Business Process Adaptations via Protocols

Nirmit Desai

*

Amit K. Chopra Munindar P. Singh

{nvdesai, akchopra, singh}@ncsu.edu
Department of Computer Science
North Carolina State University

Abstract

Business process management in service-oriented com-
puting (SOC) environments poses special challenges. In
particular, SOC environments are dynamic, thereby requir-
ing frequent changes in business processes. Current busi-
ness process modeling approaches handle such changes in
an ad hoc manner, and lack a principled means of determin-
ing what needs to be changed and where.

This paper addresses process adaptability through a
novel application of business protocols, especially of proto-
col composition, introduced in our previous work. Through
a real business scenario of auto-insurance claim process-
ing, this paper demonstrates how a wide range of adapta-
tions can be handled naturally and systematically via pro-
tocol composition. The illustrated adaptations have been
evaluated via a prototype.

1. Introduction

Successful business process management requires sup-
porting three key properties of service-oriented comput-
ing (SOC) environments, namely, autonomy, heterogeneity,
and dynamism [17, pp. 7-10]. Supporting autonomy means
modeling and enacting business processes in a manner that
offers maximal flexibility to the participants by only min-
imally constraining their behavior. Supporting heterogene-
ity means making as few assumptions as possible about the
construction of the components for the parties, concentrat-
ing instead on characterizing the interactions among them.
For SOC environments, interconnections among compo-
nents, not the components themselves, are critical.

Dynamism has two flavors. Membership dynamism
means that the set of components may change. Compo-
nents may be added and removed at either design-time

* This research was partially supported by the NSF under grant DST-
0139037 and by DARPA under contract F30603-00-C-0178.

(design-time membership dynamism) or run-time (run-
time membership dynamism). Structural dynamism means
that the set of interconnections is not fixed. Dynamism re-
flects changes in the business requirements; modern
businesses face intense pressure and must repeatedly re-
configure themselves in order to thrive, if not to survive. As
changes in requirements are routine, an elegant way of han-
dling such changes is vital. Thus, dynamism poses a
difficult challenge, one that has not been adequately ad-
dressed in the literature, and is the theme of this paper.
Supporting dynamism implies supporting process adapt-
ability.

(Insurance Company) AGFIL
Notify ~ Obtain Check
Lee — claim —> claim _
cs. form form \J Amend Reconcile Finalize
E ? estimate ” info = claim
u
T | Notity (Claim Handler) Lee CS
o | AGFLL o
0 btain Estimate
P details <500
Assign
A garage\ Contact Assign Agree . Check
s /F garage N% adjustor repair invoice
Validate
S info
i
s - Estimate \
. Receive S repair Inspect Repair .
t info car cost car car 2 Invoice

(Call Center) Repairer

Figure 1. CrossFlow Insurance Claim Processing

Previously, Desai et al. [6] reported a methodol-
ogy (named OWL-P) for developing business pro-
cesses that supports autonomy and heterogeneity. The
essence of OWL-P is an abstraction of business proto-
cols. A business protocol is an abstract, modular, and
publishable specification of rules that govern a business in-
teraction among two or more roles. A protocol is ab-
stract because it does not model the proprietary business
logic of the agents enacting the roles. It is modular be-
cause it achieves a specific goal which may be a part of
another bigger goal. Due to their abstract and modular na-

ture, business protocols, each achieving a goal, can be
combined to form a composite protocol that achieves a big-
ger goal. Each role’s perspective of a protocol is cap-
tured in its role skeleton. A role skeleton, when inte-
grated with the private business logic of an agent enacting
the role, yields the agent’s local process. A business pro-
cess is an aggregation of the local processes of all the
agents involved.

In this way, protocols partition a process in a cross-
cutting manner whereas conventionally, flows are taken as
partitions. For instance, peeking ahead on an example stud-
ied in great detail below, each of the boxes in Figure 1 repre-
sents a flow. Such boxes would be the modules of abstrac-
tion in conventional approaches. By contrast, OWL-P fo-
cuses on the interconnections among the boxes; such inter-
connections are a natural fit for the interorganizational na-
ture of SOC environments [6]. As a striking illustration of
the importance of focusing on the interconnections, notice
that the process flow (taken from [4]) in Figure 1 misses the
insurance holder and its interactions altogether. Although
the internal flow of the insurance holder’s process (its box)
may not be important to AGFIL, its external interactions
with other parties (i.e., the insurance holder’s interconnec-
tions) are crucial for modeling the business of AGFIL. Fig-
ure 2 shows how the above example is modeled via proto-
cols.

