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Abstract. From work groups to file sharing systems, agents interact
repeatedly. Often, they exhibit reciprocating behavior. We need to un-
derstand this behavior better before thinking about how to improve in-
dividual results or collective reciprocal behavior. To this end, we need a
model for such interactions that is simple enough to enable formal anal-
ysis, but sufficiently accurate to explain our observations. Inspired by
psychology and game theory, we consider two intuitive reciprocating at-
titudes where an agent’s action is a weighted combination of the others’
last actions and either i) her innate kindness, or ii) her own last action.
We analyze a network of repeatedly interacting agents, each having one
of these attitudes, and prove that their actions converge to specific limits.
For the case of two agents, we describe the interaction process and give
the exact limit values. For a general connected network, we find these
limit values if all the agents employ the second attitude, and show that
agents’ actions then all become equal. We discuss how well this describes
observations found in behavioral economics and social sciences.

1 Introduction

Interaction is central in human behavior, e.g., at school, when sharing files over
networks, in business cooperation. Instead of being economically rational, people
tend to adopt other ways of behavior [22], not necessarily maximizing some
utility function. Furthermore, people tend to reciprocate, i.e., react on the past
actions of others [9, 10, 13]. Since reciprocation is ubiquitous, we aim to explain
this behavior. Therefore, we need a model for reciprocating agents that is simple
enough for an analytical analysis and precise enough to predict such interactions.

Extant models of reciprocation (sometimes repeated) include it in the util-
ity function of rational agents [7, 9, 19], for example as in the well-known iter-
ative prisoner’s dilemma [2, 24]. Reciprocation is also described in qualitative
research [18]. Several other studies deal with reciprocation without considering
the extent of actions, see e.g., Gintis [11, Chapter 11].

We are interested in the complementary approach of formal modeling and
analysis of repeated reciprocation, where the weight of a reaction is the main
aspect, and the reciprocation is intrinsic, rather than maximizing some utility
function.
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We represent actions by weight, where a higher value means a more desirable
contribution. Agents reciprocate both to the agent they are acting on and to their
whole neighborhood. We were mainly inspired by Trivers [[24]] (a psychologist),
who describes a balance between an inner quality (kindness) and costs/benefits
when determining an action. We model this by two reciprocation attitudes, being
a convex combination between i) one’s own kindness or ii) one’s own last action,
and the other’s and neighborhood’s last actions. Trivers also talks about a nat-
urally selected complicated balance between altruistic and cheating tendencies,
which is modeled as kindness, which represents the inherent inclination to con-
tribute. The balance between complying and not complying is mentioned in the
conclusion of [25], motivating the convex combination between own kindness or
action and others’ actions. The idea of humans behaving according to a convex
combination was inspired by the altruistic extension in several papers, like [5, 6,
14, 20], and Chapter iii.2 in [17], and by modeling antisocial behavior [3]. Defin-
ing action (or how much it changes) or state by a linear combination of the
other side’s actions and own actions and qualities was also used to analyze arms
race [8, 26] and spouses’ interaction [12] (piecewise linear in this case). Attitude
i) depending on the (fixed) kindness is called fixed, and ii) depending on one’s
own last action is called floating. Additional motivation stems from the bar-
gaining and negotiation realm, where Pruitt [18] mentions that in negotiation,
cooperation often takes place in the form of reciprocation and that personal
traits influence the way of cooperation, which corresponds in our model to the
personal kindness and reciprocation coefficients. We study actions in the limit
of time approaching infinity, to model the unbounded future.

Example 1. Consider n colleagues 1, 2, . . . , n, who can help or harm each other.
Let the possible actions be: giving bad work, showing much contempt, showing
little contempt, supporting emotionally a little, supporting emotionally a lot,
advising, and let their respective weight be a point in [−1,−0.5), [−0.5,−0.2),
[−0.2.0), (0, 0.4), [0.4, 0.7), [0.7, 1]. Assume that each person knows what the
other has done to him last time. The work climate also influences behavior.
However, we may just concentrate on a single pair of even-tempered colleagues
who reciprocate regardless others.

We first consider two agents, assuming their interaction is independent of
other agents, or that the total influence of the others on the pair is negligible.
Then, we treat convergence for interaction of many agents, and find the limit
when all the agents have the floating reciprocation attitude. These results explain
interactions and lay the foundation for further analysis of interaction.

2 Model of Interdependent Reciprocation

Let N = {1, 2, . . . , n} be n ≥ 2 interacting agents. We assume that possible
actions are described by an undirected interaction graph G = (N,E), such that
agent i can act on j and vice versa if and only if (i, j) ∈ E. Denote the de-
gree of agent i ∈ N in G by d(i). To be able to mention directed edges, we



shall treat this graph as a directed one, where for every (i, j) ∈ E, we have

(j, i) ∈ E. Time is modeled by a set of discrete moments t ∈ T
∆
= {0, 1, 2, . . .},

defining a time slot whenever at least one agent acts. Agent i acts at times

Ti
∆
= {ti,0 = 0, ti,1, ti,2, . . .} ⊆ T , and ∪i∈NTi = T . We assume that all agents

act at t = 0, since otherwise we cannot sometimes consider the last action of
another agent, which would force us to complicate the model and render it even
harder for theory. It would be interesting to model the case of non-simultaneous
starts. When all agents always act at the same times (T1 = T2 = . . . = Tn = T ),
we say they act synchronously. For the sake of asymptotic analysis, we assume
that each agent gets to act an infinite number of times; that is, Ti is infinite for
every i ∈ N . Any real application will, of course, realize only a finite part of it,
and infinity models the unboundedness of the process in time.

