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ABSTRACT
An interaction protocol specifies the constraints on communication
between agents in a multiagent system. Ideally, we would like to be
able to treat protocols asmodules and compose them in a declarative
manner to systematically build more complex protocols. Supporting
composition correctly requires taking into account information-
based causality relationships between protocols. One important
problem that may arise from inadequate consideration of such rela-
tionships is that the enactment of a composite protocol may violate
atomicity; that is, some components may be initiated but prevented
from completing. We use the well-known all or nothing principle as
the basis for formalizing atomicity as a novel correctness property
for protocols.

Our contributions are the following. One, we motivate and for-
malize atomicity and highlight its distinctiveness from related cor-
rectness notions. Two, we give a decision procedure for verifying
atomicity and report results from an implementation. For concrete-
ness of exposition and technical development, we adopt BSPL as
an exemplar of information causality approaches.
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1 INTRODUCTION
An interaction protocol specifies the rules of encounter between
autonomous agents in a multiagent system. Two kinds of protocols
have been studied extensively in the multiagent systems litera-
ture: protocols that specify constraints on message ordering and
occurrence, and protocols that specify the meanings of interactions.
We refer to the former as operational and the latter as meaning-
based. RASA [18], HAPN [30], and UML interaction diagrams and
its variants such as AUML [20] are among several languages devel-
oped to specify operational protocols. Meaning-based protocols are
exemplified by work on commitment protocols [4, 9, 28, 32].

We are primarily concerned here with the composition of op-
erational protocols. Ideally, we would like to be able to treat a
protocol as a module, analogous to the way a program may be
treated as a module, and compose it with other protocols to ob-
tain more complex protocols. Further, we would like to be able to
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compose protocols declaratively on the basis of information-based
causality constraints [25, 27]. Specifically, such constraints would
capture what an agent must know (or not know) to produce a new
piece of information. For example, in a typical sales transaction,
one constraint would capture that a seller cannot fill an order un-
til it knows what the order is. For concreteness, say there were
a message schema FillOrder with a parameter order whose value
reflected the details of the items ordered in the transaction. An
instance of FillOrder could not be sent by the seller until it knew
the details of the items ordered through a prior interaction in the
transaction, say, through the receipt of an instance of the message
schema PlaceOrder (sent by the buyer) that produces the value for
order. Ignoring other details, the two specifications PlaceOrder and
FillOrder may be composed into a protocol named, say Purchase,
on the basis that PlaceOrder, by producing a binding for order, sat-
isfies the causal constraint on FillOrder that the binding of order be
known. Notice how the dependency induces a message ordering:
in any instance of Purchase, PlaceOrder must be received by seller
before it can send FillOrder.

Although the foregoing example composes message specifica-
tions, note that a message specification is an elementary protocol
and the idea of causality-based composition applies to protocols in
general. The Blindingly Simple Protocol Language (BSPL) [24] and
its extensions such as Splee [6] are exemplars of the information-
based causality approaches.

Compositions based on causality yield declarative specifications
and support flexible enactments in fully decentralized asynchro-
nous settings [25]. Here, “decentralized” means shared nothing and
“asynchronous” means not relying on ordered channels (in contrast
to much of the literature that assumes ordered channels). However,
not all compositions would be desirable, as the following example
demonstrates. Say the aforementioned protocol Purchase were ex-
tended with Transfer (pay by wire) and Credit (pay by credit card)
protocols intended to offer a mutually exclusive choice between
two payment methods. The specification of Purchase would clearly
be incorrect if both Transfer and Credit could be enacted in the
same instance of Purchase. Purchase would also be incorrect, specif-
ically, nonatomic, if there were enactments wherein Transfer had
been initiated but was blocked from completion even though Credit
had completed. Interestingly, it may be the completion of Credit
itself that blocks the completion of Transfer (as a way of ensuring
that only one payment method goes through). Such cases, where
the enactment of Transfer is initiated but blocked, in effect, left
dangling, may be indicative of semantic errors. For instance, the
errors may the take the form of active commitments that cannot
possibly be discharged.

To capture undesirable compositions that could result in dangling
enactments, we propose atomicity as a correctness criterion for
protocols. The basis for atomicity is the observation that a message



schema is de facto atomic: either its enactment occurs completely or
not at all—there is nothing in between. For a composed protocol, the
situation is not as straightforward, as we saw above for Purchase.
Some constituents may complete, others may block. Lifting the
idea of atomicity to protocols generally, we say that a composed
protocol is atomic if and only if each constituent is atomic and
completion of a constituent implies that the composed protocol can
complete. Informally, our notion of atomic protocols is analogous to
the notion of atomic programs [11] and transactions [10] in that it
captures a notion of all or nothing. However, atomicity for programs
and transactions is typically formulated in shared memory settings
whereas we address decentralized settings.

Clearly, the problem in the foregoing example could be avoided
if the buyer prudently enacts either Transfer or Credit but not both.
Further, we would like to guarantee atomicity from the protocol
specification alone, without resort to agent specifications. This
motivation reflects the essential doctrine for protocols: capturing
the interaction logic and presenting it in a reusable form [3, 19, 22].

We adopt BSPL (Section 2) to convey our ideas concretely and
formally. Our contributions are the following.
• We motivate atomicity for information-based protocols and
provide examples and patterns of atomicity violations and
their corrections (Section 3).
• We formalize atomicity and distinguish it from liveness and
safety of information-based protocols (Section 4).
• We give a decision procedure for verifying atomicity and
describe an implementation of the decision procedures (Sec-
tion 5). We report results from running the implementation
on examples in the present paper.

Finally, Section 6 discusses related work and future directions.

