
Communication Meaning: Foundations and Directions for
Systems Research

Blue Sky Ideas Track

Amit K. Chopra

Lancaster University

Lancaster, UK

amit.chopra@lancaster.ac.uk

Samuel H. Christie V

North Carolina State University

Raleigh, NC, USA

schrist@ncsu.edu

ABSTRACT
The multiagent software research program envisaged putting mul-

tiagent abstractions and methodologies at the heart of designing

intelligent distributed applications. In particular, with the aim of en-

abling flexible interactions between agents, it emphasized modeling

communication meaning. After three decades of work, the program
can claim little broad impact. Has the program been a failure?

We think the program has seen remarkable successes, the biggest

being the recent work on information protocols, which finally

makes it possible to realize the promise of modeling meaning. In

this paper, in support of our claim, we set out how information

protocols advance the cause of meaning. We then argue that these

advances strike against conventional systems wisdom, including

in fields such as networks, distributed systems, and programming

languages. Finally, we lay out an ambitious research agenda that

puts multiagent abstractions at the heart of systems research. Now

is a good time to double down on MAS software research.

CCS CONCEPTS
• Computing methodologies → Multi-agent systems; Dis-
tributed programming languages; • Networks→ Layering.

KEYWORDS
Asynchronous messaging, Protocols, Norms, Fault tolerance

ACM Reference Format:
Amit K. Chopra and Samuel H. Christie V. 2023. Communication Meaning:

Foundations and Directions for Systems Research: Blue Sky Ideas Track.

In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 – June
2, 2023, IFAAMAS, 6 pages.

1 INTRODUCTION
Historically, a central research program in multiagent systems

(MAS) has had to do with general-purpose software that enables

building intelligent distributed systems [24, 49]. It was motivated by

the idea thatmultiagent softwarewould capture autonomy—flexible,

decentralized decision making—in a way that conventional soft-

ware approaches could not [28, 31]. With decentralization in mind,

the MAS software program focused on themes that emphasized

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

modeling interactions between agents. These themes informed mul-

tiagent software engineering methodologies and inspired work on

MAS platforms and programming models.

Today, the fate of multiagent software research hangs in the

balance. Decades of work has had little recognizable impact. In

particular, there appears to be a chasm between MAS abstractions

and software practice, even though the kinds of applications and

paradigms that were envisaged to benefit from MAS, e.g., the IoT,

microservices, electronic business engagements, and so on, have

proliferated.

Has the multiagent software program been a failure?
No—we think the program can boast notable successes. Like

many research strands in AI, the MAS software program began

with ambitious, open-ended questions. Progress has naturally been

uneven and for sure there have been notable bumps (among them

the idea of agent communication languages). However, in the last

ten years or so, we think the ambition has paid off spectacularly

via fundamental advances on the all-important question of commu-
nication meaning [40], which is the key to flexible, decentralized

decision making. At the heart of these advances lies Singh’s break-

through of modeling MAS via declarative information protocols
[41–43]. Before Singh came up with information protocols, there

existed no general-purpose, operational abstraction for modeling

decentralized systems [11]. We can now claim multiagent abstrac-

tions to be foundational to engineering distributed applications.

In this paper, we elaborate on our claims above, focusing on

how information protocols make communication meaning practi-

cal and how that impacts research in important and well-established

systems fields such as programming languages, networks, and dis-

tributed systems. Looking toward the future, we propose the idea of

a multiagent operating system (MOS). A MOS facilitates an agent’s

participation in decentralized applications on the basis of commu-

nication meaning. Like any OS, a MOS abstracts over lower-level

resources and services with the twin aims of making programming

convenient and supporting monitoring and execution. We sketch

out an ambitious research agenda—in terms of the programming

abstractions and services a MOS could provide—that would put

multiagent systems at the heart of systems research.