When (i, j) is in E, we denote the weight of an action by agent i ∈ N on
another agent j ∈ N at moment t by acti,j(t) : Ti → R. We extend acti,j to T
by assuming that at t ∈ T \ Ti, we have acti,j(t) = 0. Since only the weight of
an action is relevant, we usually write “action” while referring to its weight. For
example, when interacting by file sharing, sending a valid file, nothing, or a file
with a virus has a positive, zero, or a negative weight, respectively.

For t ∈ T , we define the last action time si(t) : T → Ti of agent i as the
largest t′ ∈ Ti that is at most t. Since 0 ∈ Ti, this is well defined. The last

action of agent i on (another) agent j is given by xi,j(t)
∆
= acti,j(si(t)). Thus, we

have defined xi,j(t) : T → R. We denote the total received contribution from all
the neighbors N(i) at the last action times not later than t by goti(t) : T → R;

formally, goti(t)
∆
=

∑

j∈N(i) actj,i(s
j(t)).

We now define two reciprocation attitudes. The kindness of agent i is denoted
by ki ∈ R; w.l.o.g., kn ≥ . . . ≥ k2 ≥ k1 throughout the paper. Kindness models
inherent inclination to help others; in particular, it determines the first action
of an agent, before others have acted. We model agent i’s inclination to mimic
a neighboring agent’s action and the actions of the whole neighborhood in G
by reciprocation coefficients ri ∈ [0, 1] and r′i ∈ [0, 1] respectively, such that
ri + r′i ≤ 1. ri is the fraction of acti,j(t) that is determined by the last action
of j upon i, and r′i is the fraction that is determined by 1

|N(i)| th of the total

contribution to i from all the neighbors at the last time. Intuitively, the fixed
attitude depends on the agent’s kindness at every action, while the floating one is
loose, moving freely in the reciprocation process, and kindness directly influences

such behavior only at t = 0. In both cases acti,j(0)
∆
= ki.

Definition 1 For fixed reciprocation attitude, agent i’s reaction on the other
agent j and on the neighborhood is determined by the agent’s kindness weighted
by 1− ri − r′i, by the other agent’s action weighted by ri and by the total action

of the neighbors weighted by r′i and divided over all the neighbors: acti,j(t)
∆
=

(1− ri − r′i) · ki + ri · act
j,i

(sj(t− 1)) + r′i ·
goti(t− 1)

|N(i)|
.



Definition 2 In the floating reciprocation attitude, agent i’s action is a
weighted average of her own last action, of that of the other agent j and of

the total action of the neighbors divided over all the neighbors: acti,j(t)
∆
=

(1− ri − r′i) · act
i,j

(si(t− 1)) + ri · act
j,i

(sj(t− 1)) + r′i ·
goti(t− 1)

|N(i)|

These neighborhood models are identical to a pairwise interaction when r′i =
0 or when there are no neighbors besides the other agent in the considered pair.

In Example 1, let (just here) n = 3 and the reciprocation coefficients be r1 =
r2 = 0.5, r′1 = r′2 = 0.3, r3 = 0.8, r′3 = 0.1. Assume the kindness to be k1 =
0, k2 = 0.5 and k3 = 1. Since this is a small group, all the colleagues may
interact, so the graph is a clique1. At t = 0, every agent’s action on every
other agent is equal to her kindness value, so agent 1 does nothing, agent 2
supports emotionally a lot, and 3 provides advice. If all agents act at all times,
and all get carried away by the process so that they forget the kindness in the
sense of employing floating reciprocation, then, at t = 1 they act as follows:
act1,2(1) = (1−0.5−0.3) ·0+0.5 ·0.5+0.3 · 0.5+1

2 = 0.475 (supports emotionally
a lot), act1,3(1) = (1 − 0.5 − 0.3) · 0 + 0.5 · 1 + 0.3 · 0.5+1

2 = 0.975 (providing
advice), act2,1(1) = (1 − 0.5 − 0.3) · 0.5 + 0.5 · 0 + 0.3 · 0+1

2 = 0.25 (supports
emotionally a little), and so on.

3 Dynamics of Pairwise Interaction

We now consider the interaction of only two agents, 1 and 2. When T1 contains
precisely all the even numbered slots and T2 zero and all the odd ones, we say
they are alternating. Since agent 1 can only act on agent 2 and vice versa, we
write acti(t) instead for acti,j(t), x(t) instead of x1,2(t) and y(t) instead x2,1(t).
We often write v(t) for act1(t) and w(t) for act2(t). W.l.o.g, we assume here that
r′i = 0 for all agents i.

We analyze reciprocation in the above model. We first look at the behav-
ior in the limit for fixed reciprocation, then for floating, and investigate the
process itself. To formally discuss the actions after the interaction has settled
down, we consider the limits (if exist) limp→∞ v(t1,p), or limt→∞ x(t), for agent
1, and limp→∞ w(t2,p) or limt→∞ y(t) for agent 2. Since the sequence {x(t)}
is {v(t1,p)} with finite repetitions, the limit limt→∞ x(t) exists if and only if
limp→∞ v(t1,p) does. If they exist, they are equal; the same holds for limt→∞ y(t)

and limp→∞ w(t2,p). Denote Lx
∆
= limt→∞ x(t) and Ly

∆
= limt→∞ y(t).

3.1 Fixed Reciprocation

Here we prove that both action sequences converge.

1 A clique is a fully connected graph.



Theorem 1. If the reciprocation coefficients are not both 1, which means r1r2 <

1, then we have, for i ∈ N : limp→∞ acti(ti,p) =
(1−ri)ki+ri(1−rj)kj

1−rirj
.

