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ABSTRACT
Commitments provide a basis for understanding interactions in mul-
tiagent systems. Successful interoperation relies upon the interact-
ing parties being aligned with respect to their commitments. How-
ever, alignment is nontrivial in a distributed system whereagents
communicate asynchronously and make different observations. We
propose a formalization for commitments that ensures alignment
despite asynchrony. This formalization consists of three elements:
(1) a semantics of commitment operations; (2) messaging patterns
that implement the commitment operations; and (3) weak constraints
on agents’ behaviors to ensure the propagation of vital information.
We prove that our formalization ensures alignment. We illustrate
the generality of our formalization with several real-lifescenarios.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multiagent Sys-
tems

General Terms
Theory
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1. INTRODUCTION
C(debtor , creditor , antecedent , consequent ) means the debtor

commits to the creditor that if antecedent holds, then the conse-
quent will hold. An important insight in agent communication is
that the interactions among agents may be understood in terms of
their effects on the agents’ commitments. For example, an offer for
a copy of the bookBeating the Oddsfrom Bookie to Alice may be
interpreted asC(Bookie, Alice, $12, BeatingtheOdds). In other
words, Bookie commits to Alice that if Alice pays $12, then Bookie
will deliver the book.

Imagine if Alice presumes that Bookie is committed to sending
her the book she paid for, but Bookie is not committed to sending
her the book. Their interaction would break down. In general, a
key requirement for successful interaction is that the interacting
agents remain aligned with respect to their commitments.Cru-
cially, it turns out that even well-designed, well-behavedagents
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may become misaligned simply because of the distributed nature
of the given system.Previous approaches have largely ignored this
problem or addressed it through restrictive, ad hoc assumptions.
However, as commitment protocols expand into real-life distributed
settings, a rigorous treatment becomes essential.

We consider realistic, distributed settings where agents commu-
nicate via asynchronous messaging. Asynchrony means that an
agent is never blocked from sending a message. In such a sys-
tem, the messages that the agents send each other may cross on
the wire. Thus, in general, the agents may observe differentmes-
sages in different orders. Since messages are understood interms
of their effects on commitments, the agents involved would become
misaligned, i.e., come to conflicting conclusions about which com-
mitments hold and which do not.

It is crucial to develop a formalization of commitments thaten-
sures alignment despite asynchrony. First, distributed computing
infrastructure is necessarily asynchronous. Large-scalesystems
exhibit high latency making synchronous interactions simply in-
tractable in practice. Second, any formalization that works de-
spite asynchrony also works in “more synchronous” settings, that
is, those imposing additional constraints on agent behavior—for
example, one where agents take turns sending messages. Third,
asynchrony is inherently compatible with agent autonomy simply
because an agent is never blocked from sending a message and,
more pertinently, from acting upon its commitments.

In the absence of a formalization that supports reasoning about
commitments in distributed settings, all research in applications of
commitments is bound to report results that are either not general
enough or are unduly complex. Such a formalization is currently
missing; this paper seeks to fill this gap.

Motivation. Informally, we say that agents are aligned, if when-
ever an agent infers a commitment in which it is the creditor,the
debtor of the commitment also infers that commitment. Thereare
two possible causes of misalignment. One, the agents may as-
sign incompatible meanings to the messages they are exchanging.
Two, even when the agents assign identical meanings to the rele-
vant messages, they may make incompatible observations. Chopra
and Singh [2] solve the former for a language similar to ours.This
paper addresses the second problem. Let’s consider some examples
to highlight the problem.

EXAMPLE 1. (Figure 1(A)). Bookie sends Alice (a message that
expresses) an offer that if she pays $12, then Bookie will deliver to
her a copy of the bookBeating the Odds. Alice sends Bookie a
rejection of the offer. Upon receipt, Bookie resends the offer.

As is typical in commitment protocols, Bookie’s offer creates a
commitment from Bookie to Alice for the bookBeating the Odds
in return for $12. In Example 1, both Alice and Bookie observethe
messages in the same order, and therefore remain aligned.



EXAMPLE 2. (Figure 1(B)). Bookie makes Alice an offer. Not
seeing a response from Alice, Bookie resends the offer. Suppose
that, in the meantime, Alice sends Bookie a rejection of the offer.
Then the rejection crosses Bookie’s repetition of the offer.

Figure 1: Scenarios (B),(C), and (D) end in misalignment

What ought Bookie and Alice to infer about the offer at the endof
the exchange shown in Figure 1(B)? After seeing Alice’s rejection
of the offer, Bookie may infer that there no longer exists an offer
to Alice. However, having seen an offer message last, Alice may
infer that the offer holds. That is, Alice infers a commitment from
Bookie for a copy ofBeating the Oddsfor $12, whereas Bookie
does not infer that commitment. This misalignment occurs because
Alice’s rejection and Bookie’s offer messages crossed in transit.
Note that Figures 1(A) and 1(B) imply a race condition between
offer and rejection: their order (as viewed by Bookie) matters and
yet Alice cannot distinguish between the two orders.

EXAMPLE 3. (Figure 1(C)). Bookie makes an offer that Alice
accepts and sends the payment for. In the meantime, Bookie cancels
the offer. Bookie’s cancellation and Alice’s payment cross.

In Example 3, upon sending the payment, Alice infers that Bookie
is committed to sending her a copy of the book. Later, when Alice
sees Bookie’s cancel message, she regards it as spurious. However,
Bookie sees the payment only after he has canceled its offer.So
Bookie considers Alice’s payment late. The result is that Alice in-
fers an unconditional commitment for the book from Bookie, but
one that Bookie does not infer. A race between cancellation and
payment causes misalignment.

EXAMPLE 4. (Figure 1(D)) Here, Bookie sends an offer, but in
the meantime Alice sends a rejection.