2 ADVANCES IN COMMUNICATION
MEANING

Autonomy implies the ability of agents to interact flexibly with

other agents. Recognizing this, early MAS software research fo-

cused on abstractions that enable flexible interactions. A prevailing

https://orcid.org/0000-0003-4629-7594
https://orcid.org/0000-0003-1341-0087


idea from AI was that if agents understood the meaning of their in-

teractions, then they could interact flexibly. Early work on meaning

in agent communication languages was influenced by a conception

of speech acts that emphasized the mental states of the interacting

agents [21, 22]. However, as Singh pointed out, an agent’s mental

state being unverifiable, such approaches were not conducive to

building open MAS [40]. Singh instead proposed specifying pro-

tocols based on social commitments between agents. This led to a

body work on protocols [1, 23, 35, 51, 52], whose significant con-

sequence was to emphasize declarative representations in terms

of social abstractions such as commitments, but more generally, in

terms of norms [5]. In general, this body of work employed logic

program-style representations such as the event calculus [33] and

causal logic [25].

However, a thorny operational challenge remained: How can
agents in a MAS enact protocols in a decentralized manner—via asyn-
chronous messaging, without relying on centralized state or coordina-
tion? Traditional representations of protocols, e.g., state machines,

specified constraints on message ordering via control flow abstrac-

tions. Underlying such representations were some operational intu-

itions about when communication events may occur. For example,

it seems reasonable to model that a Receipt may only occur after

Payment and that Accept and Reject (of an Offer) are mutually ex-

clusive. Commitments didn’t capture such operational intuitions.

However, the problem with traditional representations is that only

highly regimented protocols could be faithfully implemented in

decentralized settings [3, 6, 7]. For example, one might imagine that

is there nothing fundamentally wrong about Payment by B (buyer)

and Delivery by S (seller) happening concurrently; however, control

flow-based approaches reject a protocol that entertains such con-

currency as ill-formed [11, 19]. In a nutshell, while there was a need

for an operational layer to underpin commitments, the traditional

approaches were unsuitable.

To address this challenge, Singh invented declarative information

protocols. Information protocols eschew the specification of mes-

sage ordering in favor of specifying information causality. Specif-
ically, an agent can send any message as long as the information

dependencies specified in the message’s schema are satisfied by the

agent’s information state (its history of interactions).

Listing 1: An information protocol.
F l e x i b l e Purchase

role B , S

parameter out ID key , out item , out de l , out pa id

B ↦→ S : Reques t [ out ID , out i tem ]

S ↦→ B : De l i v e r y [ in ID , in item , out d e l ]

B ↦→ S : Payment [ in ID , in item , out pa id ]

For example, by Listing 1, S can send an instance of Delivery if it

already knows the bindings for ID and item from prior interactions

(both adorned ⌜in⌝); it can generate any binding for del (adorned
⌜out⌝). This protocol supports concurrent Payment and Delivery:
once B has sent a Request, it can send the corresponding Payment
and once S has received Request, it can send the corresponding

Delivery. Specifying causality explicitly as described above means

messages can be received in any order. This truly liberates decision

making. For example, even though B can emit Payment only after

emitting Request, S can receive Payment first. Further, whenever

S receives Payment, regardless of whether it has received Request,
S may emit Delivery (because its information dependencies would

be satisfied). Further, retransmissions of messages by agents and

receptions of duplicates are harmless because, information-wise,

they are idempotent [42]. Thus information protocols can be flexibly
enacted over unordered, lossy communication services.

Listing 2: A commitment specification.
commitment PurchaseCom B to S

create Reques t

detach De l i v e r y within 1 day
discharge Payment within 1 day

By enacting flexible information protocols, agents compute base-

level communication events, e.g., Payment and Delivery, which may

be thought of as the atoms of meaning. Higher-level meaning can

be layered on top. Listing 2 shows a commitment, specified in Cupid

[12], that refers to the communication events from the protocol in

Listing 1; B and S compute commitment events (e.g., discharged or

violated) locally based on the base events they have observed.