The limits of these actions are shown in Figures 1 and 2. In Example 1, if agents
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Fig. 1. The limit of the actions of agent
1 as a function of the reciprocity coeffi-
cients. Fixed - fixed reciprocation, k1 =
1, k2 = 2. Given r1, agent 2 receives most
when r2 = 0.
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Fig. 2. The limit of the actions of agent
2 as a function of the reciprocity coeffi-
cients. Fixed - fixed reciprocation, k1 =
1, k2 = 2. Given r2, agent 1 receives most
when r1 = 1.

1 and 2 employ fixed reciprocation, r1 = r2 = 0.5, r′1 = r′2 = 0.0 and k1 = 0, k2 =

0.5, then we obtain Lx = 0.5·(1−0.5)0.5
1−0.5·0.5 = 1/6 and Ly = (1−0.5)·0.5

1−0.5·0.5 = 1/3.
In order to prove this theorem, we first show that it is sufficient to analyze

the synchronous case; i.e., T1 = T2 = T .

Lemma 1. Consider a pair of interacting agents. Denote the action sequences
in case both agents acted at the same time, (i.e., T1 = T2 = T ), by {v′(t)}t∈T and
{w′(t)}t∈T , respectively. Then the action sequences2 {v(t1,p)}p∈N

, {w(t2,p)}p∈N

are subsequences of {v′(t)}t∈T and {w′(t)}t∈T , respectively.

The proof follows from Definition 1 by induction. (Straightforward proofs in this
paper have been replaced by their general ideas due to lack of space). Using this
lemma, it is sufficient to further assume the synchronous case.

Lemma 2. In the synchronous case, for every t > 0 : x(2t−1) ≥ x(2t+1), and
for every t ≥ 0 : x(2t) ≤ x(2t+ 2) ≤ x(2t+ 1). By analogy, ∀t > 0 : y(2t− 1) ≤
y(2t + 1), and ∀t ≥ 0 : y(2t) ≥ y(2t + 2) ≥ y(2t + 1). All the inequations are
strict if and only if 0 < r1, r2 < 1, k2 > k1.

3

Since we also have t ≥ 0 : x(2t) ≤ x(2t + 1), we obtain t > 0 : x(2t − 1) ≥
x(2t+1) ≥ x(2t), and for every t ≥ 0 : x(2t) ≤ x(2t+2) ≤ x(2t+1). By analogy,
∀t > 0 : y(2t− 1) ≤ y(2t+1) ≤ y(2t), and ∀t ≥ 0 : y(2t) ≥ y(2t+2) ≥ y(2t+1).
Intuitively, this means that the sequence {x(t)} is alternating while its amplitude
is getting smaller, and the same holds for the sequence {y(t)}, with another
alternation direction. The intuitive reasons are that first, agent 1 increases her
action, while 2 decreases it. Then, since 2 has decreased her action, so does 1,
while since 1 has increased hers, so does 2. We now formally prove the lemma.

2 When agent i acts at times in Ti.
3 We always assume that k2 ≥ k1.



Proof. We employ induction. For t = 0, we need to show that x(0) ≤ x(2) ≤ x(1)
and y(0) ≥ y(2) ≥ y(1). We know that x(0) = k1, x(1) = (1−r1) ·k1+r1 ·k2, and
y(0) = k2, y(1) = (1−r2)·k2+r2 ·k1. Since y(1) ≤ k2, we have x(2) = (1−r1)·k1+
r1 ·y(1) ≤ x(1). Since y(1) ≥ k1, we also have x(2) = (1−r1)·k1+r1 ·y(1) ≥ x(0).
The proof for ys is analogous.

For the induction step, for any t > 0, assume that the lemma holds for t− 1,
which means x(2t − 3) ≥ x(2t − 1) (for t > 1), x(2t − 2) ≤ x(2t) ≤ x(2t − 1),
and y(2t− 3) ≤ y(2t− 1) (for t > 1), y(2t− 2) ≥ y(2t) ≥ y(2t− 1).

We now prove the lemma for t. By Definition 1, x(2t − 1) = (1 − r1)k1 +
r1y(2t− 2) and x(2t+1) = (1− r1)k1+ r1y(2t). Since y(2t− 2) ≥ y(2t), we have
x(2t− 1) ≥ x(2t+ 1). By analogy, we can prove that y(2t− 1) ≤ y(2t+ 1).

Also by definition, x(2t) = (1 − r1)k1 + r1y(2t − 1) and x(2t + 2) = (1 −
r1)k1 + r1y(2t + 1). Since y(2t − 1) ≤ y(2t + 1), we have x(2t) ≤ x(2t + 2). By
definition, x(2t+1) = (1− r1)k1 + r1y(2t). Since y(2t) ≥ y(2t− 1), we conclude
that x(2t+1) ≥ x(2t). By analogy, we prove that y(2t+1) ≤ y(2t). From this, we
conclude that x(2t+2) ≤ x(2t+1), and we have shown that x(2t) ≤ x(2t+2) ≤
x(2t+ 1). By analogy, we prove that y(2t) ≥ y(2t+ 2) ≥ y(2t+ 1).

The equivalence of strictness in all the inequations to 0 < r1, r2 < 1, k2 > k1
is proven by repeating the proof with strict inequalities in one direction, and by
noticing that each case of one of the conditions 0 < r1, r2 < 1, k2 > k1 failing to
hold implies equality in at least one of the statements on the lemma.

With these results we now prove Theorem 1.