2 BSPL OVERVIEW AND FORMALIZATION
BSPL [24] specifies protocol constraints in terms of causality, as
motivated above, and integrity based on key constraints [10] on the
information model. The key constraints capture the idea that in
any protocol enactment a role may not send or receive conflicting
information. Listing 1 illustrates BSPL’s main concepts via a simple
protocol.

Listing 1: Purchase with payment options
Purchase {
roles B, S / / Buyer , Sel ler
parameters out order key , out product
B 7→ S : PlaceOrder[out order ]
B 7→ S : Transfer [ in order , out payment]
B 7→ S : Credit [ in order , out payment]
S 7→ B: FillOrder [ in order , in payment , out product]

}

The listing declares Purchase as the name of the protocol, two
public roles B (buyer) and S (seller), and two public parameters
order and product. Parameter order is adorned key, meaning that
bindings of order uniquely identify enactments of Purchase and
functionally determine the other parameters. Both parameters are
adorned ⌜out⌝, meaning that their bindings are produced by en-
acting the protocol, that is, enacting the messages declared in it.

The public parameters of a protocol serve as its interface and fa-
cilitate composition. Purchase declares four message schemas (the
sequence of their listing is irrelevant). By convention, any key pa-
rameter of the protocol is a key parameter for any message in which
it appears, though a message may have additional key parameters.
Thus, PlaceOrder is from the buyer to the seller and its key is order.
The ⌜out⌝ adornment means that sending PlaceOrder produces a
binding for order. In FillOrder, order and payment are adorned ⌜in⌝,
meaning that a seller may send an instance of FillOrder only if it
has observed bindings for both. Parameters may in addition be
adorned with ⌜nil⌝, indicating that the message cannot be sent if
that parameter is bound.

A set of message instances (an enactment) completes a BSPL
protocol if the messages cover all of its public ⌜out⌝ parameters;
that is, each public ⌜out⌝ parameter is included in at least one mes-
sage instance. For Purchase, PlaceOrder and FillOrder cover order
and product. An enactment of Purchase is complete when an order
has been both placed and filled. However, FillOrder has parameter
payment adorned ⌜in⌝. Thus the buyer must produce payment
by sending either Transfer (representing a bank wire transfer) or
Credit (representing payment via credit card) before the order can
be filled.

Singh [26] formalizes BSPL and properties and gives verification
techniques. Informally, a protocol is enactable if and only if a valid
complete enactment exists. Request Quote is enactable, because the
enactment consisting of PlaceOrder followed by Transfer and then
FillOrder is valid and covers all public parameters of Purchase.

A protocol is live if and only if any enactment can progress to
completion. Purchase is live: for any value of order, PlaceOrder may
be sent followed by Transfer or Credit and then FillOrder, which
would complete the Purchase enactment. An alternative specifica-
tion without Transfer and Credit would not be live because without
any way to produce a binding for payment, FillOrder cannot be
sent and the enactment cannot be completed.

Informally, a protocol is safe if and only if it is impossible to
produce conflicting bindings for a parameter in any enactment. A
potential safety violation would be if a buyer sent two instances
of Transfer for the same order, one with a payment of $10 and one
with a payment of $20. Such a violation can be easily avoided by
the buyer based solely on its local knowledge, and so is not a flaw
in the specification. A real safety violation occurs when two agents
may produce conflicting bindings in an enactment. Purchase is safe.
If the message Gift in Listing 2 were added to Purchase, it would
become unsafe. Both seller and buyer could concurrently produce
bindings for payment; that is, a nonlocal conflict would exist.

Listing 2: An unsafe extension to Purchase.
S 7→ B: Gift [ in order , out payment , out product]

BSPL supports composition in a natural manner. A single mes-
sage is an elementary protocol in BSPL. Thus, PlaceOrder, Transfer,
and Credit, and FillOrder are all elementary protocols. Purchase
composes these messages by referring to them. A BSPL protocol
may have references to one or more protocols. Protocol Refined-
Purchase (Listing 3) replaces Transfer and Credit with composite
protocols RefinedTransfer and RefinedCredit, respectively.

We reproduce here the formal semantics of BSPL (from Singh
[26]).



Listing 3: Refined purchase protocol
RefinedPurchase {
roles B, S / / Buyer , Sel ler
parameters out order key , out payment , out product
B 7→ S : PlaceOrder[out order ]
RefinedTransfer (B, S , in order , out payment)
RefinedCredit (B, S , in order , out payment)
S 7→ B: FillOrder [ in order , in payment , out product]

}

For convenience, we fix the symbols by which we refer to finite
lists of roles (®t ), public roles (®x ), private roles (®y), public parameters
(®p), key parameters (®k ⊆ ®p), ⌜in⌝ parameters ( ®pI ⊆ ®p), ⌜out⌝ param-
eters ( ®pO ⊆ ®p), ⌜nil⌝ parameters ( ®pN ⊆ ®p), private parameters (®q),
and parameter bindings (®v , ®w). Here, ®p = ®pI ∪ ®pO ∪ ®pN , ®pI ∩ ®pO = ∅,
®pI ∩ ®pN = ∅, and ®pN ∩ ®pO = ∅. And, t and p refer to an individual
role and parameter, respectively. To reduce notation, we rename
private roles and parameters to be distinct in each protocol, and the
public roles and parameters of a reference to match the declaration
in which they occur. Throughout, we use ↓x to project a list to
those of its elements that belong to x .

Definition 1 captures BSPL protocols. A protocol may reference
another protocol. The references bottom out at message schemas.
Above, Purchase references Transfer. And, if a protocol were to
reference Purchase, it would be able to reference (from its public
or private parameters) only the public parameters of Purchase, not
payment, which is a private parameter.