3 AGAINST CONVENTIONAL SYSTEMS
WISDOM

MAS advances in meaning challenge the conventional wisdom in

systems research, which emphasizes fixed message ordering and

fault tolerance in communication services regardless of application

requirements. E.g., TCP (the de facto transport service for Internet

applications) [48] and message queues (the holy cow of business

messaging) [2] both guarantee reliable, FIFO-ordered communica-

tion. Underlying such communication services is a mindset that

ties programming convenience with synchrony achieved by enforc-

ing a global ordering of the events the communications represent.

However, the end-to-end argument [36] anticipated decades ago

that (1) in providing complex guarantees communication services

limit application-level decision making and hit performance; and

(2) programming based on communication meaning (“application

semantics”) was the way to avoid these problems. For example, a

FIFO service will not deliver Payment to S before it has delivered
Request, which means that the possibility of S emitting Delivery
upon the receipt of just Payment is ruled out. In essence, the FIFO

service expends resources to implement synchronization thought

to be needed by the application but in reality interferes with the

application. In general, delaying the delivery of a message (to the

application) pending the delivery of another is a deeply flawed idea.

Interestingly, the question of meaning was hotly debated in the

systems community [10]. However, meaning-based representations

of applications have remained elusive to systems researchers. As

Internet pioneer Clark [17] makes clear (after noting that TCP

was not ideal from the point of view of meaning): “The alternative
(to TCP) is to push to the app the implementation of the desired
semantics (over UDP). . . , but then the (app) designer is implementing
the protocol. . . and we don’t know how to do that.” Meaning is no less

than the holy grail of distributed systems. However, where systems

research has given up, MAS research has excelled. Figure 1 captures

the potentially transformative effect of MAS advances in meaning.

MAS advances in meaning challenge the conventional wisdom

in work on communication-oriented abstractions in programming

languages, which remains beset by a deep-seated, synchronous



Application?

Middleware

TCP

Internet

(a) Typical current stack.

Application as MAS

Internet

(b) Meaning-based stack.

Figure 1: The typical network stack offers message order-
ing and reliability guarantees via complex transport and
middleware layers but ignores applications. In doing so, it in-
terferes with applications and introduces inefficiencies. MAS
approaches can fix these problems by modeling communica-
tion meaning.

mindset reflected in the idea that sends and receives of messages

must interlock as in a zipper. It is for this reason that Erlang [4]

and Go [18], both popular as languages suited to programming dis-

tributed systems, assume FIFO communication between processes.

Moreover, both languages enable application programmers to en-

force arbitrary message reception orders by selectively receiving

messages. The effect of selective reception is to potentially delay

the reception of messages, which, as we argued before, is a flawed

idea. The correct approach would be to make message receptions

transparent to and decoupled from the application logic. Informa-

tion protocols support such an approach by letting agents receive

messages in any order.

The problem of structuring concurrent, distributed programs has

inspired a vast body of work on languages for specifying interaction

protocols and programmingmodels based on them, best exemplified

by the session types approach [26]. However, these approaches

specify a protocol in terms of global message orders, which makes

them unsuited to flexible decision making [11].

4 RESEARCH AGENDA
The layers lost in moving from the stack of Figure 1a to that of

Figure 1b provided abstractions and services that supported the en-

gineering and execution of distributed applications. What replaces
those layers in Figure 1b? Building upon the recent advances inmean-

ing, we propose the idea of a multiagent operating system (MOS) as

a platform for developing, running, and monitoring MAS specified

in terms of meaning. Conceptually, a MOS sits within the agent

(Figure 2, a blowup of Figure 1b); it abstracts away the network

(which may be unordered and unreliable) and maintains the agent’s

local state (its information state and the states of its commitments,

norms, and so on); and it provides a high-level, meaning-oriented in-

terface for plugging in the agent’s internal decision making. Below,

we elaborate on important research themes and questions.