Proof. Using Lemma 1, we assume the synchronous case. We first prove conver-
gence, and then find its limit. For each agent, Lemma 2 implies that the even
actions form a monotone sequence, and so do the odd ones. Both sequences are
bounded, which can be easily proven by induction, and therefore each one con-
verges. The whole sequence converges if and only if both limits are the same.
We now show that they are indeed the same for the sequence {x(t)}; the proof
for {y(t)} is analogous. x(t+ 1)− x(t)
= (1− r1)k1 + r1y(t)− (1− r1)k1 − r1y(t− 1)
= r1(y(t)− y(t− 1)) = r1r2(x(t− 1)− x(t− 2)) = . . .

= (r1r2)
⌊t/2⌋

{

x(1)− x(0) t = 2s, s ∈ N

x(2)− x(1) t = 2s+ 1, s ∈ N.
As r1r2 < 1, this difference goes

to 0 as t goes to ∞. Thus, x(t) converges (and so does y(t)). To find the lim-
its Lx = limt→∞ x(t) and Ly = limt→∞ y(t), notice that in the limit we have
(1 − r1)k1 + r1Ly = Lx and (1 − r2)k2 + r2Lx = Ly with the unique solution:

Lx = (1−r1)k1+r1(1−r2)k2

1−r1r2
and Ly = (1−r2)k2+r2(1−r1)k1

1−r1r2
.

We see that Lx ≤ Ly, which is intuitive, since the agents are always consider-
ing their kindness, so the kinder one acts with a bigger weight also in the limit.
In the simulation results in Figure 3, in one example, y(t) is always larger than
x(t), and in the other, they alternate several times before y(t) gets larger.
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Fig. 3. Simulation of actions for the synchronous
case, r1 + r2 < 1 (left) and r1 + r2 > 1 (right).
Fixed - fixed reciprocation, k1 = 1, k2 = 2, r1 =
0.3. In the left graph, r2 = 0.5, while in the right
one, r2 = 0.9. Each agent’s actions go up and
down while converging to her own limit.
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Fig. 4. The common limit of
the actions as a function of the
reciprocity coefficients. Floating -
floating reciprocation, k1 = 1, k2 =
2. Given r2, agent 1 receives most
when r1 = 1, and given r1, agent 2
receives most when r2 = 0.

3.2 Floating Reciprocation

If both agents have a floating reciprocation attitude, their action sequences con-
verge to a common limit.

Theorem 2. If the reciprocation coefficients are neither both 0 and nor both 1,
which means 0 < r1 + r2 < 2, then, as t → ∞, x(t) and y(t) converge to the
same limit. In the synchronous case (T1 = T2 = T ), they both approach

1

2

(

k1 + k2 + (k2 − k1)
r1 − r2
r1 + r2

)

=
r2

r1 + r2
k1 +

r1
r1 + r2

k2.

The common limit of the actions is shown in Figure 4. In Example 1, if agents 1
and 2 employ fixed reciprocation, r1 = r2 = 0.5, r′1 = r′2 = 0.0 and k1 = 0, k2 =
0.5, then we obtain Lx = Ly = (1/2) · 0 + (1/2) · 0.5 = 0.25.

Throughout the paper, whenever we need concrete T1, T2, we consider the
synchronous case. The alternative case is omitted due to lack of space.

Proof. We first prove that the convergence takes place.
If both agents act at time t > 0, then y(t)− x(t)

= x(t− 1)(r2 − 1 + r1) + y(t− 1)(1− r2 − r1)

= (1− r1 − r2)(y(t− 1)− x(t− 1)).

Since 0 < r1 + r2 < 2, we have |(1− r1 − r2)| < 1.
If only agent 1 acts at time t > 0, then y(t)− x(t)

= y(t− 1)(1− r1)− x(t− 1)(1− r1) = (1− r1)(y(t− 1)− x(t− 1)).

If r1 > 0, then |(1− r1)| < 1. Similarly, if only agent 2 acts, then y(t)−x(t) = (1−
r2)(y(t−1)−x(t−1)). Since r1+r2 > 0, either r1 or r2 is greater than 0, and since



each agent acts an infinite number of times, we obtain limt→∞ |y(t)− x(t)| = 0.
Since ∀t > 0 : x(t), y(t) ∈ [min {x(t− 1), y(t− 1)} ,max {x(t− 1), y(t− 1)}], we
have a nested sequence of segments, which lengths approach zero, thus x(t) and
y(t) both converge, and to the same limit.

Assume T1 = T2 = T now, to find the common limit. For all t > 0,

x(t) + y(t) = x(t− 1)(1− r1 + r2) + y(t− 1)(r1 + 1− r2)

= x(t− 1) + y(t− 1) + (r1 − r2)(y(t− 1)− x(t− 1))

⇒ lim
t→∞

x(y) + y(t) = k1 + k2 +

∞∑

t=0

(r1 − r2)(y(t)− x(t))

geom. series
→

︸ ︷︷ ︸

t→∞

k1 + k2 + (r1 − r2)
k2 − k1
r1 + r2

= k1 + k2 + (k2 − k1)
r1 − r2
r1 + r2

.

Since we have shown that both limits exist and are equal, each is equal to
half of k1 + k2 + (k2 − k1)

r1−r2
r1+r2

.

The relation between the sequences of xs and ys is given by the following.

Proposition 1. If r1+r2 ≤ 1, then, for every t ≥ 0 : y(t) ≥ x(t). If r1+r2 ≥ 1,
then, y(0) ≥ x(0). For every t > 0, t ∈ T1 ∩ T2, we have y(t − 1) ≥ x(t − 1) ⇒
y(t) ≤ x(t), and y(t − 1) ≤ x(t − 1) ⇒ y(t) ≥ x(t). For any other t, we have
y(t − 1) ≥ x(t − 1) ⇒ y(t) ≥ x(t), and y(t − 1) ≤ x(t − 1) ⇒ y(t) ≤ x(t). In
words, xs and ys alter their relative positions if and only if both act.

