resourceRemoved (UID name)
Called by the system to indicate a resource has been removed

Parameters:

name The name of the resource

void MARE::AgentRuntime::run ()
Starts the agent Runtime and triggers the Agent Called by the AgentRuntime

Environmnet.

void MARE::AgentRuntime::send (UID destination, byte
data[]) throws Exception
Called to send a message to another agent

Parameters:

destination The recipient of the message

data The data to transmit

Exceptions:

139

java.lang.Exception

void MARE::AgentRuntime::send (String resourcesRequired,
Agent a) throws Exception
Called to send an agent into the environment This routine may be used to

move the currently running agent.

Parameters:

resourceRequired resource requirements to run

a The agent to send

Exceptions:

java.lang.Exception

void MARE::AgentRuntime::sendResourceDescriptor (String
resourceDescriptor) throws Exception
Called to send a resource descriptor into the environment

Parameters:

resourceUID UID of resource

resourceDescriptor descriptor of resource

Exceptions:

java.lang.Exception

8.3 AgentRuntimeEnvironment Class

Public Methods

AgentRuntimeEnvironment (boolean acceptAgents)
void run ()
UID addAgent (String resourcesRequired, Agent a) throws

Exception
void sendMessage (UID to, UID from, byte[] message) throws

Exception

140

Static Public Methods

UID addResource (ResourceDescriptor resourceDescriptor) throws
Exception

void removeResource (UID uid) throws Exception
void Go (boolean acceptAgents, boolean graphical) throws

Exception

Detailed Descriptions

Constructor

MARE::AgentRuntimeEnvironment::AgentRuntimeEnvironment
(boolean acceptAgents)
Initiate MARE runtime environment

Parameters:

acceptAgents Accept incoming agents when initialised.

Member Functions

UID MARE::AgentRuntimeEnvironment::addAgent (String
resourcesRequired, Agent a) throws Exception
Static method to add an agent

Parameters:

resourcesRequired Required resource list

a Agent to add

Returns:

The UID of the agent

UID MARE::AgentRuntimeEnvironment::addResource
(ResourceDescriptor resourceDescriptor) throws
Exception
Static method to add a resource

Parameters:

resourceDescriptor Resource description to add

Returns:

141

The UID of the resource descriptor

void MARE::AgentRuntimeEnvironment::Go (boolean
acceptAgents, boolean graphical) throws Exception
Static call to start MARE

Parameters:

acceptAgents Accept agent by default

graphical Start with graphical monitor

void MARE::AgentRuntimeEnvironment::removeResource (UID
uid) throws Exception
Remove a resource from MARE

Parameters:

uid resource to remove

void MARE::AgentRuntimeEnvironment::run ()
Start a MARE instance

void MARE::AgentRuntimeEnvironment::sendMessage (UID to,
UID from, byte message[]) throws Exception
Call to send an message

Parameters:

to Where to send message

from From whom the message has come

message Message to send

8.4 QoSCallback Interface

Implemented by an agent wishing to receive QOS callbacks

Public Methods

void updateQoS (String type, String value)

142

Detailed Descriptions

void MARE::QoSCallback::updateQoS (String type, String
value)
Called when QOS change detected

Parameters:

type Type of QOS change

value Value of QOS parameter

8.5 ResourceCallback Interface

Implemented by an agent wishing to receive resource change callbacks

Public Methods

void resourceArrived (UID resourceUID, String
resourceDescriptor)

void resourceRemoved (UID resourceUID, String
resourceDescriptor)

Detailed Descriptions

void MARE::ResourceCallback::resourceArrived (UID resourceUID, String

resourceDescriptor)

Called when a new resource is made available

Parameters:

resourceUID unique identifier of resource

resourceDescriptor description of resource

void MARE::ResourceCallback::resourceRemoved (UID resourceUID, String

resourceDescriptor)

Called when a resource is no longer available

Parameters:

resourceUID unique identifier of resource

143

resourceDescriptor description of resource

8.6 ResourceDescriptor Class

Used to help generate resource descriptions

Public Methods

ResourceDescriptor ()
ResourceDescriptor (String descriptor)
String toString ()
String getDescriptor ()
String getDescriptor (String tag)
String getValue (String key)
void removeDescriptor (String key)
void addDescriptor (String type, String value)
Hashtable getPairs ()

Detailed Descriptions

Constructors

MARE::ResourceDescriptor::ResourceDescriptor ()
Create an empty descriptor.