4.1 Programming Models
What kind of programming model enables flexible decision making?

From the perspective of other agents in a MAS, an agent’s com-

munications are its decisions. Meaning specifications collectively

define the decisions an agent can legally make in any local state.

Since the MOS tracks the local state, it knows the available deci-

sions. The challenge is to come up with a MOS-supported decision

Decision making

MOS

Decision making

MOSMeaning

Agent Agent

Decision API Decision API

Internet

Network API Network API

Figure 2: A MOS abstracts away the network and provides
a high-level decision making-oriented interface for agent
programming.

API that enables driving decisions based on arbitrary internal busi-

ness logic. For example, a buyer agent’s business logic may be that

from all the available Payment decisions, it makes those that it

is committed to make. In view of this, the programming model

should natively support norm-based decision making. It should be

expressive (it must not rule out reasonable patterns of business

logic) and it should be convenient and natural to the programmer.

Further, the programming model must not only guarantee correct

communications, it should also make it virtually impossible to write

incorrect business logic. Mandrake [13] and Kiko [16] represent

preliminary work in this direction.

The programmingmodel could be extended to business contracts,

which domains such as finance are interested in from the point of

view of automating trades. The advances in meaning promise a

more suitable foundation for business contracts than blockchain

and smart contracts [46].

Although the information protocol approach is more expressive

than protocol languages based on control flow, from the perspective

of meaning, it is at the level of assembly language, which means

getting complex, flexible protocols right can be difficult. High-level

languages from which information protocols can be generated, as

exemplified by Clouseau [45], would be valuable. Naturally, a novel

language would motivate novel programming models based on the

constructs in the language.

4.2 Fault Tolerance
Faults are application-level phenomena tied to meaning and there-

fore agents must be programmed for fault tolerance. Today though,

based on the thinking that faults should be transparent to applica-

tion programmers, we generally lack programming model support

for fault tolerance.What are some common classes of faults and how
can the MOS support fault tolerance?

Faults could be characterized as the violation of communication

expectations [14]. At the information protocol level, a fault could

be missing or inconsistent information. At higher levels of mean-

ing, a fault could be the expiry or violation of a norm. An idea

worth exploring is extending the adapter with standardized fault

handling protocols, e.g., for forwarding messages, for exercising

accountability (in case of norm violations), and so on. Mandrake

supports novel application-level fault tolerance mechanisms.



Is the traditional fault tolerance work relevant for multiagent sys-
tems? Fault tolerance in current distributed computing is dominated

by an overarching concern: how to make a service both highly avail-

able and highly consistent in the presence of faults [8]. The solutions

are centered on service replication and vary on how they tradeoff

consistency and availability. It is not clear how the traditional work

applies in a multiagent setting since a MAS is not a service but a de-

centralized system of agents who could be thought of as providing

services. Perhaps then the traditional work could be applied toward

replicating agents. We think a better bet is to take inspiration from

real-world organizations, as MAS research has traditionally done,

e.g., as in [27]. Specifically, a highly available agent could itself be

an organization with an internal structure populated by agents who

act on its behalf when dealing with external agents. The internal

structure would support an agent taking over from a “failed” agent

via organizational patterns such as delegation, escalation, and so

on [32, 34, 47].

4.3 Performance
What innovations in MOS architecture, hardware support, algorithms,
encodings, and so on, result in high performance agents and MAS?

Performance has traditionally been a neglected area in MAS

programming work. Ideally, we want programming models that

not only simplify programming but also offer adequately high per-

formance and scalability. The activity concerns identifying per-

formance bottlenecks and optimizations and tradeoffs suitable for

certain classes of applications. For example, to save on storage and

querying costs, information about “old” interactions could bemoved

to archival storage [15]. The tradeoff, of course, is that retreiving

information from archive would be costly. Such a tradeoff might

be worthwhile if retrievals were rare occurrences. To give another

example, since message order does not matter, multiple messages

could be packed in a network packet, thus saving on packet headers.

Moreover, the size of messages themselves can be reduced based

on what information the recipient is known to know [14].