Proof. Consider the case r1 + r2 ≤ 1 first. We employ induction. The basis is
t = 0, where y(0) = k2 ≥ k1 = x(0).

For the induction step, assume the proposition for all the times smaller than
t > 0 and prove it for t. If only 1 acts at t, then y(t) = y(t − 1) and x(t) =
(1− r1)x(t−1)+ r1y(t−1). Therefore, y(t) ≥ x(t) ⇐⇒ y(t−1) ≥ (1− r1)x(t−
1) + r1y(t− 1), which is equivalent to (1− r1)y(t− 1) ≥ (1− r1)x(t− 1), which
holds by the induction hypothesis. The case where only 2 acts at t is similar.

If both agents act at t, then x(t) = (1− r1)x(t− 1) + r1y(t− 1) and y(t) =
(1−r2)y(t−1)+r2x(t−1). Therefore, y(t) ≥ x(t) ⇐⇒ (1−r2)y(t−1)+r2x(t−
1) ≥ (1−r1)x(t−1)+r1y(t−1) ⇐⇒ (1−r1−r2)y(t−1) ≥ (1−r1−r2)x(t−1),
which is true by the induction hypothesis and using the assumption r1+ r2 ≤ 1.

Consider the case r1 + r2 ≥ 1 now. We employ induction again. The basis is
t = 0, where y(0) = k2 ≥ k1 = x(0).

For the induction step, assume the proposition for all values smaller than
t > 0 and prove it for t. The cases where only agent 1 acts at t and where only 2
acts at t are shown analogously to how they are shown for the case r1 + r2 ≤ 1.
If both agents act at t, then we have shown that y(t) ≥ x(t)
⇐⇒ (1− r1 − r2)y(t− 1) ≥ (1− r1 − r2)x(t− 1), which means that y(t− 1) ≥
x(t−1) ⇒ y(t) ≤ x(t) and y(t−1) ≤ x(t−1) ⇒ y(t) ≥ x(t), assuming r1+r2 ≥ 1.

The proposition implies that if r1 + r2 ≤ 1, then {x(t)} do not decrease
and {y(t)} do not increase, since the next x(t) (or y(t)) is either the same of a
combination of the last one with a higher value (lower value, for y(t)).



For r1 + r2 > 1, both {x(t)} and {y(t)} are not monotonic, unless T1 ∩ T2 =
{0}, in which case they are monotonic, for the reason above (in this case we
always have y(t) ≥ x(t)). For T1 ∩ T2 6= {0}, take any positive t in T1 ∩ T2.
Then the larger value at t − 1 becomes the smaller one at t, thereby getting
smaller, and the smaller value gets larger analogously. In the future, the smaller
will only grow and the larger will decrease, thereby behaving non-monotonically.
This discussion assumes r1 < 1, r2 < 1, to avoid getting x(t) = y(t) when a
single player acts. Some examples are simulated in Figure 5.

0 1 2 3 4 5 6 7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

time

w
ei

gh
t o

f a
ct

io
ns

 

 

agent 1
agent 2

0 1 2 3 4 5 6 7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

time

w
ei

gh
t o

f a
ct

io
ns

 

 

agent 1
agent 2

Fig. 5. Simulation results for the synchronous case, r1 + r2 < 1 (left) and r1 + r2 > 1
(right). Floating - floating reciprocation, k1 = 1, k2 = 2, r1 = 0.3. In the left graph,
r2 = 0.5, while in the right one, r2 = 0.9. In the left graph, agent 1’s actions are smaller
than those of 2; agent 1’s actions increase, while those of agent 2 decrease. In the right
graph, the actions of the agents alter their relative positions at each time step; each
agent’s actions go up and down.

3.3 Fixed and Floating Reciprocation

Assume that agent 1 employs the fixed reciprocation attitude, while 2 acts by
the floating reciprocation. We can show Theorem 3, using the following lemma.

Lemma 3. If r2 > 0 and r1 + r2 ≤ 1, then, for every t ≥ t1,1 : x(t+ 1) ≤ x(t),
and for every t ≥ 0 : y(t+ 1) ≤ y(t).

The proof is by induction on t, using the definitions of reciprocation. With this
lemma, we can prove the following.

Theorem 3. If r2 > 0 and r1 + r2 ≤ 1, then, limt→∞ x(y) = limt→∞ y(t) = k1.

Proof. We first prove that the convergence takes place, and then find its limit.
For each agent, Lemma 3 implies that her actions are monotonically non-
increasing. Since the actions are bounded below by k1, which can be easily
proven by induction, they both converge.



To find the limits, notice that in the limit we have

(1− r1)k1 + r1Ly = Lx (1)

(1− r2)Ly + r2Lx = Ly. (2)

From (2), we conclude that Lx = Ly, since r2 > 0. Substituting this to (1) gives
us Lx = Ly = k1, since r2 > 0 and r1 + r2 ≤ 1 imply r1 < 1.

The relation between the sequences of xs and ys is given by the following
proposition (also covering the case r1 + r2 ≥ 1).