Previous work on protocols provides the basic mecha-
nisms to specify, compose, and enact them to produce soft-
ware engineering benefits such as reusability and flexibil-
ity. This paper enhances the treatment of protocols so as to
support dynamism in a real business scenario. Adaptability
in general involves a broad variety of research challenges.
Hence, this paper concentrates on three kinds of adapta-
tions: (1) exceptions, (2) changes in business policies, and
(3) changes in business models.

To demonstrate and evaluate the protocol-based ap-
proach, this paper considers the above insurance claim pro-
cessing case studied under the CrossFlow project [4]. Be-
ing a real-life business scenario previously studied by
others, this example provides an independent and sig-
nificant test-case for this approach. Figure 1 shows the
parties involved in the process and the process flow. AG-
FIL is an insurance company in Ireland. The present
scenario deals with automobile insurance. AGFIL un-
derwrites the insurance policy and covers any losses in-
curred. Europ Assist provides a 24-hour help-line service
for receiving claims. Lee CS is a consulting firm that co-
ordinates with AGFIL and deals with repairers to handle
the claims. A network of approved repairers provide re-
pair services. AGFIL holds ultimate control in deciding if a
given claim is valid and if payment will be made to the re-
pairer.

Organization.

Section 2 introduces protocols and their composition. Sec-
tion 3 is the essence of this paper. It shows how protocol
composition handles a variety of changes at different levels
of the business process. Section 4 describes prototype tools,
enactment software, and a usage scenario. Finally, Section 5
discusses related work and outlines some ideas for future re-
search.

2. Protocols

This section presents the important concepts of OWL-P
and illustrates them with the protocols extracted from the
CrossFlow example.

2.1. Commitments

Commitments are used to give semantics to agent inter-
action. As agents interact, they create and manipulate com-
mitments. A commitment C(z, y, p) denotes that agent x is
obligated to agent y for bringing about condition p. Com-
mitments can be conditional, denoted by CC(z,y,p,q),
meaning that x is committed to y to bring about ¢ if p
holds where, p is called the precondition of the commit-
ment. Commitments are created, satisfied, and transformed
in certain ways. The following are the operations de-
fined on commitments:

Opl. CREATE(z, ¢) establishes commitment c.

Op2. CANCEL(x, ¢) cancels the commitment c.

Op3. RELEASE(y, ¢) releases ¢’s debtor from the commit-
ment c.

Op4. ASSIGN(y, z,c) replaces y with z as ¢’s credi-
tor.

Op5. DELEGATE(x, z, ¢) replaces x with z as ¢’s debtor.
Op6. DISCHARGE(z, ¢) (¢’s debtor z) fulfills the commit-
ment.

The rules regarding discharge of a commitment are given

below.
: C(z,y,p)Ap
Disl. discharge(z,C(z,y,p))
Dis2 CC(z,y,p,9)A\p
* create(z,C(z,y,q))Adischarge(z,CC(z,y,p,q))

; CC(z,y,p,a)\q
Dis3. discharge(z,CC(x,y,p,q))

2.2. Specifying a Protocol

OWL-P, which is based on OWL (Web Ontology Lan-
guage), is an ontology for specifying protocols. A plugin
for the Protégé ontology editor [16] facilitates specifying
and publishing protocols to a repository.

A Protocol specifies a set of rules that govern the inter-
action among roles from a global view-point. OWL-P em-
ploys the Semantic Web Rule Language (SWRL) [10] to
specify rules. Each rule is a SWRL implication where the

Claim reception and verification
(Rec)

Monitoring outsourced
handling (Mon)

Reporter(Ro

CallCenter(Ca)

Provider(P)

Company(Com) Consultant(Con)

report(driverNO, policyNO, illfd) |
l N |

I authReq(claimNO, policyNO) |
N|

|

I L

| | authOK(claimNO, policyNO) |

‘gpproved(claimNO, policyNO)| :

xlllotiﬁcation(claimNO, policyNOP
|

Handling filed claims (Han)

Handler(H) Garage(G) Assessor(A)
: estimate(claimNO, price) :
: inspect(claimNO, p){'ice)
|
|

|
inspected(claimNO, prige, cost)
deal(claimNO, price)

|
|
|
|
2
|
1
|
|

bill(claimNO, price, approval)
pay(claimNO, price)

v 1 _ N |

i handle(claimNO, policyNO) i
I N
e

i.dyoice(claimNO, policyNO, quote, approvdl)
lauthorizePay(claimNO, policyNO, quote)!
| N|

| |
Administering repairs

Re
Owner(0O) (Rep) Repairer(Rp)

repairReq(claimNO, policyNO)

| |
L N
| repaired(claimNO, policyNO) |
rePairOK(claimNO, policyNO, approvzllll)

| |

Insuring policy buyers

Ins
Buyer(B) (Ins) Seller(S)

reqForQuote(driverID, coverage)