In the scenario in Example 4, Bookie infers the offer was rejected
because that is the message it last sees, whereas Alice infers the
offer exists because that is the message she last sees. Admittedly,
the scenario is pathological: it makes no sense for Alice to reject an
offer that Bookie never made. However, scenarios where messages
arrive unexpectedly can occur when multiple parties are involved,
and messages happen to be delayed differently on different paths.
This is analogous to when one receives a group reply to an email
before receiving the original email.

As the above examples demonstrate, asynchrony throws a major
challenge in the face of alignment. Even agents who are perfectly
designed and who assign identical meanings to messages may end
up misaligned. Another way to cast this problem is in terms ofthe
commitment operations, which show how to manipulate commit-
ments [12]. Existing formalizations of the operations, e.g., [3], do
not support reasoning in distributed settings.

Current approaches for alignment fall into two main categories.
Some use acknowledgments [8] as a way of serializing the oper-
ations in distributed settings. The idea is that the agents involved
would observe the relevant messages in the same order, and hence
make the same inferences. Such approaches are incompatiblewith
autonomy. Autonomy compatibilitymeans that no agent should
have to wait for approval from other agents to effect a changein

its commitments. In an acknowledgment-based approach, forex-
ample, to effect a cancellation or discharge of a commitment, the
debtor would have to seek the creditor’s approval, which completely
begs intuition.

Others suggest commitments of the formC(id , x, y, r, u), where
id is a unique identifier termed as thecommitment identifier[4,
11]. Commitment operations would then reference these identi-
fiers. Commitment identifiers fail to meetsemanticity. Semantic-
ity means that the proposal should accommodate general reasoning
about commitments. For example, with identifiers, ifC(id0, x, y, r,

u) andC(id1, x, y, r, v) hold, semantically it still ought to be the
case thatC(_, x, y, r, u∧v) holds (‘_’ is some identifier). To reason
with identifiers, one would need to track dependencies for commit-
ments a la distributed truth maintenance [6]. Any such approach
would be more complex than the approach presented here, without
being more general.

Contributions. Our primary contribution is a formalization con-
sisting of three elements: (1) messaging patterns that communicate
the commitment operations; (2) a semantics of the operations that
determines each participating agent’s inferences regarding commit-
ments; and (3) constraints on agent behavior described as messages
the agents must send under specific circumstances. We prove that
our formalization eliminates misalignments, and illustrate its intu-
itiveness and generality with the help of various examples.A note-
worthy feature of our formalization is that it does not involve com-
puting global system states [7] and then detecting misalignments;
the formalization guarantees alignment without any coordination
whatsoever between agents.

Our formalization is both autonomy compatible and semantic. In
particular, our formalization does not rely upon using commitment
identifiers as introduced above. Later in the paper, we show how
domain identifiersmay be used, if necessary.

Organization. The structure of this paper is as follows. Section 2
discusses commitments. Section 3 introduces the principles of our
approach. Section 4 presents a formal model of communication and
defines alignment. Section 5 formalizes the principles and proves
that alignment is guaranteed for all possible multiagent executions.
Section 6 discusses related work and summarizes our contributions.

2. COMMITMENTS
Below,x,y, etc are variables over agents;p, q, r, etc. are proposi-

tional variables;∨, ∧,¬, →,↔ are the usual propositional connec-
tives;⊤ and⊥ are the constants for truth and falsity, respectively;
⊢ is the usual propositional inference symbol. Read⇒ asimplies.

A commitment is of the formC(x, y, r, u). If r holds, then
C(x, y, r, u) is detached, and the commitmentC(x, y,⊤, u) holds.
If u holds, then the commitment isdischargedand doesn’t hold any
longer. All commitments areconditional; an unconditional com-
mitment is merely a special case where the antecedent equals⊤.
Reasoning postulates for commitments are reproduced below[13].
For brevity, we omit the agents when they can be understood from
the context. Further, when the postulates uniformly use thedebtor
x and creditory, we writeC(r, u) instead ofC(x, y, r, u).

B1. DISCHARGE. u → ¬C(r, u)

B2. DETACH. C(r ∧ s, u) ∧ r → C(s, u).

B3. AUGMENT. FromC(r, u) ∧ s ⊢ r, infer C(s, u)

B4. L -DISJOIN. C(r, u) ∧ C(s, u) → C(r ∨ s, u)

B5. R-CONJOIN. C(r, u) ∧ C(r, v) → C(r, u ∧ v)

B6. CONSISTENCY. ¬C(r,⊥)

B7. NONVACUITY . Fromr ⊢ u, infer¬C(r, u)



B8. WEAKEN. C(r, u ∧ v) ∧ ¬u → C(r, u)

Notice that B1 covers the discharge of commitments. B2 gener-
alizes their detach.Semanticitymeans that alignment must not fail
in the face of reasoning postulates B1–B8. That is, we must make
sure that the effects of the various messages on commitmentsare
consistent with respect to the above postulates.

The commitment operations are reproduced below (from [12]).
CREATE, CANCEL, andRELEASEare two-party operations, whereas
DELEGATE andASSIGN are three-party operations.

CREATE(x, y, r, u) is performed byx, and it causesC(x, y, r, u)
to hold. CANCEL(x, y, r, u) is performed byx, and it causesC(x, y,

r, u) to not hold. RELEASE(x, y, r, u) is performed byy, and it
causesC(x, y, r, u) to not hold. DELEGATE(x, y, z, r, u) is per-
formed byx, and it causesC(z, y, r, u) to hold. ASSIGN(x, y, z, r, u)
is performed byy, and it causesC(x, z, r, u) to hold.

Let us define the set of messages that agents can exchange. LetΦ
be a finite set of atomic propositionsφ0, . . . , φi (commitments are
not atomic propositions).Inform(x, y, p) is a message fromx to
y, wherep is a conjunction overΦ. In the commitment operations,
r is a DNF formula overΦ (for example,(φ0 ∧ φ1) ∨ (φ3 ∧ φ4)),
andu is a CNF formula overΦ (for example,(φ0 ∨ φ1) ∧ (φ3 ∨
φ4)). Create(x, y, r, u) andCancel(x, y, r, u) are messages from
x to y; Release(x, y, r, u) from y to x; Delegate(x, y, z, r, u)
from x to z; andAssign(x, y, z, r, u) from y to x. Supposec =
C(x, y, r, u). ThenCreate(c) stands forCreate(x, y, r, u). We
similarly defineDelegate(c, z), Assign(c, z), Release(c), and
Cancel(c).