Definition 1: A protocol P is a tuple ⟨n, ®x , ®y, ®p, ®k, ®q, F ⟩, where n is
a name; ®x , ®y, ®p, ®k , and ®q are as above; and F is a finite set of f
references, {F1, . . . , Ff }. (∀i : 1 ≤ i ≤ f ⇒ Fi = ⟨ni , ®xi , ®pi , ®ki ⟩,
where ®xi ⊆ ®x ∪ ®y, ®pi ⊆ ®p ∪ ®q), ®ki = ®pi ∩ ®k , and ⟨ni , ®xi , ®pi , ®ki ⟩ is
the public projection of a protocol Pi (with roles and parameters
renamed).

Definition 2: The public projection of a protocol P =
⟨n, ®x , ®y, ®p, ®k, ®q, F ⟩ is given by the tuple ⟨n, ®x , ®p, ®k⟩.

We treat a message schema ⌜s 7→ r : m ®p(®k)⌝ as an atomic
protocol with exactly two roles (sender and receiver) and no ref-
erences: ⟨m, {s, r }, ∅, ®p, ®k, ∅, ∅⟩. Here ®k is the set of key parameters
of the message schema. Usually, ®k is understood from the protocol
in which the schema is referenced: ®k equals the intersection of ®p
with the key parameters of the protocol declaration.

Below, let roles(P) = ®x ∪ ®y ∪
⋃
i roles(Fi ); params(P) = ®p ∪ ®q ∪⋃

i params(Fi ); msgs(P) =
⋃
i msgs(Fi ) and msgs(s 7→ r : m ®p) =

{m}. Definition 3 assumes that the message instances are unique
up to the key specified in their schema.

Definition 3: A message instance m[s, r , ®p, ®v] associates a message
schema ⌜s 7→ r : m ®p(®k)⌝ with a list of values, where | ®v | = | ®p |,
where ®v ↓p= ⌜nil⌝ if and only if p ∈ ®pN .

Definition 4 introduces a universe of discourse (UoD). Definition 5
captures the idea of a history of a role as a sequence (equivalent to
a set in our approach) of all and only the messages the role either

emits or receives. Thus H ρ captures the local view of an agent who
might adopt role ρ during the enactment of a protocol.

Definition 4: A UoD is a pair ⟨R ,M ⟩, where R is a set of roles, M
is a set of message names; each message specifies its parameters
along with its sender and receiver from R .

Definition 5: A history of a role ρ, H ρ , is given by a sequence of
zero or more message instancesm1 ◦m2 ◦ . . .. Eachmi is of the
formm[s, r , ®p, ®v] where ρ = s or ρ = r , and ◦ means sequencing.

Definition 6 captures the idea that what a role knows at a history
is exactly given bywhat the role has seen so far in terms of incoming
and outgoing messages. Here, 2(i) ensures thatm[s, r , ®p(®k), ®v], the
message under consideration, does not violate the uniqueness of
the bindings. And, 2(ii) ensures that ρ knows the binding for each
⌜in⌝ parameter and not for any ⌜out⌝ or ⌜nil⌝ parameter.

Definition 6: A message instancem[s, r , ®p(®k), ®v] is viable at role ρ’s
history H ρ if and only if (1) r = ρ (reception) or (2) s = ρ (emis-
sion) and (i) (∀mi [si , ri , ®pi , ®vi ] ∈ H ρ if ®k ⊆ ®pi and ®vi ↓®k= ®v ↓®k
then ®vi ↓ ®p∩ ®pi= ®v ↓ ®p∩ ®pi ) and (ii) (∀p ∈ ®p : p ∈ ®pI if and only if
(∃mi [si , ri , ®pi , ®vi ] ∈ H

ρ and p ∈ ®pi and ®k ⊆ ®pi )).
Definition 7 captures that a history vector for a protocol contains

a history for each role, and that all of the histories together are
causally sound: a message is received only if it has been previously
emitted [16].

Definition 7: Let ⟨R ,M ⟩ be a UoD. We define a history vector for
⟨R ,M ⟩ as a vector [H1, . . . ,H |R |], such that (∀s, r : 1 ≤ s, r ≤
|R | : H s is a history and (∀m[s, r , ®p, ®v] ∈ H r : m ∈ M and
m[s, r , ®p, ®v] ∈ H s )).

The progression of a history vector records the progression of
an enactment of a multiagent system. Under the above causality
restriction, a vector that includes a reception must have progressed
from a vector that includes the corresponding emission.

Definition 8: A history vector over ⟨R ,M ⟩, [H1, . . . ,H |R |], is vi-
able if and only if either (1) each of its element histories is empty or
(2) it arises from the progression of a viable history vector through
the emission or the reception of a viable message by one of the
roles, that is, (∃i,mj : H i = H ′i ◦mj and [H1, . . . ,H ′i ,H |R |] is
viable).

The heart of our formal semantics is the intension of a protocol,
defined relative to a UoD, and given by the set of viable history
vectors, each corresponding to its successful enactment. Given a
UoD, Definition 9 specifies a universe of enactments, based on
which we express the intension of a protocol. We restrict attention
to viable vectors because those are the only ones that can be realized.
We include private roles and parameters in the intension so that
compositionality works out. In the last stage of the semantics, we
project the intension to the public roles and parameters.

Definition 9: Given a UoD ⟨R ,M ⟩, the universe of enactments for
that UoD, UR ,M , is the set of viable history vectors, each of which
has exactly |R | dimensions and each of whose messages instanti-
ates a schema in M .