Proposition 2. If r1 + r2 ≤ 1, then for every t ≥ 0 : y(t) ≥ x(t). If r1 +
r2 ≥ 1, then y(0) ≥ x(0). For every t ≥ 0 such that t ∈ T1 ∩ T2, we have
y(t − 1) ≤ x(t − 1) ⇒ y(t) ≥ x(t). For any other t ∈ T1, we have y(t) ≥ x(t),
and for any other t ∈ T2, we have y(t − 1) ≥ x(t − 1) ⇒ y(t) ≥ x(t), and
y(t− 1) ≤ x(t− 1) ⇒ y(t) ≤ x(t).

The proof employs induction on t.
We note that although we do not know whether Theorem 3 holds for r1+r2 >

1, we do know that neither monotonicity (Lemma 3) nor y(t) being always at
least as large as x(t) or the other way around holds in this case. As a counterex-
ample for both of them, consider the case of r2 = 1, 0 < r1 < 1, k2 > k1. One can
readily prove by induction that for all t we have x(2t + 1) > x(2t) = x(2t + 2)
and y(2t) > y(2t− 1) = y(2t+ 1), and thus both sequences are not monotonic.
In addition, one can inductively prove that x(2t+ 1) > y(2t+ 1), x(2t) < y(2t),
and therefore no sequence is always larger than the other one.

Both cases are simulated in Figure 6. The actions seem to converge also in
the unproven case r1 + r2 > 1.
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Fig. 6. Simulation results for the synchronous case, r1 + r2 < 1 (left) and r1 + r2 > 1
(right). Fixed - floating reciprocation, k1 = 1, k2 = 2, r1 = 0.3. In the left graph,
r2 = 0.5, while in the right one, r2 = 0.9. In the left graph, agent 1’s actions are
smaller than those of 2; agent 1’s actions decrease after t = 1, while those of agent 2
decrease all the time. The common limits’ value fits the theorem’s prediction. In the
right graph, The actions of the agents alter their relative positions at each time step;
each agent’s actions go up and down. The apparent common limits’ value equals k1.



In the case of the mirroring assumption that agent 1 acts according to the
floating reciprocation attitude, while 2 acts according to the fixed reciprocation,
we can obtain the following similar results by analogy.

Theorem 4. If r1 > 0 and r1 + r2 ≤ 1, then, limt→∞ x(t) = limt→∞ y(t) = k2.

Regarding the relation between xs and ys, we prove the following, by analogy
to how Proposition 2 is proven:

Proposition 3. If r1 + r2 ≤ 1, then for every t ≥ 0 : y(t) ≥ x(t). If r1 +
r2 ≥ 1, then, y(0) ≥ x(0). For every t ≥ 0, such that t ∈ T1 ∩ T2, we have
y(t − 1) ≤ x(t − 1) ⇒ y(t) ≥ x(t). For any other t ∈ T2, we have y(t) ≥ x(t),
and for any other t ∈ T1, we have y(t − 1) ≥ x(t − 1) ⇒ y(t) ≥ x(t) and
y(t− 1) ≤ x(t− 1) ⇒ y(t) ≤ x(t).

Using Perron-Frobenius Theorem, we can prove a convergence theorem with

Corollary 1. Consider synchronous pairwise interaction, where agent i employs
fixed reciprocation and the other agent j employs the floating one. Assume that
ri < 1 and rj > 0. Then, both actions sequences converge geometrically to ki.

For all the considered cases, we conclude the following

Proposition 4. Unless we have a non-synchronous case with r1 = 0 or r2 = 0,
or r1 + r2 > 1, if both Lx and Ly exist, then Lx ≤ Ly.

4 Dynamics of Interdependent Interaction

We now analyze the general interdependent interaction, when agents interact
with many agents. To formally discuss the actions after the interaction has set-
tled down, we consider the limits (if exist) limp→∞ acti,j(t1,p), or limt→∞ xi,j(t),
for agents i and j. Since the sequence {xi,j(t)} is {acti,j(t1,p)} with finite repe-
titions, the limit limp→∞ acti,j(t1,p) exists if and only if limt→∞ xi,j(t) does. If

they exist, they are equal. Denote Li,j
∆
= limt→∞ xi,j(t).

We show that in the synchronous case, for every two agents i, j such that
(i, j) ∈ E, actions xi,j(t) converge to a strictly positive combination of all the
kindness values. The rate of convergence is geometric.

If all agents employ fixed reciprocation, we can prove that the action in
any other case are subsequences of the actions in the synchronous case, so the
synchronous case represents all the cases in the limit (a straightforward gener-
alization of Lemma 1.) We now prove the main convergence result.

Theorem 5. Given a connected interaction graph, consider the synchronous
case where for all agents i, r′i > 0. If there exists a circle of an odd length in the
graph (or at least one agent i employs floating reciprocation and has ri+r′i < 1),
then, for all pairs of agents i 6= j such that (i, j) ∈ E, the limit Li,j exists and it
is a positive combination of all the kindness values k1, . . . , kn. The convergence
is geometrically fast. Moreover, if all agents employ floating reciprocation, then



all these limits are equal to each other and it is a convex combination of the
kindness values, namely

L =

∑

i∈N

(
d(i)
ri+r′

i

· ki

)

∑

i∈N

(
d(i)
ri+r′

i

) . (3)

Proof. We first prove the case where all agents use floating reciprocation, when
the ambivalent case of ri + r′i = 1 is taken to be floating. We express how each
action depends on the actions in the previous time in a matrix, and prove the the-
orem by applying the famous Perron-Frobenius theorem [23, Theorem 1.1, 1.2]

to this matrix. We now define the dynamics matrix A ∈ R
|E|×|E|
+ :

A((i, j), (k, l))
∆
=







(1− ri − r′i) k = i, l = j;

ri + r′i
1

|N+(i)|
k = j, l = i;

r′i
1

|N+(i)|
k 6= j, l = i;

0 otherwise.