I
|
2
quote(driverID, policyNO, premium) |
pay(policyNO, premium) :

A

K
|
I

Figure 2. Scenarios from the protocols corresponding to the insurance claim process of Figure 1

body (antecedent) specifies a set of propositions that must
hold for the rule to fire, and the head (consequent) specifies
operations such as sending messages, commitment opera-
tions, asserting propositions, and invoking business logic.
A proposition may represent a message that has been sent
or received, active commitments, or domain specific facts.
Messages and propositions have slots which are analogous
to parameters. The operational semantics of messages char-
acterizes their effects on the commitments. For example, a
message may create, discharge, delegate, assign, or cancel
a commitment.

Figure 2 shows scenarios from the protocols involved
in the above insurance example. The following discussion
provides specifications of the protocols as needed. Appen-
dices provide the specifications of Rep and Han. A \cdot
(-) marks a parameter that is not relevat. Usually, the pro-
tocols are designed and maintained independently. There-
fore, the ontologies of the protocols about similar concepts
would differ. For example, driverID in Ins and driverNO in
Rec refer to the same piece of information.

The buyer and the seller roles engage in the insur-
ance buying protocol (Ins) for insuring the buyer. The rules
for Ins are:

Insl. start = reqForQuote(driverID, coverage)

Ins2. reqForQuote(driverID, coverage) = quote(driverID, poli-
cyNO, premium) A CC(S, B, subscribe, insurance)

Ins3. pay(policyNO, premium) A quote(-, policyNO, pre-

mium) = subscribe

Ins4. C(S, B, insurance) = CC(S, B, serviceReq A valid-
Claim, claimService) A CC(S, B, reqForClaim, claimResponse)
Ins5. quote(-, policyNO, premium) =- pay(policyNO, pre-
mium)

Rule Insl means that at the start, a request for an in-
surance quote is allowed. Rule Ins2 means that if a request
for quote has happened, a quote for the requested cover-
age is allowed and the meaning of quote is given via the
stated conditional commitment, that is, seller is commit-
ted to insuring the buyer if the buyer subscribes to the in-
surance policy. The meanings of subscribing and insuring
are given by Rules Ins3 and Ins4, respectively. The buyer
subscribes to the insurance by paying the quoted premium.
To provide the insurance service, the seller must serve the
buyer’s requests for handling the claim if the claim is valid
and the seller must respond to the claims filed by the buyer.
As long as the buyer is insured, multiple claims can be
filed and have to be served, until the policy expires and in-
surance is asserted discharging the insurance commitment.
Rule Ins5 states that the buyer can pay after quote has hap-
pened. Here, reqForQuote and quote in the body are propo-
sitions representing messages reqForQuote and quote in the
head, respectively; driverlD, coverage, policyNO, and so on
are slots; subscribe, claimService, and so on are domain
specific propositions.

2.3. Composing Protocols

Any realistic business process would involve multi-
ple interaction protocols. For example, AGFIL would
need protocols for selling insurance policies and for re-
ceiving and handling claims. Consider how protocols
can be combined to form a composite protocol. (Sec-
tion 3.3 shows how this example also illustrates a change
in business model.) Let’s assume AGFIL outsources the
help-line service for receiving claim reports to a call cen-
ter, but handles the claims itself. The requisite process
can be obtained by combining the Ins and Rec proto-
cols in a certain way yielding a new Bas (Basic insurance
claim processing) composite protocol. Here is the specifi-
cation of the Rec protocol:

Recl. start A CC(Ca, Ro, reqForClaim, claimResponse) A
CC(P, Ca, reqAuth, authResponse) =- report(driverNO, poli-
cyNO, info)

Rec2. report(-, policyNO, -) = authReq(claimNO, poli-
cyNO)

Rec3. authReq(claimNO, -) = authOK(claimNO, -)

Rec4. authOK(claimNO, -) = approved(claimNO, -)

Rec5. authReq(claimNO, -) = authNOK(claimNO, -)

Rec6. authNOK(claimNO, -) = denied(claimNO, -)

Rec7. approved(claimNO, -) = notification(claimNO, -)