Definition 10 states that the intension of a message schema is
given by the set of viable history vectors on which that schema is



instantiated, that is, an appropriate message instance occurs in the
histories of both its sender and its receiver.

Definition 10: The intension of a message schema is given by:
[[m(s, r , ®p)]]R ,M = {H |H ∈ UR ,M and (∃®v, i, j : H s

i =

m[s, r , ®p, ®v] and H r
j =m[s, r , ®p, ®v])}.

A (composite) protocol completes if one or more of subsets of
its references completes. For example, Purchase yields two such
subsets, namely, {PlaceOrder, Transfer, FillOrder} and {PlaceOrder,
Credit, FillOrder}. Informally, each such subset contributes all the
viable interleavings of the enactments of its members, that is, the
intersection of their intensions. Definition 11 captures the cover
as an adequate subset of references of a protocol, and states that
the intension of a protocol equals the union of the contributions of
each of its covers.

Definition 11: Let P = ⟨n, ®x , ®y, ®p, ®k, ®q, F ⟩ be a protocol.
Let cover (P,G) ≡ G ⊆ F | (∀p ∈ ®pO : (∃Gi ∈ G : Gi =

⟨ni ,xi ,pi ⟩ and p ∈ ®pi )) and P’s intension, [[P]]R ,M =

(
⋃

cover(P,G)(
⋂
Gi ∈G [[Gi ]]R ,M ))

y
®x .

The UoD of protocol P consists of P’s roles and messages includ-
ing its references recursively. For example, Purchase’s UoDU = ⟨{b,
s}, {PlaceOrder, Transfer, Credit, FillOrder}⟩.

Definition 12: The UoD of a protocol P, UoD(P) =
⟨roles(P),msgs(P)⟩.

Definition 13: A protocol P is enactable if and only if [[P]]UoD(P) ,
∅.

Definition 14: A protocol P is safe if and only if each history vector
in [[P]]UoD(P) is safe. A history vector is safe if and only if all key
uniqueness constraints apply across all histories in the vector.

Definition 15: A protocol P is live if and only if each history vector
in universe of enactments UUoD(P) can be extended through a
finite number of message emissions and receptions to a history
vector in UUoD(P) that is complete.

3 ATOMICITY CONCEPTS
We now motivate atomicity informally with the help of protocol
specifications in BSPL.

Consider again the protocol Purchase in Listing 1. In Purchase,
a buyer places an order and then tenders payment via either wire
transfer or credit. Transfer and Credit conflict because both produce
a binding for payment. The conflict makes themmutually exclusive:
either B can send Transfer or Credit but not both. Purchase is both
live and safe. It is atomic too.

To see why, recall the intuition behind atomicity from Section 1:
(1) a protocol is atomic if each of its constituent protocols is atomic
and (2) the completion of a component implies the composition can
complete. Let’s apply this concept to Purchase. In Purchase, all of its
references PlaceOrder, Transfer, Credit, and FillOrder are atomic by
virtue of being message schemas, thus satisfying (1) above. Further,
any enactment where any of them occurs can be completed, thus
satisfying (2) above. For example, consider an enactment where
Transfer has occurred for some values of order and payment; order
must already have been bound by an instance of PlaceOrder. Now
FillOrder can occur in the enactment, which produces a binding

for product. Thus, all of Purchase’s parameters are bound and the
enactment is complete.

However, some conflicts violate atomicity if they occur between
protocols after they have both been initiated and prevent one of
them from completing. Consider RefinedPurchase in Listing 3, in
conjunction with the following definitions for RefinedTransfer and
RefinedCredit.

Listing 4: Refined payment protocols
RefinedTransfer {
roles B, S
parameters in order key , out payment
B 7→ S : OfferTransfer [ in order , out transferOffer ]
S 7→ B: AcceptTransfer [ in order , in transferOffer , out

transferAccepted ]
B 7→ S : Init iateTransfer [ in order , in transferAccepted ,

out payment]
}
RefinedCredit {
roles B, S
parameters in order key , out payment
B 7→ S : OfferCredit [ in order , out creditOffer ]
S 7→ B: AcceptCredit [ in order , in creditOffer , out accept ]
B 7→ S : PayCredit [ in order , in accept , out payment]

}

In Listing 4, the OfferTransfer and OfferCredit messages do not
conflict with each other, as neither binds any parameters that would
prevent the other from being sent. This lack of conflict means that
both RefinedTransfer and RefinedCredit can be initiated in the same
enactment. The seller may additionally send AcceptTransfer and
AcceptCredit without conflict. However, the buyer is prevented from
sending both InitiateTransfer and PayCredit because both produce
bindings for payment. Thus both protocols can be initiated but only
one can be completed, violating atomicity.

This violation of atomicity indicates that the specification is
flawed. Perhaps the RefinedTransfer and RefinedCredit protocols
should be mutually exclusive as in the original Purchase protocol,
requiring the buyer to initiate only one of them. Alternatively, some
mechanism for canceling one of the two should be added, or the
protocols should be modified so they do not conflict with each other,
as would be the case if the buyer is allowed to split the payment
across multiple methods.

For example, the FixedPurchase variant of Purchase adds the offer
parameter to OfferTransfer and OfferCredit messages as in Listing 5,
so that the buyermay initiate only one of the two payment protocols.
Since only one of the protocols can be initiated the other cannot
prevent it from completing, so atomicity is restored.

Listing 5: FixedPurchase with explicit choice
B 7→ S : OfferTransfer [ in order , out offer , out

transferOffer ]
B 7→ S : OfferCredit [ in order , out offer , out creditOffer ]

Not all atomicity violations require mutual exclusion. Some can
be resolved by an alternative path to completion that avoids the
conflict. For example, consider ShareHealthData in Listing 6.