All atomic propositions are stable, that is, if an atomic propo-
sition holds, it holds forever. In English, stability corresponds to
the perfective aspect, for example,book has been delivered, pay-
ment has been made, and so on [13]. Propositions with explicit
time, such asthe book is delivered by 3PMare also stable. Thus
each atomic proposition corresponds to the occurrence of anevent:
when the proposition holds, the corresponding event is saidto have
occurred. A commitment, however, is not a stable proposition. A
commitment may come to not hold because it was discharged, can-
celled, or released, leaving the agents sensitive to race conditions
over commitments.

Below, letcB = C(Bookie, Alice, $12, BeatingtheOdds);
cG = C(Bookie, Alice, $12, GamblingT ips);
c0 = C(Bookie, Alice, $12, BeatingtheOdds∧GamblingT ips);
c1 = C(Bookie, Alice, $12 ∨ coupon, BeatingtheOdds);
c2 = C(Bookie, Alice, $12 ∧ coupon, BeatingtheOdds). Intu-
itively, c0 is a stronger commitment thancB (an additional book for
the same price);c1 is stronger thancB (two ways to obtain a book
instead of one);cB is stronger thanc2 (fewer conditions need to be
satisfied to obtain a book). Definition 1 captures this intuition.

DEFINITION 1. C(x, y, r, u) is stronger thanC(x, y, s, v), de-
noted byC(x, y, r, u) � C(x, y, s, v), iff s ⊢ r andu ⊢ v.

Thus, for example,c0 � cB . If C(x, y, r, u) � C(x, y, s, v) but
C(x, y, s, v) 6� C(x, y, r, u), we sayC(x, y, r, u) ≻ C(x, y, s, v).
B3 and B8 capture the notion of strength deductively. For example,
if c1 holds, then by B3,cB holds as well. Similarly, ifc0 holds, then
by B8, cB holds as well—unlessBeatingtheOdds holds already
in which case according to B1,cB cannot hold.

3. PRINCIPLES OF ALIGNMENT
The misalignments in Figure 1 are due to the naïve semantics

that upon observingCreate(r, u), an agent infersC(r, u); upon
observingRelease(r, u) or Cancel(r, u) an agent infers¬C(r, u).

We propose five principles that guarantee alignment. These prin-
ciples are informed by the nature both of commitments and of dis-

tributed systems. Let us first consider three principles that address
the misalignments in Figure 1.

NOVEL CREATION . ObservingCreate(r, u) should have no
effect if a stronger commitmentC(s, v) has held before.

COMPLETE ERASURE. ObservingRelease(r, u) should have no
effect if a strictly stronger commitmentC(s, v) holds. If no such
C(s, v) holds, then each weaker commitmentC(r′, u′) is released.
Cancel(r, u) is analogous.

ACCOMMODATION . ObservingRelease(r, u) has the effect that
each weaker commitmentC(s, v) is treated as if it has held before.
Cancel(r, u) is analogous.

Figure 3(B) exemplifies our graphical notation. We represent
an execution as a sequence diagram. Each point where a message
is sent or received is annotated with the commitments that hold
immediately after the observation; commitments that do nothold
are not shown. IfC(r, u) holds andC(r, u) � C(s, v), we only
showC(r, u). Each agent’s vertical line may be annotated at the
top to indicate initial conditions of the interaction.

Figure 2 shows how these principles restore alignment to the
misaligned scenarios of Figure 1. Figure 2 showsoffer as
Create(cB), andrejectasRelease(cB).

Contrast Figures 1(A) and 2(A). In both figures, Bookie and Al-
ice remain aligned at the end. However, in Figure 1(A), Bookie and
Alice both infercB , whereas in Figure 2(A), neither of them infers
cB . NOVEL CREATION supports Figure 2(A): the first offer causes
cB to hold and resending the offer after receiving a reject has no
effect.

Contrast Figures 1(B) and 2(B). In Figure 1(B), in the end, Al-
ice inferscB , whereas Bookie does not. In Figure 2(B), however,
neither Alice nor Bookie inferscB . Upon receiving the reject, be-
cause of COMPLETEERASURE, Bookie considers himself released
from the offer; receiving the same offer again has no effect on Alice
because of NOVEL CREATION.

Contrast Figures 1(D) and 2(C). In Figure 1(D), in the end, Al-
ice inferscB , whereas Bookie does not. In Figure 2(C), however,
neither Alice nor Bookie inferscB . Upon receiving the reject, be-
cause of COMPLETEERASURE, Bookie considers himself released
from the offer; receiving an offer which Alice has already rejected
has no effect on Alice because of ACCOMMODATION and NOVEL

CREATION acting in concert. ACCOMMODATION ensures that Al-
ice’s release of the offer makes it appear as if the offer had been
made before, and hence when Bookie’s actual offer arrives, NOVEL

CREATION ensures the offer has no effect.

Figure 2: Proposed approach

NOVEL CREATION means that resending aCreate of a previous
commitment has no effect. In that case, how can Bookie again
offer Alice essentially the same deal that she has rejected before?
Circumstances might have changed, and Bookie might want to see
if Alice will accept the offer this time around.

A possible domain modeling approach is to include identifiers on
the conditions involved so as to distinguish the offers. In practice,
we would place such identifiers anyway, so as to distinguish com-



mitments made to different parties, e.g., to ensure that a different
copy of the book would be delivered to each customer and each cus-
tomer will pay for her purchase. Such identifiers are distinct from
commitment identifiers: they do not apply on commitments anddo
not interfere with reasoning about commitments. In Example5, at
the end, both Alice and Bookie infer that theid1 commitment holds
and theid0 commitment doesn’t.