MARE::ResourceDescriptor::ResourceDescriptor (String
descriptor)
Requires a string of a layout compliant with the resource descriptor layout.

Parameters:

descriptor The string format of a resource descriptor

Member Functions

void MARE::ResourceDescriptor::addDescriptor (String
type, String value)
Add a tag value pair

Parameters:

type tag type

value value of tag

String MARE::ResourceDescriptor::getDescriptor (String
tag)
Get a tag value i.e. TYPE=camera calling with TYPE will return camera

144

Parameters:

tag tag to search for

Returns :

value depicted by the tag or null.

Deprecated:

Replaced by getValue(String key)

String MARE::ResourceDescriptor::getDescriptor ()
Get resource descriptor

Returns :

A string representation of the descriptor. null if no descriptors present

Hashtable MARE::ResourceDescriptor::getPairs ()
Returns a hashtable of key value pairs

Returns :

a Hashtable of values and pairs.

String MARE::ResourceDescriptor::getValue (String key)
Get a Value value i.e. TYPE=camera calling with TYPE will return camera

Parameters:

key, key to search for

Returns :

value depicted by the key or null if not found.

void MARE::ResourceDescriptor::removeDescriptor (String
key)
Remove key value pair

Parameters:

145

key Key name

String MARE::ResourceDescriptor::toString ()
Generate descriptor for screen output

Returns :

The descriptor string

8.7 UID Class

Unique identifier of a resource or agent within MARE

Public Methods

UID ()
UID (byte[] uID)
UID (String uID)
byte[] getBytes ()
String getUID ()
boolean equals (Object input)
int hashCode ()
String toString ()

Detailed Descriptions

Constructors

MARE::UID::UID ()
Create an empty unique identifier

MARE::UID::UID (byte uID[])
Construct from a byte representation

Parameters:

uID unique identifier

MARE::UID::UID (String uID)
Construct from a string representation

Parameters :

uID unique identifier

Member Functions

byte [] MARE::UID::getBytes ()

146

Get the byte representation

Returns

The byte representation of the unique identifier

String MARE::UID::getUID ()
Get the string representation

Returns

The string representation of the unique identifier

String MARE::UID::toString ()
Provides the string representation

Returns

The string representation of the unique identifier

147

2. Appendix B

Emergency Multimedia

Demonstrator

9.1 Embedded Device Application

Calls made to MARE interfaces or from MARE interfaces are shown in turquoise.

/**
 * Emergency Rescue bootstrap.
 *
 * @author Matthew Storey
 * @version 1.0
 */
import MARE.*;

public class Go {

 public static void main(String args[]) throws Exception
 {
 //Initialise Agent Runtime Environment to accept agents

without a graphical environment.
 AgentRuntimeEnvironment.Go(true,false);
 //Insert Mobile Agent into running environment
 AgentRuntimeEnvironment.addAgent("",new

EmergencyRescueAgent());
 //Add resources we have e.g. GPS
 //AgentRuntimeEnvironment.addResource(new

ResourceDescriptor("DESCRIPTION=GPS for rescuer
3;TYPE=GPS;IP=10.0.10.10;PORT=3030"));

 }
}

148

9.2 Mobile Agent

Calls made to MARE interfaces or from MARE interfaces are shown in turquoise.