(4)

According to the definition of floating reciprocation, if for each time t ∈ T the

column vector p(t) ∈ R
|E|
+ describes the actions at time t, in the sense that its

(i, j)th coordinate contains acti,j(t) (for (i, j) ∈ E), then p(t + 1) = Ap(t). We
then call p(t) an action vector. Initially, p(i,j)(0) = ki.

Further, we shall need to use the Perron-Frobenius theorem for primitive
matrices. We now prepare to use it, and first we show that A is primitive. First,
A is irreducible since we can move from any (i, j) ∈ E to any (k, l) ∈ E as
follows. We can move from an action to its reverse, since if k = j, l = i, then
A((i, j), (k, l)) = ri + r′i

1

|N+(i)|
> 0. We can also move from an action to another

action by the same agent, since we can move to any action on the same agent and
then to its reverse. To move to an action on the same agent, notice that if l = i,
then A((i, j), (k, l)) ≥ r′i

1

|N+(i)|
> 0. Now, we can move from any action (i, j) to

any other action (k, l) by moving to the reverse action (j, i) (if k = j, l = i, we are
done). Then, follow a path from j to k in graph G by moving to the appropriate
action by an agent and then to the reverse, as many times as needed till we are
at the action (k, j) and finally to the action (k, l). Thus, A is irreducible.

By definition, A is non-negative. Next, we notice that A is aperiodic, since
either at least one agent i has ri + rj < 1 and thus the diagonal contains non-
zero elements, or there exists a circle of an odd length in the interaction graph
G. In the latter case, let the circle be i1, i2, . . . , ip for an odd p. Consider the
following cycles between the index set of the matrix: (i, j), (j, i), (i, j) for any
(i, j) ∈ E and (i2, i1), (i3, i2), . . . , (ip, ip−1), (i1, ip), (i2, i1). Their lengths are 2
and p, respectively, which greatest common divisor is 1, implying aperiodicity.
Being irreducible and aperiodic, A is primitive by [23, Theorem 1.4]. Since the
sum of every row is 1, the spectral radius is 1.

According to the Perron-Frobenius theorem for primitive matrices [23, The-
orem 1.1], the absolute values of all eigenvalues except one eigenvalue of 1 are



strictly less than 1. The eigenvalue 1 has unique right and left eigenvectors,
up to a constant factor. Both these eigenvectors are strictly positive. There-
fore, [23, Theorem 1.2] implies that limt→∞ At = 1v′, where v′ is the left eigen-
vector of the value 1, normalized such that v′1 = 1, and the approach rate is
geometric. Therefore, we obtain limt→∞ p(t) = limt→∞ Atp(0) = 1v′p(0) =
1
∑

(i,j)∈E v′((i, j))ki. Thus actions converge to 1 times
∑

(i,j)∈E v′((i, j))ki.

To find this limit, consider the vector v′ defined by v′((i, j)) = 1
ri+r′

i

. Sub-

stitution shows it is a left eigenvector of A. To normalize it such that v′1 = 1,

divide this vector by the sum of its coordinates, which is
∑

i∈N
d(i)
ri+r′

i

, obtaining

v′((i, j)) = 1
∑

i∈N

d(i)

ri+r′
i

· 1
ri+r′

i

. Therefore, the common limit is

∑

i∈N

(

d(i)

ri+r′
i

·ki

)

∑

i∈N

(

d(i)

ri+r′
i

) .

We now prove the case where at least one agent employs fixed reciprocation.
We define the dynamics matrix A analogously to the previous case, besides
that the first line from (4) is missing, since own behavior does not matter. In
this case, we have p(t + 1) = Ap(t) + k′, where k′ is the relevant kindness

vector, formally defined as k′((i, j))
∆
= (1 − ri − r′i)ki. By induction, we obtain

p(t) = Atp(0) +
(
∑t−1

l=0 A
l
)

k′.

Analogically to the previous case, A is irreducible and non-negative. As shown
above, A is aperiodic. Since A is also irreducible, we conclude that is is primitive.
Since at least one agent employs fixed reciprocation, at least one line of A sums
to less than 1, and therefore the spectral radius of A is strictly less than 1.

Now, the Perron–Frobenius implies that all the eigenvalues are
strictly smaller than 1. Since we have limt→∞ p(t) = limt→∞ Atp(0) +
(

limt→∞

∑t−1
l=0 A

l
)

k′, [23, Theorem 1.2] implies that this limits exist (the first

part converges to zero, while the second one is a series of geometrically decreasing

elements.) Since A is primitive,
(

limt→∞

∑t−1
l=0 A

l
)

> 0.

As an immediate conclusion of this theorem, we can finally generalize Theo-
rem 3 to the case r1 + r2 > 1 as follows.

Corollary 2. Consider synchronous pairwise interaction, where one agent i em-
ploys fixed reciprocation and the other agent j employs the floating one. Assume
that ri < 1 and min {ri, rj} > 0. Then, both limits exist and are equal to ki. The
convergence is geometrically fast.

Proof. The situation can be equivalently described by considering r′l = rl, rl = 0,
for all l ∈ N . Then, Theorem 5 implies geometrically fast convergence. We find
the limits as in the proof of Theorem 3.

Let us consider several examples of Formula(s) (3).

Example 2. If the interaction graph is regular, that is all the degrees are equal

to each other, we have L =

∑

i∈N

(

ki
ri+r′

i

)

∑

i∈N

(

1
ri+r′

i

) . This is the case for cliques, modeling

small human collectives, and for circles, modeling circular computer networks.