EXAMPLE 5. Bookie sendsCreate(Bookie, Alice, $12(id0),
BeatingtheOdds(id0)). Alice sendsRelease(Bookie,Alice,

$12(id0), BeatingtheOdds(id0)). To offer the “same” deal again,
Bookie sendsCreate(Bookie, Alice, $12(id1), Beatingthe

Odds(id1)).

Notice that NOVEL CREATION does not say that if a commit-
ment has held before, then it can never hold again; it only says that
a Create message for such a commitment has no effect. A com-
mitment may come to hold again because aCreate message for a
stronger commitment is observed. In real life, it is common prac-
tice for a seller to improve its offers, effectively making stronger
commitments, as in Example 6.

EXAMPLE 6. Bookie makes Alice the offercB . Alice rejects the
offer thus releasing Bookie fromcB . However, Bookie is persistent,
and he makes Alice the stronger offerc0 (two books for the same
price). This automatically resurrectscB to ensure consistency.

EXAMPLE 7. Alice rejects Bookie’s improved offer.

When Alice sendsRelease(c0), COMPLETE ERASURE means
that this not only removesc0, but alsocB and cG. Notice that
partial releases are unsuccessful. Becausec0 is stronger thancB ,
Release(cB) has no effect—c0 continues to hold.

NOTIFICATION . This principle ensures that two agent’s states are
compared only when both or neither has received vital information.
This leads to two requirements. One, the creditor of a commitment
must notify the debtor of a detach, and the debtor must notifythe
creditor of discharge. Two, until an agent sends its pendingno-
tifications, it doesn’t have a well-defined visible state. Reducing
the visible states proves crucial because we can define alignment as
agreement between the concerned agents at such states.

Consider Figure 3(A). Initially, Alice is committed to Bob that
if the sky is clear, then she will meet him at the lake, meaning
cL = C(Alice, Bob, clear, lake). We model Bob’s observation of
the sky as a message that Bob receives from the environmentEnv.
Now, Bob infers the unconditional commitmentcUL = C(Alice,

Bob,⊤, lake) whereas Alice does not yet infercUL (maybe be-
cause she is in a basement and cannot look at the sky). Thus, Bob
and Alice would be misaligned. The main problem is that Bob has
received some vital information that Alice does not have.

Figure 3: Notifying about detaches

Figure 3(B) shows how alignment is preserved. The bold dot
along Bob’s lifeline indicates that Bob must send theclear notifi-
cation to Alice. The middle state where Bob has detached the com-
mitment but not notified Alice is excluded from consideration—it is
not visible for the purposes of alignment. In this manner, weavoid

a false negative claim about alignment. This case is of a creditor
notifying the debtor of a detach. The case where a debtor notifies a
creditor of a discharge is similar.

PRIORITY . It is possible that a debtor cancels a commitment con-
currently with the creditor detaching it. Recall Example 3 where
Alice’s payment crosses Bookie’s cancellation. Figure 4(A) anno-
tates the same example with commitments. If Bookie’s cancellation
and Alice’s payment cross, Alice and Bookie become misaligned—
Alice inferscU = C(Bookie, Alice,⊤, BeatingtheOdds) whereas
Bookie does not. The reason is that receivingCancel(cB) has no
effect on Alice because she already inferscU , which is a stronger
commitment thancB . Receiving Alice’s $12 payment has no effect
on Bookie because there is no commitment to detach anymore.

There is no fundamental reason to prefer the creditor’s or the
debtor’s viewpoint. For each commitment, the parties involved
simply have to agree on what takes priority: cancel over detach, or
detach over cancel. Detach priority means that the debtor considers
its cancellation of a commitment to be overridden by the detach of
the commitment. Cancel priority means that the creditor considers
its detach of a commitment to be overridden by the debtor’s can-
cellation of the commitment. Our theory handles both alternatives,
and shows what the agents must do in each case. Consider a com-
mitmentC(r ∧ s, u). Suppose detach has priority over cancel. If
the debtor observes a message that brings abouts (a detach) after it
has cancelledC(r∧s, u), then it must sendCreate(r , u). Alterna-
tively, suppose that cancel has priority over detach. If thecreditor
has already detachedC(r ∧ s, u) by sending a message that brings
abouts, and it then observes a cancellation forC(r∧s, u), then the
creditor must sendRelease(r, u).

Figure 4: Race between cancel and detach

The protocol that Alice and Bookie are enacting would specify
whether cancel or detach has priority forcB . If detach has prior-
ity, then, as Figure 4(B) shows, Bookie considers its cancellation
to be overridden by the detach, and createscU . If cancel has pri-
ority, then, as Figure 4(C) shows, Alice considers the detach to be
overridden by the cancellation, and releases Bookie fromcU .

4. FORMALIZING ALIGNMENT
Alignment means that whenever an agent infers from its obser-

vations, a commitment in which it is the creditor, then the debtor
must also infer the commitment from its own observations. Anex-
ecution of a multiagent system is a progression of the systemfrom
one (system) state to another. Every time an agent sends or receives
a message, the system progresses to a new state. We would liketo
consider all possible executions of the system; however, weneed to
ensure that alignment is considered only at well-defined milestones
in any execution; otherwise, we would falsely claim misalignment.
The appropriate milestones are expressed viaquiescenceand in-
tegrity.

A system state is quiescent if no messages are in transit. In con-
sidering only quiescent states, we ensure the agents are “synced”
up when we verify their alignment. Without quiescence, alignment



is generally impossible because some agents may not yet haveob-
served messages destined for them. Consider Figure 1(C) where
Alice has sent $12 to Bookie but Bookie hasn’t received the pay-
ment. Alice infers that Bookie is now committed to sending her the
book, but Bookie has no clue of an incoming payment, and so isn’t
committed. At quiescence, Bookie would have received the pay-
ment. If even at quiescence, Alice and Bookie disagree, we have
a problem on our hands. Quiescence may only be temporary, be-
cause the agents could be silently computing: it would end when
an agent sends a message based on its internal computations.