/**
 * MARE agent to relay resources to a client interface.
 *
 * @author Matthew Storey
 * @version 1.0
 */

import MARE.*;

public class EmergencyRescueAgent implements MARE.Agent,

MARE.ResourceCallback {
 private AgentRuntime agentRuntime = null;
 private java.util.Hashtable resources = null;

 /*
 * Called by MARE with a handle to the agents runtime environment
 * @param agentRuntime handle to agents runtime environment
 */
 public void agentEnvironment(AgentRuntime agentRuntime) {
 this.agentRuntime = agentRuntime;
 this.resources = new java.util.Hashtable();
 //register for callback
 agentRuntime.registerCallBack(true, this);
 }

 /*
 * Called when agent is about to close.
 */
 public void close() {
 //deregister for callback before move.
 agentRuntime.registerCallBack(false, this);
 //Reset the variables (saves space when serialising agent)
 agentRuntime = null;
 resources = null;
 }

 /*
 * Receive a message
 */
 public void receive(UID destination, byte data[]) {
 //Not required in this example
 }

 /*
 * A new resource has arrived
 */
 public void resourceArrived(UID resourceUID, String

resourceDescriptor) {
 resources.put(resourceUID, resourceDescriptor);
 sendResources();
 }

 /*
 * A resource has been removed
 */

149

 public void resourceRemoved(UID resourceUID, String
resourceDescriptor) {

 resources.remove(resourceUID);
 sendResources();
 }

 /*
 * Send resources to the user interface if any
 */
 public synchronized void sendResources() {
 //Serialise and send hashtable to user interface
 ………………
 }

 /*
 * Main routine to form interaction with user interface
 */
 public void run() {
 ……………
 }
}

9.3 User Interface

Calls made to MARE interfaces or from MARE interfaces are shown in turquoise.

/**
 * Emergency Rescue user interface.
 *
 * @author Matthew Storey
 * @version 1.0
 */

import java.awt.*;
import java.awt.event.*;
import MARE.*;

public class ERescueApp extends Frame implements

java.awt.event.ActionListener,
java.awt.event.WindowListener {

 Update update;
 java.util.Vector list = null;
 String serverName = "localhost";
 java.awt.List lstResources = new java.awt.List(4);
 java.awt.Button btnExecute = new java.awt.Button();
 java.awt.TextArea txtResourceDescription = new

java.awt.TextArea();
 java.awt.Label lbl = new java.awt.Label();
 java.awt.MenuBar menuBar = new java.awt.MenuBar();
 java.awt.Menu menu1 = new java.awt.Menu();
 java.awt.MenuItem serverSelect = new java.awt.MenuItem();

 public ERescueApp() {
 setLayout(null);
 setSize(240,300);
 setVisible(false);
 add(lstResources);
 lstResources.setBounds(12,48,214,96);
 btnExecute.setLabel("Execute");

150

 add(btnExecute);
 btnExecute.setBackground(java.awt.Color.lightGray);
 btnExecute.setBounds(12,144,210,33);
 txtResourceDescription.setEditable(false);
 add(txtResourceDescription);
 txtResourceDescription.setBounds(12,204,214,60);
 lbl.setText("Information");
 add(lbl);
 lbl.setBounds(12,180,152,15);
 setTitle("Emergency Rescue Appplication");
 setResizable(false);
 menu1.setLabel("Menu");
 menu1.add(serverSelect);
 serverSelect.setLabel("Server");
 menuBar.add(menu1);
 setMenuBar(menuBar);
 btnExecute.addActionListener(this);
 lstResources.addActionListener(this);
 serverSelect.addActionListener(this);
 update = new Update(this);
 new Thread(update).start();
 this.addWindowListener(this);
 }

 /*
 * Start the interface
 */
 static public void main(String args[]) {
 (new ERescueApp()).setVisible(true);
 }

 /*
 * Main event method
 */
 public void actionPerformed(java.awt.event.ActionEvent event) {
 Object object = event.getSource();
 if (object == btnExecute)
 btnExecute_ActionPerformed(event);
 else if (object == lstResources)
 lstResources_ActionPerformed(event);
 else if (object == serverSelect)
 serverSelect_ActionPerformed(event);
 }

 /*
 * Start the appropriate resource application passing resource

descriptor to the application. The applications will
interact directly with resources.