A novel direction would be to explore performance in the context

of specialized hardware, as with IoT applications, where storage,

communication, computing, and power are highly constrained. An-

other idea would be to explore the use of specialized hardware

adapted to the operation of MOS.

4.4 Native Language Support and Concurrency
How should communication and concurrency be supported in pro-
gramming languages? Any communication between agents should

be based on a protocol. Erlang and Go, even though they promote

messaging-based coordination, do not support protocols.We believe

this is the reason why messaging-based coordination remains just

as difficult, if not more, than shared memory approaches [50]. Infor-

mation protocols could be integrated into such languages through

libraries (as Mandrake and Kiko do), but first-class information

protocol support would likely replace the concepts of threads and

processes with agents that communicate exclusively according to

protocols through a MOS.

If a programming language supported the meaning-based pro-

gramming model described in Section 4.1, then a language primitive

for message reception (available both in Erlang and Go) becomes

unnecessary, leading to simplicity and less buggy applications. This

would be a major step forward in distributed systems programming.

In fact, just as GOTO statements were considered harmful for un-

dermining static analysis of programs and replaced by structured

programming [20], receive statements should be considered harm-

ful and replaced by agents structured as decision makers acting on

information and meaning. We think the latter far better represents

the ideal of structured concurrent programming.

4.5 Computer Networks
IoT applications require asynchronous communications [38, 44].

Applications that must operate with intermittent connectivity have

motivated the idea of delay-tolerant networking [9]. Current net-

work stacks are generally ill-suited to such applications. More

mundanely, recognizing the limitations of TCP’s single network

interface-single stream model, enhancements such as multipath

TCP [29] and QUIC [30] have been proposed. Since the MOS obvi-

ates significant parts of current networks stacks, including TCP (as

Figure 1 highlights), and supports storage-backed, asynchronous

communication, there is a broad opportunity for revisiting significant
problems and solutions studied by the networking community and
coming up with novel MOS-supported solutions.

In particular, TCP plays an integral role in congestion control,

which is vital to the performance of the Internet [48]. How would a
MOS support congestion control and other network-level performance
concerns? The MOS offers an opportunity for reclaiming congestion

control from infrastructure based on the use of application-level

knowledge to manage information flows. For instance, an agent

could prioritize certain actions, send explicit backoff messages, or

implement pull-based active requests instead. Instead of using a

default implementation that would eventually fossilize and become

a layer in the geologic column of architecture (like TCP), the deci-

sions would all be handled as first-class, application-level decisions.

Common algorithms for making the decisions, such as LEDBAT

(used for BitTorrent over UDP) [37], could be loaded from a library

to reduce developer effort without reducing flexibility.

Will we require any additional layers in the stack of Figure 1b?
For example, we may need a layer between the Internet and the

MOS to handle large messages—to break them down into pieces

small enough for transmission over the Internet and then reassem-

ble those pieces into messages. In keeping with the end-to-end

principle, for performance reasons, such a layer may even support

reliability via retransmissions of the pieces. However, unlike TCP,

it need not support FIFO delivery and hence it would be simpler.

5 CONCLUSION
The field of MAS software aspired to address distributed systems in

a fundamental manner. MAS research rightly saw communication

meaning (a problem Shannon appeared to have thought about [39])

as central to realizing this aspiration. Our message is that the work

on information protocols means that MAS research can today claim

to have laid the conceptual foundations for addressing the problem

of communication meaning. And in that claim lies the potential to

transform systems research broadly conceived, to not just give it a

multiagent flavor, but a multiagent foundation.



Acknowledgments.Our vision is informed by two decades of joint

work and discussions with Munindar Singh, to whom we owe an

immense intellectual debt. We are grateful to the anonymous Senior

Program Committee member for seeing merit in our submission.

Chopra was supported by the EPSRC grant EP/N027965/1.