We wish to exclude system states where an agent has received
vital information that it hasn’t yet propagated to relevantparties.
In Figure 3(B), it would be premature to consider alignment before
Bob notifies Alice ofclear . In this sense, Bob’s notifying Alice of
clear is integral with receivingInform(clear) from Env. Sim-
ilarly, in Figure 4(B), Bookie sending theCreate is integral with
receivingInform($12). We recognize no intervening states from
the point of view of alignment until all integral observations have
been made; in other words, the intervening states are not visible.
We now turn to the formalization.

Communication. Agents communicate by messaging. Below
m, m′, m0, . . . are variables over messages. Assumptions A1–A4
model communication.

A1. Communication ispoint-to-point. Below m(x, y) indicates
a messagem from x to y.

A2. An agent observes all and only those messages that it sends
or receives. Observations are orderedserially. All observa-
tions pertain to messages. Observations of the environment
are treated as messages fromEnv .

A3. Messaging isreliable. Messages are neither created nor de-
stroyed by the infrastructure.

A4. Messaging isordered. Any two messages sent by an agent
to the same recipient are received in order.

An agentx’s observation sequence〈m0, . . . , mn〉x describes
the sequence of messagesx observes in a particular execution. Let
A be a system ofk agents. Then,O = [O0, . . . , Ok−1] is anobser-
vation vectoroverA, where theOis are the observation sequences,
one for each of thek agents. Below,o is a variable over observation
vectors;ox, etc. are variables over a particular agent’s observation
sequence. A3 and A4 impose validity requirements on vectors.

DEFINITION 2. An observation vectorO over A is valid iff
∀x, y ∈ A: (1) if m(x, y) occurs inOy , then m(x, y) occurs
in Ox; and (2) if m1(x, y) occurs inOy , andm0(x, y) precedes
m1(x, y) in Ox, thenm0(x, y) precedesm1(x, y) in Oy .

Conditions (1) and (2) in Definition 2 capture A3 and A4, re-
spectively. This paper considers only valid observation vectors.

Think of an agent’s observation sequence as representing the
agent’s state at the granularity of the interaction (i.e., ignoring as-
pects of the agent’s state not reflected in its observations). Then an
observation vector represents the state of the system.OA, the set
of all possible observation vectors for systemA, is the set of all
possible executions ofA.

Quiescence. This means that there are no messages in transit in
the system. Definition 3 states that an observation vector isquies-
centif and only if every sent message has been received.

DEFINITION 3. An observation vectorO ∈ OA is quiescent iff
∀x, y ∈ A, if m(x, y) occurs inOx, thenm(x, y) occurs inOy .

Integrity. We now show how to specify integrity constraints on
observations. Section 5 specifies the integrity constraints relevant
to alignment. First though, some preliminaries. LetOx be an ob-
servation sequence of the form〈. . . , m〉x. Then, for any message

m′, Ox; m′ is the concatenation ofOx with m′, and is of the form
〈. . . , m, m′〉x. Let S(Ox) be the set of propositions that can be
inferred from the observation sequenceOx. Section 5 formalizes
S(Ox). The empty conditionε is trivially in S(Ox). S(Ox) may
be thought of as thestateof x after observing the messages inOx.

⌊m[B : A]m′⌋x is anintegrity constrainton the observations of
agentx. Here,B andA are thebeforeand after conditions for
the trigger m, andm′ is the effectof m if the beforeand after
conditions are met.

DEFINITION 4. Consider a constraint⌊m[B : A]m′⌋x. m′ is
an enabled effect ofm with respect to an observation sequenceo

and the constraint iffB ∈ S(o) andA ∈ S(o;m).
An observation sequenceOx is integralwith respect to a set of

constraints iff for any prefixo; m of Ox, o; m; M is a prefix ofOx,
whereM containsan interleaving of the enabled effects ofm with
respect too and the set of constraints.

An observation vector isintegral with respect to a set of con-
straints iff each observation sequence in it is integral with respect
to the set of constraints.

Definition 4 defines enabled messages as those that must be nec-
essarily sent, as deduced from the integrity constraints. An obser-
vation sequence is not integral unless all enabled messageshave
been observed. Notice that to be integral,Ox must onlycontainthe
enabled effects (for every prefix); there is no restriction that the en-
abled effects must occur immediately after the trigger. This means
thatx may make extraneous observations between the trigger and
its enabled effects; however, the system states corresponding to
those observations are not visible for the purposes of alignment.

Alignment. Definition 5 formalizes the notion of alignment by
considering all potential observations of all agents.

DEFINITION 5. A multiagent systemA isaligned(written[〈A〉])
iff ∀O ∈ OA such thatO is quiescent and integral with respect to
the integrity constraints,∀x, y ∈ A : C(x, y, r, u) ∈ S(Oy) ⇒
C(x, y, r, u) ∈ S(Ox).

Definition 5 considers the observations of creditors and debtors
from the same integral and quiescent observation vectors. It says
that if a creditor infers a commitment from its observations, then
the debtor must infer that commitment from its own observations.
When a debtor infers a commitment, but the creditor does not,no
harm is done, and alignment is unaffected.

5. FORMALIZING THE PRINCIPLES
We introduce (nonatomic) propositionscreated (x, y, r, u),

released (x, y, r, u), andcancelled(x, y, r, u), each corresponding
to the eponymous commitment operation having occurred. Ourfor-
malization does not require propositions corresponding tothe oc-
currence ofDELEGATE andASSIGN. We adopt the postulates B9–
B13 in addition to B1–B8.