 */
 void btnExecute_ActionPerformed(java.awt.event.ActionEvent

event) {
 String item = lstResources.getSelectedItem();
 if (item != null)
 {
 if (item.trim().equalsIgnoreCase("Camera"))
 {
 //Start Camera App, pass resource Descriptor info
 }
 else if (item.trim().equalsIgnoreCase("GPS"))
 {
 //Start GPS App, pass resource Descriptor info

151

 }
 else if (item.trim().equalsIgnoreCase("Medical Kit"))
 {
 //Start Medical Kit App, pass resource Descriptor info
 }
 else if (item.trim().equalsIgnoreCase("Video Camera"))
 {
 //Start Video Camera App, pass resource Descriptor info
 }
 }
 }

 /*
 * Display the resources information
 */
 void lstResources_ActionPerformed(java.awt.event.ActionEvent

event) {
 try { //Use MARE.ResourceDescriptor to parse resource

description.
 txtResourceDescription.setText(new

ResourceDescriptor((String)list.elementAt(lstResources.ge
tSelectedIndex())).getValue("Description"));

 }
 catch (Exception e) {
 txtResourceDescription.setText("");
 System.err.println(e);
 }
 }

 /*
 * Update the server to connect with
 */
 void serverSelect_ActionPerformed(java.awt.event.ActionEvent

event) {
 try {
 ServerDialog serverDlg = new ServerDialog(this,"Server

Name",true);
 serverDlg.txtServer.setText(serverName);
 serverDlg.setVisible(true);
 serverName = serverDlg.txtServer.getText();
 this.update.Stop();
 new Thread(new Update(this)).start();
 }
 catch (Exception excep) {
 System.err.println("Error restarting with new Server " +

excep);
 }
 }

 /*
 * Update the displayed list
 */
 public void updateList(java.util.Vector newList) {
 lstResources.clear();
 list = newList;
 for (int i= 0; i < list.size(); i++)
 lstResources.add(new

MARE.ResourceDescriptor(list.elementAt(i).toString()).get
Value("TYPE"));

 }

152

 /*
 * Various windowing operations.
 */
 public void windowActivated(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowIconified(WindowEvent e) {}
 public void windowOpened(WindowEvent e) {}
 public void windowClosed(WindowEvent e) {}
 public void windowClosing(WindowEvent e) {
 update.Stop();
 System.exit(0);
 }

 /**
 * Class for listening for updates to available resources.
 */
 class Update implements Runnable{
 ERescueApp parent;
 /*
 * Constructor to initialise the interaction class

 public Update(ERescueApp parent) {
 this.parent = parent;
 }

 /**
 * Called to stop listening for updates.
 */
 public void Stop() {
 ……………
 }

 /*
 * Called to connect, receive and update parent with resources.
 */
 public void run() {
 ……………
 }
 }

 /*
 * Class to modify the server we are connecting to
 */
 public class ServerDialog extends Dialog implements

java.awt.event.ActionListener {
 java.awt.Label lblServer = new java.awt.Label();
 java.awt.TextField txtServer = new java.awt.TextField();
 java.awt.Button okButton = new java.awt.Button();

 public ServerDialog(Frame parent, String title, boolean modal)

{
 super(parent, title, modal);
 setLayout(null);
 setSize(200,100);
 setVisible(false);
 lblServer.setText("Server:");
 add(lblServer);
 lblServer.setBounds(10,28,75,15);
 add(txtServer);
 txtServer.setBounds(85,28,100,22);

153

 okButton.setLabel("OK");
 add(okButton);
 okButton.setBackground(java.awt.Color.lightGray);
 okButton.setBounds(80,50,40,20);
 okButton.addActionListener(this);
 }

 /*
 * Close the dialog.
 */
 public void actionPerformed(java.awt.event.ActionEvent event)

{
 Object object = event.getSource();
 if (object == okButton)
 setVisible(false);
 }
 }
}