Listing 6: Sharing private health records
ShareHealthData {
roles P, R, C / / patient , researcher , c l in ic
parameters out ID key , out granted , out revoked
P 7→ C: Authorize[out ID , out granted]
AccessData (R, C, in ID , in granted , ni l revoked , out data )
P 7→ C: Revoke[ in ID , in granted , out revoked]

}
AccessData {
roles R, C / / researcher , c l in ic
parameters in ID key , in granted , ni l revoked , out data
R 7→ C: Request[ in ID , in granted , out req]
C 7→ R: Provide[ in ID , in req , out data , n i l revoked]

}

In ShareHealthData, a patient can Authorize a clinic to share
their data with researchers, until they subsequently Revoke access.
While access is granted a researcher may Request the data, which
the clinic sends them via Provide. However, because of the ⌜nil⌝
adornment, Provide cannot be sent after revoke is bound. Since
data must be bound to complete AccessData, atomicity is violated
in enactments where the patient sends Revoke after Request occurs
but before Provide.

The conflict between ⌜out⌝ and ⌜nil⌝ parameters causes the
protocols to be partially ordered rather than mutually exclusive:
the AccessData component can be enacted completely as long as
actions are performed in the correct sequence.

The patient should be able to revoke access even if there is a pend-
ing request. To enable this possibility without violating atomicity,
the clinic should be able to complete AccessData without sending
Provide, such as by rejecting the request. Listing 7 adds a reject mes-
sage to AccessData to restore atomicity. (data in this case would be
empty or a rejection message)

Listing 7: Alternative path to complete AccessData
C 7→ R: Reject [ in ID , in req , out data , in revoked]

Based on the kinds of conflicts that are possible with simple
causal relationships as expressed in BSPL, we have identified several
kinds of atomicity violations, illustrated by the above examples and
summarized in Table 1. Exclusion conflicts involving either an ⌜in⌝
or ⌜out⌝ conflicting with an ⌜out⌝, such as that in RefinedPurchase,
can be resolved by only enabling one of the conflicting protocols.
Ordering conflicts involving an ⌜in⌝ or ⌜out⌝ conflicting with a
⌜nil⌝, such as that in ShareHealthData, can additionally be resolved
by specifying an alternative path to completion. Indirect conflicts
involving an ⌜in⌝ parameter and an ⌜out⌝ or ⌜nil⌝ parameter are
equivalent to direct conflicts involving an ⌜out⌝ and either ⌜out⌝
or ⌜nil⌝ respectively; the information simply passes through at least
one intermediary before the conflict becomes apparent. Because
these are the only combinations of BSPL parameter types that
produce conflicts, this list is exhaustive.

4 ATOMICITY FORMALIZATION
We define ref (P) as the set of references of P.

Violation Cause Resolution

Mutual Exclusion ⌜out⌝&⌜out⌝ }
Enable only oneIndirect Exclusion ⌜in⌝&⌜out⌝

Partial Ordering ⌜out⌝&⌜nil⌝ } Provide other means
of completionIndirect Ordering ⌜in⌝&⌜nil⌝

Table 1: Atomicity violations and their resolutions.

Additionally, we use τ ⪯ τ ′ to mean that the history vector τ ′ is
an extension of τ obtained by appending at most a finite number
emissions and receptions.
[[R]] ⊑ [[Q]] means ∀τ ∈ [[R]], ∃τ ′ ∈ [[Q]] such that τ ⪯ τ ′.

Definition 16: A protocol Q is atomic in universe of discourseU if
and only if ∀R ∈ ref (Q),

(1) R is atomic inU , and
(2) [[R]]U ⊑ [[Q]]U
“P is atomic” or “the atomicity of P” are shorthand for the

atomicity of P in its own universe of discourse.

Although the definition considers only direct references, its re-
cursive nature means that if any message is sent, every composition
that includes it must eventually complete. This definition captures
our intuition that initiating a component protocol should result in
its eventual completion, all the way from the individual messages
to the highest level composition.

The intension [[Q]] of protocol Q is the set of enactments that
complete Q by the emission of at least one message from the cover
of each of its ⌜out⌝ parameters. The universe of discourse specifies
which roles and messages are involved in the enactments. Using the
universe of discourse of a compositionP that includesQ means that
conflicts can occur between messages anywhere in the composition,
rather than just within the one component protocol.

For example, [[Transfer]]UoD(Purchase) projected to role B is:
{[PlaceOrder, Transfer], [PlaceOrder, Transfer, FillOrder]} For this

intension, each history vector in [[Transfer]]UoD(Purchase) can be
extended by a message reception to a history vector that completes
Purchase, and the same is true for the other roles and components,
so Purchase is atomic.

Conversely, [[OfferTransfer]]UoD(RefinedPurchase) contains the en-
actment [PlaceOrder, OfferCredit, OfferTransfer, AcceptCredit, Pay-
Credit] which cannot be extended to an enactment that completes
Transfer, so RefinedPurchase is not atomic.

Because the cover of a protocol contains only messages within
the protocol, each component protocol must be completed by its
own messages to be atomic. Even if an enactment produces the
same parameters via messages from another component Q ′, it is
not in the intension of Q because its cover is not complete. Thus
Credit is not completed by the binding of payment produced by
InitiateTransfer because that message is not in the cover of Credit.

4.1 Distinction From Existing Properties
We demonstrate the orthogonality of atomicity to BSPL’s notions of
safety and liveness by exemplifying every combination of atomicity
and safety or liveness, as shown in Table 2.