B9. released (r, u) → created (r, u)

B10. cancelled(r, u) → created (r, u)

B11. created (r, u) andC(r, u) � C(s, v) ⇒ created (s, v)

B12. released (r, u) andC(r, u) � C(s, v) ⇒ released(s, v)

B13. cancelled(r, u) andC(r, u) � C(s, v) ⇒ cancelled(s, v)

Let’s consider some examples to see how B9–B13 work. Sup-
posecreated (c0) holds; by B11,created (cB) and created (cG)
hold. Supposereleased(c0) holds; by B9,created (c0) holds too;
by B12,released(cB) andreleased (cG) hold; by B9,created (cB)
andcreated (cG) hold.

Let’s see how B9–B13 relate to the principles introduced earlier.
B12 and B13 relate to COMPLETE ERASURE. If a commitment



is released or if it is cancelled, all weaker commitments arere-
leased or cancelled, as may be the case. B9 and B10 (together with
B12 and B13) portray ACCOMMODATION: if a commitment has
been cancelled or released, treat all weaker commitments asif they
had held. B11 relates to NOVEL CREATION. It ensures that once
created(r,u) holds, all commitments weaker thanC(r, u) are also
considered created.

Now we define the semantics of the operations themselves in
terms ofS(o), the set of propositions that can be inferred from
the observation sequenceo. For any set of propositionsQ, Q∗

is the deductive closure ofQ. QΠ is theatomic projectionof Q
such that a propositionq belongs toQΠ if and only if two condi-
tions are satisfied: (1)q belongs toQ, and (2)q is either an atomic
proposition, or of the formC(r, u), created (r, u), released (r, u),
or cancelled(r, u).

LetS(ox) be the current state ofx. The general pattern for com-
puting the stateS(ox; m) is the following. First modifyS(ox) by
adding or removing propositions relevant tom. Let S ′(ox; m) be
the resulting set.S(ox; m) is (S ′(ox; m)∗)Π, in other words, the
atomic projection of the deductive closure ofS ′(ox; m). Let us
facilitate this pattern by introducing the notationQ⊙, the atomic
closureof Q, to mean(Q∗)Π.

B14 is the semantics ofInform(r): r holds upon observing it.

B14. S(o; Inform(r)) = (S(o) ∪ {r})⊙

Two-Party Operations. The messagesCreate(r, u), Release(r, u),
andCancel(r, u) realize the corresponding operations.

B15 and B16 give the semantics ofCreate(r, u). B15 states
that if created (r, u) or the consequentu already hold, then upon
observingCreate(r, u), we insertcreated (r, u), and compute its
atomic closure to obtain the resulting state. In particular, C(r, u)
does not hold in the resulting state. The condition related to con-
sequentu is present because the consequent of the commitment
and the commitment both holding together is inconsistent accord-
ing to B1. Hence, ifu holds,Create(r, u) has no effect. Con-
versely, B16 states that if neithercreated (r, u) nor u holds in the
current state, then upon observingCreate(r, u), we insertC(r, u)
and created (r, u), and compute the atomic closure to obtain the
resulting state.

B15. created (r, u) ∈ S(o) or u ∈ S(o) ⇒
S(o;Create(r, u)) = (S(o) ∪ {created (r, u)})⊙

B16. created (r, u) 6∈ S(o) andu 6∈ S(o) ⇒
S(o;Create(r, u)) = (S(o) ∪ {C(r, u), created (r, u)})⊙

Let ⌈⌈C(r, u)⌉⌉ denote the set{C(s, v)|C(r, u) � C(s, v)}, that
is, the set of commitments weaker thanC(r, u). According to B17,
upon observingRelease(r, u), we remove all commitments weaker
thanC(r, u), insertreleased(r, u), and then compute the atomic
closure to obtain the resulting state. B18 analogously gives the
semantics ofCancel(r, u).

B17. S(o;Release(r, u)) =
((S(o) \ ⌈⌈C(r, u)⌉⌉) ∪ {released(r, u)})⊙

B18. S(o;Cancel (r, u)) =
((S(o) \ ⌈⌈C(r, u)⌉⌉) ∪ {cancelled(r, u)})⊙

B9–B18 accurately capture NOVEL CREATION, COMPLETEERA-
SURE, and ACCOMMODATION.

Three-Party Operations. Clearly, any implementation ofDELE-
GATE andASSIGNmust involve at least two messages. Figure 5(A)
exemplifies the message pattern for delegation. Bookie (thedelega-
tor) delegatescB to Charlie (the delegatee). Bookie sendsDelegate

(cB , Charlie) to Charlie. Letd_cB = C(Charlie, Alice, $12,

BeatingtheOdds). Upon its receipt, Charlie sendsCreate(d_cB)

to Alice, thus fully realizing the delegation. Figure 5(B) exempli-
fies the message pattern for assignment. Here, Alice (the assignor)
wants to assigncB from Bookie to Bob (the assignee). Alice sends
Assign(cB, Bob) to Bookie. Leta_cB = C(Bookie, Bob, $12,

BeatingtheOdds). Upon its receipt, Bookie sendsCreate(a_cB)
to Bob, thus fully realizing the assignment.

B19 and B20 state the semantics ofDelegate andAssign mes-
sages, respectively: observing either of these messages has no di-
rect effect on the agent.

B19. S(o;Delegate(x, y, z, r, u)) = S(o)

B20. S(o;Assign(x, y, z, r, u)) = S(o)

The computation ofS(o) is closed under B14–B20.
In the delegate and assign patterns, the initiating messages—

Delegate andAssign, respectively—areinstructionsto an agent
to create a new commitment. R1 and R2 in Table 1 capture the in-
structional nature of the delegate and assign messages, respectively,
as integrity constraints. Each row in Table 1 is in fact, an integrity
constraint on agent behavior, and is of the form⌊Trigger [Before :
After ]Effect⌋Agent . For example, R1 is⌊Delegate(x, y, z, r, u)[ε :
ε]Create(z, y, r, u)⌋z . R3–R8 are explained below.

There are a few points of note about delegation and assignment
as presented here. One, R1 and R2 have nothing to do with restor-
ing alignment. That theCreate must follow the instruction simply
alludes to the atomicity of delegation and assignment as operations.