REFERENCES
[1] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,

and Paolo Torroni. 2008. Verifiable agent interaction in abductive logic program-

ming: The SCIFF framework. ACM Transactions on Computational Logic 9, 4
(2008), 43.

[2] AMQP. 2007. Advanced Message Queuing Protocol.

http://www.nsf.gov/funding/.

[3] Davide Ancona, Daniela Briola, Angelo Ferrando, and Viviana Mascardi. 2015.

Global Protocols as First Class Entities for Self-Adaptive Agents. In Proceedings of
the 14th International Conference on Autonomous Agents and Multiagent Systems.
IFAAMAS, Istanbul, 1019–1029.

[4] Joe Armstrong. 2003. Making Reliable Distributed Systems in the Presence of
Software Errors. Ph.D. Dissertation. Royal Institute of Technology, Stockholm,

Sweden.

[5] Alexander Artikis, Marek J. Sergot, and Jeremy V. Pitt. 2009. Specifying norm-

governed computational societies. ACM Transactions on Computational Logic 10,
1 (2009), 42.

[6] Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti,

and Munindar P. Singh. 2009. Choice, Interoperability, and Conformance in

Interaction Protocols and Service Choreographies. In Proceedings of the 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems. IFAAMAS,

Budapest, 843–850.

[7] Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti. 2006. A

Priori Conformance Verification for Guaranteeing Interoperability in Open Envi-

ronments. In Proceedings of the 4th International Conference on Service-Oriented
Computing (LNCS, Vol. 4294). Springer, Chicago, 339–351.

[8] Ken Birman. 2015. Evolution of Fault Tolerance. In SOSP History Day (Monterey,

California). ACM, New York, 7:1–7:32.

[9] Scott Burleigh, Adrian Hooke, Leigh Torgerson, Kevin Fall, Vint Cerf, Bob Durst,

Keith Scott, and Howard Weiss. 2003. Delay-Tolerant Networking: An Approach

to Interplanetary Internet. IEEE Communications Magazine 41, 6 (2003), 128–136.
[10] David R. Cheriton and Dale Skeen. 1993. Understanding the Limitations of

Causally and Totally Ordered Communication. In Proceedings of the 14th ACM
Symposium on Operating System Principles. Asheville, NC, 44–57.

[11] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2020. An Evalua-

tion of Communication Protocol Languages for Engineering Multiagent Systems.

Journal of Artificial Intelligence Research 69 (2020), 1351–1393.

[12] Amit K. Chopra and Munindar P. Singh. 2015. Cupid: Commitments in Relational

Algebra. In Proceedings of the 29th AAAI Conference on Artificial Intelligence.
Austin, Texas, 2052–2059.

[13] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2022. Mandrake:

Multiagent systems as a basis for programming fault-tolerant decentralized

applications. Autonomous Agents and Multi-Agent Systems 36, 16 (2022), 30.
[14] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2021. Bungie:

Improving Fault Tolerance via Extensible Application-Level Protocols. IEEE
Computer 54, 5 (May 2021), 44–53. https://doi.org/10.1109/MC.2021.3052147

[15] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2022. Bruno:

Garbage-Collecting Business Information. In Pre-proceedings of the 10th Interna-
tional Workshop on Engineering Multi-Agent Systems (EMAS). Auckland, 1–12.

[16] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2023. Kiko:

Programming Agents to Enact Interaction Protocols. In Proceedings of the 22th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
IFAAMAS, London, to appear.

[17] David Clark. 2015. The Network and the OS. In SOSP History Day 2015 (Monterey,

California). ACM, Article 11, 19 pages.

[18] Russ Cox, Robert Griesemer, Rob Pike, Ian Lance Taylor, and Ken Thompson.

2022. The Go Programming Language and Environment. Commun. ACM 65, 5

(2022), 70–78.

[19] Nirmit Desai and Munindar P. Singh. 2008. On the Enactability of Business

Protocols. In Proceedings of the 23rd Conference on Artificial Intelligence (AAAI).
AAAI Press, Menlo Park, 1126–1131.