Atomic Nonatomic

Safe Purchase ShareHealthData
Unsafe Purchase+Gift RefinedPurchase
Live Purchase RefinedPurchase
Non-live Transfer Stuck

Table 2: Protocols demonstrating orthogonality of proper-
ties.

For completeness, a trivially nonlive, nonatomic protocol Stuck
is provided in Listing 8.

Listing 8: Trivially nonlive and nonatomic protocol
Stuck {
roles A, B
parameters out begin key , out end
A 7→ B: Start [out begin]

}

4.2 Relationships with Existing Properties
Although atomicity is orthogonal to the other properties, there are
some connections. The following theorem shows that a protocol is
atomic if it is not only nonlive, but none of its messages is enactable.

Theorem 1: A protocol is atomic if its universe of enactments is
empty.

Proof 1 (Proof): If the universe of enactments of protocolP is empty,
then ∀m ∈ msgs(P), [[m]]UoD(P) = ∅. Similarly, [[P]]UoD(P) = ∅

Let a protocol of height 0 be a message schema which is an
elementary protocol and therefore atomic.

Let a protocol of height n + 1 be a protocol which references
protocols of height n or less.

Suppose protocols of height n or less with an empty universe
of enactments are atomic. Let Q be a protocol of height n + 1 with
an empty universe of enactments. Then all references R ∈ ref (Q)
are of height n or less, and UUoD(R) ⊆ UUoD(Q) = ∅, and so have
empty universes of enactments. Thus ∀R ∈ ref (Q),R is atomic by
assumption and [[R]]UoD(Q) ⊆ UUoD(Q) = ∅, so [[R]]UoD(Q) ⊑

[[Q]]UoD(Q), and Q is atomic.
By induction, any protocol with an empty universe of enactments

is atomic. □

Conversely, if a protocol is both enactable and atomic then itmust
be live. Liveness concerns the protocol as a whole and guarantees
it can always complete, while atomicity concerns compositions of
distinct component protocols, recursively ensuring that each will
complete if initiated.

Theorem 2: Any protocol that is enactable and atomic is live.

Proof 2 (Proof): A protocol P is live if for each τ ∈ UUoD(P), ∃τ ′ ∈
[[P]]UoD(P) such that τ ⪯ τ ′.

Suppose protocol P is enactable. Then ∃τ ∈ [[P]]UoD(P).
Suppose υ is a history vector in UUoD(P). Then either υ is empty,

or υ ∈ [[m]]UoD(P) for some messagem ∈ msgs(P).
If υ is empty, then υ ⪯ τ ∈ [[P]]UoD(P).
Ifm ∈ ref (P), then by the definition of atomicity∃υ ′ ∈ [[P]]UoD(P)

such that υ ⪯ υ ′.

Ifm < ref (P), then ∃Q ∈ ref (P) such thatm ∈ msgs(Q) and by
atomicity [[Q]]UoD(P) ⊑ [[P]]UoD(P). By induction [[m]]UoD(P) ⊑

[[P]]UoD(P). Then by the definition of atomicity ∃υ ′ ∈ [[P]]UoD(P)
such that υ ⪯ υ ′.

Thus in each case υ can be extended to a history vector in
[[P]]UoD(P), so P is live. □

5 VERIFICATION
We have built a tool named Protocheck for automatically checking
whether or not a protocol specification is atomic, to demonstrate
that protocol atomicity is not just a theoretical property of proto-
cols.

The verification process is similar to the method used by Singh
[26]. We used a simple temporal logic to represent the definitions
and constraints required for atomicity. The temporal logic itself
was then implemented on top of a boolean logic solving library.

In this approach, each event is represented as a boolean variable.
These events are then combined into expressions representing the
integrity constraints and desired properties of the protocol. Finally,
the expressions are evaluated using the boolexpr SAT solving library
for Python.

5.1 Logic: Syntax and Semantics
The temporal logic language we adopt, Precedence, was used by
Singh to verify the BSPL correctness properties of enactability,
safety, and liveness [23, 26].

The atoms of Precedence are events. Below, e and f are events.
If e is an event, its complement e is also an event. e is not the simple
negation or non-occurrence of e , but an event indicating that e can
never occur in the future. The terms e · f and e ⋆ f , respectively,
mean that e occurs prior to f and e and f occur simultaneously.
The Boolean operators: ‘∨’ and ‘∧’ have the usual meanings. The
syntax follows conjunctive normal form:
L1 . I −→ clause | clause ∧ I
L2 . clause −→ term | term ∨ clause
L3 . term −→ event | event · event | event ⋆ event
The semantics of Precedence is given by pseudolinear runs of

events (instances): “pseudo” because several events may occur to-
gether though there is no branching. Let Γ be a set of events where
e ∈ Γ if and only if e ∈ Γ. A run is a function from natural
numbers to the power set of Γ, that is, τ : N 7→ 2Γ . The ith in-
dex of τ , τi = τ (i). The length of τ is the first index i at which
τ (i) = ∅ (after which all indices are empty sets). We say τ is empty
if |τ | = 0. The subrun from i to j of τ is notated τ[i, j]. Its first
j − i + 1 values are extracted from τ and the rest are empty, that
is, τ[i, j] = ⟨τi ,τi+1 . . . τj−i+1 . . . ∅ . . .⟩. On any run, e or e may not
both occur. Events are nonrepeating.