Two, delegation does not involve a notification from the dele-
gator to the creditor that the commitment is being delegated. No
doubt, such notifications could be practically valuable; however,
our aim here is to delineate the core patterns on top of which addi-
tional patterns, such as those involving a notification to the creditor
may be built. For the same reason, assignment does not involve a
notification from the assignor to the assignee.

Three, the new commitment must be explicitly created by the
debtor—the delegatee in the case of delegation and the debtor in
the case of assignment. This reflects upon a principled approach for
manipulating commitments, by reusing the semantics ofCreate .

Four, if Bookie delegatescB twice to Charlie, then the second
time Charlie need not send aCreate : such a message would be
useless under NOVEL CREATION. This paper sacrifices optimiza-
tion in favor of simplicity.

Considerations of when a commitment operation may success-
fully occur are beyond our scope (for delegation, [9] offersan in-
teresting discussion). This papers assumes that all operations are
successful. Hence, even though Figure 5(A) showscB to hold be-
fore delegation is initiated, that should not be interpreted as a suc-
cess precondition for delegation. Even if Bookie did not infer cB

initially, Bookie’s delegate message to Charlie would still cause
Charlie to send the create message to Alice.

Figure 5: The delegate and assign patterns

5.1 Notifications
Recall that NOTIFICATION states that creditors must notify debtors

of detaches, and debtors must notify creditors of discharges. Two
cases arise for each kind.



# Name Agent Trigger Before After Effect
R1 Delegate z Delegate(x, y, z, r, u) ε ε Create(z, y, r, u)
R2 Assign x Assign(x, y, z, r, u) ε ε Create(x, z, r, u)
R3 Detach1 y Inform(z, y, s) C(x, y, r∧s′, u)∧¬C(x, y, r, u)∧¬s′

wheres ⊢ s′
ε Inform(y, x, s′)

R4 Detach2 y Create(x, y, s, u) ¬C(x, y, r ∧ s′, u) ∧ s′ C(x, y, r ∧ s′, u) Inform(y, x, s′)
R5 Discharge1 x Inform(z, x, u) C(x, y, r, u′) ∧ ¬u′ whereu ⊢ u′ ε Inform(x, y, u′)
R6 Discharge2 x Create(x, y, r, u) ¬C(x, y, r, u) ∧ u′ whereu ⊢ u′ ε Inform(x, y, u′)
R7 D-Priority x Inform(z, x, s) cancelled(x, y, r∧s′, u)∧¬C(x, y, r∧

s′, u) ∧ ¬s′ wheres ⊢ s′
ε Create(x, y, r, u)

R8 C-Priority y Cancel(x, y, r ∧ s, u) s ∧ C(x, y, r ∧ s, u) ∧ ¬C(x, y, r′, u′)
such thatC(x, y, r′, u′) ≻ C(x, y, r, u)

ε Release(x, y, r, u)

Table 1: Integrity constraints on agent behavior

Detach1 (R3). y infersC(x, y, r∧s′, u) and¬C(x, y, r, u)∧¬s′,
meaning that the commitment is not detached yet.y then
observesInform(s) from somez such thats ⊢ s′. As a
result,s′ holds andC(x, y, r ∧ s′, u) is detached, andy in-
fersC(x, y, r, u). y must now informx about the detach by
sendingInform(y, x, s′).

Detach2 (R4). y infers s′ and¬C(x, y, r ∧ s′, u), and then ob-
servesCreate(x, y, s, u) such thatC(x, y, r ∧ s′, u) holds.
C(x, y, r∧s′, u) is detached upons′; hence,y infersC(x, y,

r, u). y must now informx about the detach by sending
Inform(y, x, s′).

Figure 6: Detach notifications

Figure 3(B) illustrates R3. When Bob receivesInform(clear),
R3 kicks in and ensures Alice is notified, thus preserving align-
ment. Figure 6(A) is another example of R3 at work. Here Al-
ice and Sarah are committed to meeting Bob at the lake if the sky
is clear (cL and cLS , respectively). At some point, Bob figures
the sky is clear and therefore infers that both Alice and Sarah are
now unconditionally committed to meet him (cUL and cULS , re-
spectively). R3 ensures that both Alice and Sarah are notified that
the clear condition has been met, thus preserving alignment. Fig-
ures 6(B) illustrates R4. Here, Bob already infersclear. So when
Bob receivesCreate(cL), Bob infers that Alice is unconditionally
committed (cUL). R4 kicks in and ensures Alice is notified.

Discharge1 (R5). x infersC(x, y, r, u′) and¬u′. x then observes
Inform(u) from somez such thatu ⊢ u′. As a result,u′

holds andC(x, y, r, u′) is discharged.x must now inform
the creditory of the discharge by sendingInform(x, y, u′).

Discharge2 (R6). x infers u′. x then sendsCreate(x, y, r, u)
such thatu ⊢ u′. x will not infer C(x, y, r, u′) becauseu′

holds. However,y may not yet inferu′. Therefore,y may in-
ferC(x, y, r, u′). Hence,x must now sendInform(x, y, u′).

Figure 7 illustrates the usage of R5. Alice is committed to both
Bob and Sarah to be at the lake (cL andsL, respectively). When

Figure 7: Discharge notification

Alice gets to the lake, she discharges those commitments. R5kicks
in and ensures that both Bob and Sarah are informed accordingly
so that they also consider their respective commitments discharged.

In Figure 5(A), after Alice observes the create message from
Charlie, suppose Alice sends BookieInform($12) (if she already
inferred $12, then upon observing the create, R4 would apply).
This detachescB . Then R3 kicks in and ensures that Alice also
sends CharlieInform($12). This should not be taken to mean that
Alice sends $12 each to Bookie and Charlie—the proposition$12 is
semantically no different than the propositionclear. An analogous
argument can be made for the scenario in Figure 5(B). Supposethat
after Bookie sends the create message, it sendsInform

(BeatingtheOdds) to Alice. Now R5 would ensure that Bookie
also sentInform(BeatingtheOdds) to Bob.