[20] Edsger W. Dijkstra. 1968. Letters to the Editor: Go to Statement Considered

Harmful. Commun. ACM 11, 3 (mar 1968), 147–148. https://doi.org/10.1145/

362929.362947

[21] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. 1994. KQML as an

Agent Communication Language. In Proceedings of the International Conference
on Information and Knowledge Management. ACM Press, 456–463.

[22] FIPA. 2002. FIPAAgent Communication Language Specifications. FIPA: The Foun-

dation for Intelligent Physical Agents, http://www.fipa.org/repository/aclspecs.

html.

[23] Nicoletta Fornara and Marco Colombetti. 2004. A Commitment-Based Approach

To Agent Communication. Applied Artificial Intelligence 18, 9-10 (2004), 853–866.
[24] Les Gasser. 1991. Social Conceptions of Knowledge and Action: DAI Foundations

and Open Systems Semantics. Artificial Intelligence 47, 1–3 (Jan. 1991), 107–138.
[25] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and

Hudson Turner. 2004. Nonmonotonic causal theories. Artificial Intelligence 153,
1-2 (2004), 49–104.

[26] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchro-

nous session types. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL) (San Diego). 273–284.

[27] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. 2007. Developing

Organised Multiagent Systems using the MOISE
+
Model: Programming Issues at

the System and Agent Levels. International Journal of Agent-Oriented Software
Engineering 1, 3/4 (2007), 370–395. https://doi.org/10.1504/IJAOSE.2007.016266

[28] Michael N. Huhns and Munindar P. Singh. 1998. Agents and Multiagent Systems:

Themes, Approaches, and Challenges. In Readings in Agents, Michael N. Huhns

andMunindar P. Singh (Eds.). Morgan Kaufmann, San Francisco, Chapter 1, 1–23.

[29] IETF. 2020. TCP Extensions for Multipath Operation with Multiple Addresses.

https://www.rfc-editor.org/rfc/rfc8684.

[30] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and

Secure Transport. https://datatracker.ietf.org/doc/rfc9000/.

[31] Nicholas R. Jennings. 2000. On agent-based software engineering. Artificial
intelligence 117, 2 (2000), 277–296.

[32] Özgür Kafalı and Paolo Torroni. 2018. Comodo: Collaborative Monitoring of

Commitment Delegations. Expert Systems with Applications 105 (Sept. 2018),

144–158. https://doi.org/10.1016/j.eswa.2018.03.057

[33] Robert Kowalski and Marek J. Sergot. 1986. A Logic-Based Calculus of Events.

New Generation Computing 4, 1 (1986), 67–95.

[34] Timothy J. Norman and Chris Reed. 2001. Delegation and Responsibility. In ATAL
’00: Proceedings of the 7th International Workshop on Intelligent Agents VII. Agent
Theories Architectures and Languages. Springer, Berlin, 136–149.

[35] Jeremy Pitt and Abe Mamdani. 1999. A protocol-based semantics for an agent

communication language. In Proceedings of the International Joint Conference on
Artificial Intelligence. 486–491.

[36] Jerome H. Saltzer, David P. Reed, and David D. Clark. 1984. End-To-End Argu-

ments in System Design. ACM Transactions on Computer Systems 2, 4 (Nov. 1984),
277–288. https://doi.org/10.1145/357401.357402

[37] Sea Shalunov, Greg Hazel, Janardhan Iyengar, and Mirja Kuehlewind. 2012. RFC

6817: Low extra delay background transport (LEDBAT). https://datatracker.ietf.

org/doc/html/rfc6817

[38] Wentao Shang, Yingdi Yu, Ralph Droms, and Lixia Zhang. 2016. Challenges in IoT
Networking via TCP/IP Architecture. Technical Report NDN-0038. NDN Project.

[39] Claude E. Shannon. 1948. A mathematical theory of communication. The Bell
System Technical Journal 27, 3 (1948), 379–423.