τ |=i E means that τ satisfies E at i or later. We say τ is a model
of expression E if and only if τ |=0 E. E is satisfiable if and only if
it has a model.
M1 . τ |=i e if and only if (∃j ≥ i : e ∈ τj )
M2 . τ |=i e ⋆ f if and only if (∃j ≥ i : {e, f } ⊆ τj )
M3 . τ |=i r ∨ u if and only if τ |=i r or τ |=i u
M4 . τ |=i r ∧ u if and only if τ |=i r and τ |=i u
M5 . τ |=i e · f if and only if (∃j ≥ i : τ[i, j] |=0 e and τ[j+1, |τ |] |=0 f )



5.2 Causality
We first define a set of clauses, CP , which can be automatically
derived from a protocol specification to represent the fundamental
causal semantics of BSPL enactments. Let CP be the conjunction of
all clauses of the following types, illustrated with examples from
Purchase in Listing 1.

(1) Transmission: Each message must be sent to be received. (4
clauses)
S:PlaceOrder ∨ B:PlaceOrder

(2) Emission: A message cannot be sent if its ⌜out⌝ or ⌜nil⌝
parameters have already been observed or if its ⌜in⌝ param-
eters are not observed. (4 clauses)
S:FillOrder ∨ (S:order ∧ S:payment ∧ S:product)

(3) Reception: Either a message is not received or its ⌜out⌝ and
∈ parameters are observed no later than the message. (4
clauses)
S:PlaceOrder∨S:order·S:PlaceOrder∨S:order⋆S:PlaceOrder

(4) Minimality: For any role, if a parameter occurs, it occurs
simultaneously with some message emitted or received. No
role observes a parameter noncausally. (6 clauses)
S:product ∨ S:product⋆ S:FillOrder

(5) Nonsimultaneity: A role cannot emit messages simultane-
ously; they are sent in some order. (4 clauses)
B:Transfer ∨ B:Credit ∨ B:Transfer · B:Credit ∨ B:Credit ·
B:Transfer

Based on the semantics of BSPL, an enactment of a protocol is
valid if and only if it satisfies CP . According to Singh [26], given a
well-formed protocol P, for every viable history vector, there is a
model of CP and vice versa.

5.3 Maximality
To support unbounded enactments and exclude failures caused by
noncompliant agent behavior or transmission errors, we assume
that each enactment is maximal. That is, every message will be
sent and received unless it is prevented by an unmet precondition,
such as an unavailable ⌜in⌝, or an observed ⌜out⌝ or ⌜nil⌝. The
clause generated for the Transfermessage is (B:Transfer∨B:order∨
B:payment); either Transfer is transmitted, the prerequisite order
is not observed, or a binding for payment already exists. We label
the conjunction of these clauses for each message in protocol P
asMP . By definition, an enactment is maximal if and only if it
satisfiesMP .

If an enactment satisfies maximality yet is still incomplete, then
it truly cannot be completed; there must be something other than in-
transigent agents or network failure preventing completion, namely,
the protocol specification. This intuition is the basis of the liveness
definition and verification technique used by Singh [26].

5.4 Enactability
We additionally construct clauses representing the enactability of a
protocol P, labeled EP .

An enactment satisfies EP if and only if it completes protocol
P. A protocol is complete when each of its ⌜out⌝ parameters is
produced by one of its messages, as outlined in Figure 1. For Pur-
chase, the set of messages covering order is {PlaceOrder}, and the

cover of product is {FillOrder}. Thus the resulting clause EPurchase
is (S:PlaceOrder ∧ B:FillOrder).

An algorithm generating EP is given in Figure 1. The algorithm
iterates over each ⌜out⌝ parameter p of a protocol Q . The occur-
rence of any message m in Q that has p as an ⌜out⌝ parameter
produces a binding for p, so the disjunction of all such occurrences
(here labeled coverp ) accounts for all ways to bind p. As an enact-
ment of Q is complete when all of its ⌜out⌝ parameters is bound,
we return the conjunction of all coverp as EQ .

1: procedure E(Q)
2: for all p ∈ out(Q) do
3: coverp ←

∨
{m ∈ Q | p ∈ out(m)}

4: return
∧
p∈out(Q ) coverp

Figure 1: Algorithm generating EQ .

5.5 Atomicity
Suppose P is a composition that includes (or may be identical to)
some protocol Q with reference R. Atomicity of a protocol requires
both that each of its references be atomic, and that if the reference
completes the protocol can also complete. Using the definition for
EP given above, the statement that the completion of R implies
the completion of Q can be written as ER ⇒ EQ . Thus if Q is
atomic inUoD(P), any valid enactment ofQ will satisfy the formula
CP ∧MP ∧ (¬ER ∨ EQ ) for all R ∈ ref (Q).

To prove that a composition is atomic, we verify that there are
no valid nonatomic enactments by inverting the atomicity clause.
Doing so yields the following formula: CP ∧MP ∧ ER ∧ ¬EQ . If
this formula cannot be satisfied for any R, then there are no valid,
maximal, nonatomic enactments, and Q must be atomic inUoD(P).

With this formula, we can recursively verify the atomicity of
every component in composition P, as shown by the algorithm in
Figure 2.

In the base case, messages are always atomic and do not have
any components for further recursion. The algorithm then iterates
across each reference R in Q, recursively testing for atomicity and
checking that there are no enactments in which R completes but
Q does not.

1: procedure atomic(Q, P)
2: if Q is a message then return True
3: for all R ∈ ref (Q) do
4: if ¬atomic(R, P) then return False
5: if SAT(CP ∧MP ∧ ER ∧ ¬EQ ) then
6: return False
7: return True

Figure 2: Atomicity verification process.

Having designed a verification procedure, we now prove it cor-
rectly verifies that a protocol Q is atomic in UoD(P) assuming
that the clauses CP , MP , and EP correctly capture correctness,
maximality, and enactability.