5.2 Priority
Below, we formalize the implications of detach priority andcan-

cel priority for a commitmentC(x, y, r ∧ s, u).

Detach Priority (R7). x infers cancelled(x, y, r ∧ s′, u) and
¬C(x, y, r ∧ s′, u)∧¬s′. (Note thatcancelled(x, y, r ∧ s′, u) 6⇒
¬C(x, y, r ∧ s′, u). A cancelled commitment may come to hold
again because a stronger commitment was created.)x then ob-
servesInform(s) from somez such thats ⊢ s′. If C(x, y, r∧s′, u)
had not been cancelled, it would have been detached. Buty may
not know about the cancellation yet. Therefore, the debtor must act
as if the commitment has been detached. Hence, it must now send
Create(x, y, r, u).

Cancel Priority (R8). y inferss andC(x, y, r ∧ s, u). Therefore,
it also infersC(x, y, r, u). y then observesCancel(x, y, r ∧ s, u).
It could be thatx sentCancel(x, y, r ∧ s, u) without knowing that
s holds, and thereforex may not inferC(x, y, r, u). To fix this pos-
sible misalignment,y must now sendRelease(x, y, r, u). y though
does not have to send the release if a commitment strictly stronger
thanC(x, y, r, u) holds. Sending the release then will be ineffec-
tive because of COMPLETE ERASURE.

Figure 4(B) illustrates the case of detach priority to fix themis-
alignment of Figure 4(A), whereas Figure 4(C) illustrates the case



of cancel priority.
It could be that in the case of detach priority, Alice cheats by

sending the payment even after receiving the cancel. Analogously,
in the case of cancel priority, Bookie could cheat and get away with
it. This paper does not address the issue of trust; it is orthogonal to
the problem of alignment.

R1–R8 are weak and locally executable constraints on an agent’s
behavior because they only call for an agent tosendmessages.
They involve neither receiving a message nor synchronizingwith
another agent.

5.3 Putting It All Together
Now it remains to show that under the assumptions we have

made, the formalization of commitment operations we have pro-
posed guarantees that any multiagent system is aligned. Notice that
a commitment is strengthened only through aCreate or anInform

(as detach). A commitment is removed or weakened only through
aRelease or Cancel , or anInform (as discharge).

THEOREM 1. For anyA, A1–A4, B1–B20 and R1–R8
guarantee alignment, that is,[〈A〉].

PROOF. (Sketch)A is aligned at the outset, i.e., in the obser-
vation vector of empty sequences, when no agent has made any
observations. Inductively, assume thatA is aligned up to a quies-
cent, integral observation vectorO. Consider two agents,x andy

in A.
Now expandO to a quiescent, integral observation vectorO′ =

O; O∆. There are two possible threats to alignment: (1) ify infers
a new commitment as creditor that its debtor doesn’t; and (2)if
y continues to infer a commitment as creditor that it previously
inferred, but its debtor no longer does.

For (1), consider a commitment added byy, i.e.,C(x, y, r, u) ∈
S(O′

y)\S(Oy). Without loss of generality, assumeC(x, y, r, u) is
maximally strong, i.e., no other commitment added byy is strictly
stronger thanC(x, y, r, u). This meansO∆

y includes receiving a
detach (Inform) or a create message. For a detach, by integrity,y

would have sent a message tox, which would have landed within
O∆

x to ensure quiescence. A create would have originated fromx.
In either case, the quiescence ofO′ ensures thatO′

x ⊢ C(x, y, r, u).
For (2), consider a commitment not added byy but removed

by x, i.e., C(x, y, r, u) ∈ S(Oy) and C(x, y, r, u) ∈ S(Ox) \
S(O′

x). Without loss of generality, assumeC(x, y, r, u) is maxi-
mally strong, i.e., no other commitment removed byx is strictly
stronger thanC(x, y, r, u).

BecauseC(x, y, r, u) ∈ S(Oy), by our inductive hypothesis,
C(x, y, r, u) ∈ S(Ox). Hence, ifC(x, y, r, u) 6∈ S(O′

x), this
meansO∆

x includes receiving a discharge or release, or sending a
cancel message. The release would be sent byy, thusC(x, y, r, u) 6∈
S(O′

y). The cancel would be sent toy and the discharge would
be propagated toy to ensure integrity. Therefore, by quiescence,
C(x, y, r, u) 6∈ S(O′

y).

6. DISCUSSION
Our formalization of the commitment operations meets both au-

tonomy compatibility and semanticity. It identifies the fundamen-
tal multiparty messaging patterns. Other business patterns may be
built on top. For example, our delegation pattern may be thought of
asdelegation while retaining responsibilitysince the delegator re-
mains committed too. Adelegation without responsibilitypattern
would additionally involve a cancellation message from thedelega-
tor to the creditor. Singhet al. describe several such patterns from
an architectural point of view [14].

Our approach can benefit areas where commitments are used
as the central basis for semantics. The connection with commu-
nication languages [4, 5] and protocols [3] is the most obvious.
Winikoff [15] studies how commitments may be implemented ina
distributed setting. However, his solution only allows fora mono-
tonically increasing set of commitments, and does not support dis-
charge, release, and cancel.

Argumentation (for example, see [1]) is another major applica-
tion. Players in a dialogue game are envisaged as having private
commitment stores. In most current work, a dialogue protocol,
which limits how and when the players may make moves, also
helps to keep the agents aligned. However, it may be unduly re-
strictive; for example, it may only allow turn taking. Our results
could lead to more flexible and robust dialogue protocols.

The problem of state alignment in distributed systems in a gen-
eral one. Our approach exploits the semantics of commitments to
enable a flexible and principled approach. The work on beliefalign-
ment is relevant [6, 10], although it doesn’t involve the richness of
commitment operations and multiparty interactions as studied here.
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