[40] Munindar P. Singh. 1998. Agent Communication Languages: Rethinking the

Principles. IEEE Computer 31, 12 (Dec. 1998), 40–47.
[41] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-

ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th
International Conference on Autonomous Agents and MultiAgent Systems (Taipei).
IFAAMAS, 491–498.

[42] Munindar P. Singh. 2011. LoST: Local State Transfer—An Architectural Style

for the Distributed Enactment of Business Protocols. In Proceedings of the 9th
IEEE International Conference on Web Services (ICWS). IEEE Computer Society,

Washington, DC, 57–64.

[43] Munindar P. Singh. 2012. Semantics and Verification of Information-Based

Protocols. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). IFAAMAS, Valencia, Spain, 1149–1156.

[44] Munindar P. Singh and Amit K. Chopra. 2017. The Internet of Things and

Multiagent Systems: Decentralized Intelligence in Distributed Computing. In

Proceedings of the 37th IEEE International Conference on Distributed Computing
Systems (ICDCS). IEEE, Atlanta, 1738–1747. https://doi.org/10.1109/ICDCS.2017.

304 Blue Sky Thinking Track.

[45] Munindar P. Singh and Amit K. Chopra. 2020. Clouseau: Generating Commu-

nication Protocols from Commitments. In Proceedings of the 34th Conference
on Artificial Intelligence (AAAI). AAAI Press, New York, 7244–7252. https:

//doi.org/10.1609/aaai.v34i05.6215

[46] Munindar P. Singh and Amit K. Chopra. 2020. Computational Governance and

Violable Contracts for Blockchain Applications. IEEE Computer 53 (Jan. 2020),
53–62. Issue 1.

[47] Munindar P. Singh, Amit K. Chopra, and Nirmit Desai. 2009. Commitment-Based

Service-Oriented Architecture. IEEE Computer 42, 11 (2009), 72–79.
[48] W. Richard Stevens. 1994. TCP/IP Illustrated, Volumes 1–3. Addison-Wesley,

Reading, Massachusetts.

[49] Katia P. Sycara. 1998. Multiagent Systems. AI Magazine 19, 2 (1998), 79–92.
[50] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. 2019. Understanding Real-

World Concurrency Bugs in Go. In Proceedings of the Twenty-Fourth International

https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/aclspecs.html
https://doi.org/10.1504/IJAOSE.2007.016266
https://www.rfc-editor.org/rfc/rfc8684
https://datatracker.ietf.org/doc/rfc9000/
https://doi.org/10.1016/j.eswa.2018.03.057
https://doi.org/10.1145/357401.357402
https://datatracker.ietf.org/doc/html/rfc6817
https://datatracker.ietf.org/doc/html/rfc6817
https://doi.org/10.1109/ICDCS.2017.304
https://doi.org/10.1109/ICDCS.2017.304
https://doi.org/10.1609/aaai.v34i05.6215
https://doi.org/10.1609/aaai.v34i05.6215


Conference on Architectural Support for Programming Languages and Operating
Systems (Providence, RI, USA). ACM, 865–878.

[51] Michael Winikoff, Wei Liu, and James Harland. 2005. Enhancing Commitment

Machines. In Proceedings of the 2nd International Workshop on Declarative Agent
Languages and Technologies (DALT) (LNAI, Vol. 3476). Springer-Verlag, Berlin,

198–220.

[52] Pınar Yolum and Munindar P. Singh. 2002. Flexible Protocol Specification and

Execution: Applying Event Calculus Planning using Commitments. In Proceedings
of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems (Bologna). ACM Press, 527–534.


	Abstract
	1 Introduction
	2 Advances in Communication Meaning
	3 Against Conventional Systems Wisdom
	4 Research Agenda
	4.1 Programming Models
	4.2 Fault Tolerance
	4.3 Performance
	4.4 Native Language Support and Concurrency
	4.5 Computer Networks

	5 Conclusion
	References