Theorem 3: A protocol Q is atomic in UoD(P) if and only if, for all
R in ref (Q), R is atomic and there is no enactment τ which satisfies
CP ∧MP ∧ ER ∧ ¬EQ .

Proof 3 (Proof): Let the atomicity of Q be denoted AQ . We desire
to prove ∀R ∈ ref (Q) : atomic(R,P) ⇒ AQ ⇔ ¬(CP ∧ MP ∧

ER ∧ ¬EQ ). First, we assume from the definition that R is atomic,
and consider only enactments that satisfy CP ∧MP (that is, are
correct andmaximal), leavingAQ ⇔ ¬(ER∧¬EQ ). Distributing the
negation reduces the statement to ∀R ∈ ref (Q) : AQ ⇔ ¬ER ∨EQ .

Suppose protocol Q is atomic in UoD(P). By the definition of
atomicity we know that for all R ∈ ref (Q), any enactment τ in
intension [[R]]UoD(P) can be extended with a finite number of mes-
sage transmissions to some enactment τ ′ in intension [[Q]]UoD(P).
That is, by assuming maximality, if it completes R it also completes
Q. So enactment τ ′ satisfies ER ∧ EQ , and AQ ⇒ ¬ER ∨ EQ .

Conversely, suppose for protocol Q and all R ∈ ref (Q), en-
actment τ satisfies ¬ER ∨ EQ . By the definition of EP , either τ
completes Q or it does not complete R. Thus, it is in the intension
[[Q]]UoD(P) or it is not in the intension [[R]]UoD(P). Furthermore,
by the assumption ofmaximality ∄τ ′ ∈ [[R]] ∋ τ ⪯ τ ′, the definition
of atomicity is vacuously satisfied, and ¬ER ∨ EQ ⇒ AQ . □

5.6 Results

Protocol (Listing) Atomic? Clauses

Purchase (Listing 1) True 92
RefinedPurchase (Listing 3) False 156
FixedPurchase (Listing 5) True 390
ShareHealthData (Listing 6) False 102
CreateOrder False 690

Table 3: Protocheck results for example protocols.

Table 3 displays an overview of the results of running our imple-
mentation of Protocheck on each of the example protocols in this
paper. The second column shows whether the protocol was verified
as atomic or not. The third column shows how many clauses were
generated according to the clause definitions given above. Note that
the number of clauses varies because of the short-circuit nature of
the recursive algorithm; FixedPurchase recurses through all of its
components, while RefinedPurchase exits at the first violation.

The last entry, CreateOrder, is a specification of the Create Labo-
ratory Order workflow defined byHL7 [13]. Theworkflow describes
the process of a patient visiting a doctor and getting a sample col-
lected, and a lab testing the sample and returning the results. A
naïve specification leaves several choices enabled when they should
be mutually exclusive, as in the RefinedPurchase example. The first
such choice is when the physician has the sample collected: they
can collect it themselves, have a third party collect the sample be-
fore sending it to the lab, or have the lab collect the sample directly
from the patient. A naïve composition of these three alternatives
violates atomicity, because the physician can initiate more than one
of them but ultimately only one sample should be collected. When
translating the workflow into a protocol, this naïve approach was
initially used to verify that our tool caught the violation. However,
this protocol proved to be a better demonstration than first thought.

After fixing the violation by making the collection protocols mu-
tually exclusive, the tool still reported that atomicity was violated.
After looking more closely, it was discovered that a second violation
had been overlooked until caught by the tool. Near the end of the
workflow, the lab can either directly send the results to the physi-
cian, or simply send a notification that the results are available. The
atomicity violation would occur if the physician queried the results,
but was then sent them directly instead of as a response, prevent-
ing the query protocol from completing. This incident shows that
atomicity is a useful property for verifying the design of composite
protocols.

6 DISCUSSION
The idea of atomic action has a long history in multiagent systems;
see, for example, Boissier et al. [5], Omicini and Zambonelli [21],
and Alechina et al. [1]. However, unlike the present work, existing
works either assume a shared memory or address a single-agent
setting.

Notably, several diverse approaches for specifying protocols, in-
cluding AUML [20], message sequence charts (MSCs) [14], choreog-
raphy languages such as WS-CDL [31], and process calculi-inspired
languages [2, 12] ignore information altogether and instead use
control flow-based abstractions such as sequence, choice, and so
on, to compose and constrain the enactment of protocols. However,
specifying protocols in terms of control flow results in regimented
enactments. Such lack of flexibility is true even of approaches such
as RASA [18] and HAPN [30] that support declarative constraints
on information values. Because the protocol enactments are guided
by control flow constructs rather than information causality no
conflicts can occur between components in a composition, just as
the addition of states and transitions to a state machine does not
affect the operation of other portions. For this reason we focus
on the application of atomicity to the information-based approach
exemplified by BSPL.

A direction for future work is to incorporate support for relative
atomicity [17], so that a protocol is only required to complete after
some critical subset is completed. Identifying the commitments cre-
ated or discharged by each message could allow the discharging of
all commitments to be used as a more precise correctness criterion.
Similarly, identifying relationships between message effects should
enable more sophisticated conflict resolutions such as reversion.

In contrast to the early work on commitment protocols [29,
32], newer work on commitments and more generally meanings
[7, 8] leaves out altogether concerns such as message ordering
and occurence. The motivation is that meanings (of information)
and causality are separate concerns. They are not disconnected
however; as demonstrated in [15], the meanings are layered on top
of information protocols. A rich direction is to explore further the
connection between meaning-based and information protocols.
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