Example 3. If the interaction graph is a star, modeling such networks of a su-
pervisor of several people or entities, assume w.l.o.g. that agent 1 is the center,

and we have L =

n−1

r1+r′1
·k1+

∑

i∈N\{1}

(

ki
ri+r′

i

)

n−1

r1+r′1
+
∑

i∈N\{1}

(

1
ri+r′

i

) .

We can also prove a more general convergence result, allowing agents to act
in a more general way than modeled above. It is omitted due to lack of space.

5 Conclusions and Future Work

To understand reciprocation, we modeled two reciprocation attitudes where a
reaction is a weighted combination of the action of the other player, the total
action of the whole neighborhood and either one’s own kindness or one’s own last
action. This combination’s weights are defined by the reciprocation coefficients.
For a pairwise interaction, we showed that actions converge, found the exact
limits, and showed that if you consider your kindness while reciprocating (fixed),
then, asymptotically, your actions values get closer to your kindness, than if you
consider it only at the outset. For a network, we proved convergence and found
the common limit if all agents consider their last own action (floating). We now
substantiate these insights from our results, beginning from the pairwise case.

For two agents with fixed reciprocation, (i.e., when a reaction partly depends
on one’s kindness), kinder agent’s action are larger in the limit. While interacting,
each agent goes back and forth in her actions, monotonically narrowing to her
limit. Probably, this alternating may make the process confusing for an outsider.

For two agents with floating reciprocation, (i.e., when a reaction partly de-
pends on one’s own last action), both agents’ actions converge to a common
limit, which vicinity to an agent’s kindness is reversely proportional to her re-
ciprocation coefficient. The commonality of the limit can intuitively result from
an agent’s next action being a combination of her last action with the other
agent’s last action, which makes the new action closer to the other’s action, this
new action to be taken into account in determining the next action.

For two agents, when one agent acts according to the fixed reciprocation,
and the other one according to the floating one, both actions converge to the
kindness of the agent who employs fixed reciprocation. This can be intuitively
explained as a result of one agent always considering her kindness in determining
the next action and thereby having a firm stance, while the other agent aligning
himself. In Example 1 with two colleagues, the colleague who ignores her inher-
ent inclination and remembers only the last moves will behave as the colleague
who constantly considers her kindness. Another conclusion is that if the numer-
ical parameters are set, then the kinder agent employing fixed attitude and the
other one employing floating attitude is the best for the total reciprocation.

When an agent may interact with any number of agents, we have proven
convergence and shown that if all agents employ floating reciprocation, the limit
is common. This limit is a weighted average of the kindness values, the weight
of an agent’s kindness being her degree in the interaction graph divided by the



sum of her reciprocation coefficients. Intuitively, the agents align to each other,
and the more connected and the less reciprocating an agent is, the more it
influences the common limit. In Example 1 with the parameters from the end of
Section 2, (all the agents employ floating reciprocation), (3) implies that all the

actions approach
2

0.5+0.3 ·0+
2

0.5+0.3 ·0.5+
2

0.8+0.1 ·1
2

0.5+0.3+
2

0.5+0.3+
2

0.8+0.1

= 25/52 in the limit, that is they

all support each other emotionally a lot.
In real life, the fact that persistence makes the interaction go one’s way is

reflected, for example, in recommendations to reject undesired requests by firmly
repeating the reasons for rejection [4, Chapter 1] and [25, Chapter 8]. Another
expression of our theory is that growing up, people acquire their own style of
reciprocating with their acquaintances [21], which are the limiting actions. In
organizations, many styles are often very similar from person to person, though
not the same, and they vary across various organizations [15].

As we saw in examples, real life situations sometimes require more complex
models, motivating further research. For instance, modeling interactions with a
known finite time horizon would be interesting. Since people may change while
reciprocating, modeling changes in the reciprocity coefficients and/or reciproca-
tion model would be interesting. In addition, groups of colleagues and nations get
and lose people, motivating modeling a dynamically changing set of reciprocating
agents. We have looked into the interaction process where agents follow prede-
fined strategies. To predict real situations and to be able to give constructive
advice about what parameters and attitudes of the agents are useful, we should
define utility functions to the agents and consider the game where agents choose
their parameters before the interaction commences. The agents’ strategizing be-
havior may come at cost with respect to the social welfare, so considering price
of anarchy [16] and stability [1] of such a game is in order. Considering how to
influence agents to change their behavior is also relevant.

Analytically proving properties of the interaction process lays the foundation
to further modeling and analysis of reciprocation, in order to predict and improve
the individual utilities and the social welfare.
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20. M. Rahn and G. Schäfer. Bounding the inefficiency of altruism through social

contribution games. CoRR, abs/1308.2497, abs/1308.2497, 2013.
21. B. W. Roberts, K. E. Walton, and W. Viechtbauer. Patterns of mean-level change

in personality traits across the life course: a meta-analysis of longitudinal studies.
Psychological bulletin, 132(1):1–25, 2006.

22. A. Rubinstein. Modeling Bounded Rationality, volume 1. The MIT Press, 1 edition,
1997.

23. E. Seneta. Non-negative Matrices and Markov Chains. Springer Series in Statistics.
Springer, 2006.

24. R. L. Trivers. The evolution of reciprocal altruism. The Quarterly Review of

Biology, 46:35–57, 3 1971.
25. W. Ury. The Power of a Positive No: How to Say No and Still Get to Yes. Random

House Publishing Group, 2007.
26. M. D. Ward. Modeling the USA-USSR arms race. Transactions of The Society for

Modeling and Simulation International, 43:196–203, 1984.