Rec8. authReq(claimNO, -) = reqAuth

Rec9. authReq(claimNO, -) A authOK(claimNO, -) = authRe-
sponse

Rec10. authReq(claimNO, -) A authNOK(claimNO, -) = authRe-
sponse

Recl1. approved(claimNO, policyNO) A report(-, policyNO, -)
= claimResponse

Rec12. denied(claimNO, policyNO) A report(:, policyNO, -) =
claimResponse

Rec13. report(:, policyNO, -) = reqForClaim

Typically, the protocols are enacted with some of the
roles having business relationships established via partici-
pating in some other protocol, e.g., Ins establishes the con-
tract between the buyer and the seller. This business rela-
tionship is a contract represented by a set of commitments.
For brevity, this presentation skips such relationship forma-
tion protocols. Instead, it models the start of these protocols
as conditioned on the corresponding commitments. For ex-
ample, in Rec, the provider is committed to the callCen-
ter to respond to requests for authorizing claims (the sec-
ond commitment in Recl). Also, the provider would have
delegated the commitment CC(S, B, reqForClaim, claimRe-
sponse) to the callCenter (the first commitment in Recl).
As a comprehension aid, Figure 3 shows all such contrac-
tual commitments among the roles after all the relationships
are formed and commitments delegated.

As the ontologies of the protocols may not match,

CC(Rp, Id, validClaim & serviceReq,
claimService)

Assessor

CC(A, Con/inspectReq,
inspectRes)

1d, insurance)

Consultant

CC(Com, Con, consultingService,
payForService)

Figure 3. Commitments among parties

and they may have interdependencies, simply union-
ing the rules of the component protocols is not enough.
The constraints on combining protocols are specified as a
set of composition axioms in a composition profile. Be-
low are the set of composition axioms for the insurance ex-
ample:

BasAx1. Bas.Insured = Ins.Buyer, Rec.Reporter

BasAx2. Bas.Insurer = Ins.Seller, Rec.Provider

BasAx3. Bas.CallCenter = Rec.CallCenter

BasAx4. Ins3.driverID ~» Recl.driverNO

BasAxS. Ins3.policyNO ~» Recl.policyNO

BasAx6. Rec.authOK — Ins.validClaim

The first three are RoleDefinition axioms that define a
new role specified on the left by identifying it with the roles
on the right. Intuitively, it says that the roles on the right be-
come the role on the left in the composite protocol. In ef-
fect, a role definition axiom adds a new role in the compos-
ite protocol and replaces the roles on the right by this role
(as the debtor or the creditor of commitments and the sender
or the receiver of the messages).

Axioms BasAx4 and BasAx5 are DataFlow axioms that
specify the data flow from the slot on the left to the slot on
the right. This is effected by asserting an additional proposi-
tion in Ins3 having one slot (driverID), and conjuncting this
proposition to the body of Recl, thus binding driverNO to
driverlD.

Axiom BasAx6 is an Implication axiom that aligns the
ontologies of the protocols. For example, authOK in Rec
means validClaim in Ins. This axiom would be effected by
adding a rule to the composite protocol to effect the impli-
cation from authOK to validClaim.

The rest of the protocol rules are unioned. The result-
ing protocol Bas is the desired behavior. Composite proto-
cols can be treated and enacted like other protocols. This
paper does not discuss the enactment of protocols (by in-
tegration with the business logic of the agents) and Even-
tOrder axioms that allow the specification temporal order-
ing between the events in the protocols.

Partial Insurance claim processing

Fraudulent claim processing

(215 TN ey E (Fra)
Insurer(Ir) Consultant(Con) Owner(0) Company(Com) Consultant(Con) Assessor(A)
] a .] T T T T
, handle(claimNO, policyNO) | jmmmmeeaa :. |L ladviseFraud(claimNO)
T l i K
I I E : L fraudulent(claimNO) ! I
CC(A, Con, inspectReq, inspectRes §------- ~{ FicpAx8 :/ fraud(claimNO) : :

CC(Ir, Con, consultingService, €--~-------| FicpAx9 K-------------

payForService)

Figure 4. Handling fraudulent claims

3. Adapting Processes

Through a detailed study of the AGFIL insurance pro-
cess, this section shows how OWL-P naturally allows pro-
cess reengineering through adaptation. The core idea is to
enhance and apply the basic mechanism of protocol compo-
sition in a variety of new ways. Each of the adaptations pre-
sented below feature varying degrees of autonomy, hetero-
geneity, structural dynamism, and design-time membership
dynamism. The following assumes that a composite proto-
col Picp (Partial insurance claim processing) is constructed
from the composition of Bas, Mon, Han, and Rep of Fig-
ure 2.

3.1. Exception Handling

Exceptions are (typically) uncommon conditions
arising during a business interaction, e.g., fraudulent
auto-insurance claims. Protocols facilitate incorporat-
ing the handling of an exception into an existing process.
A protocol for handling frauds can be specified as fol-
lows:

Fral. start A C(Com, O, insurance) = adviseFraud(claimNO)
Fra2. adviseFraud(claimNO) = fraudulent(claimNO) A re-
lease(Con, CC(Rp, Con, acceptEstimate, performRepair))

Fra3. fraudulent(claimNO) = fraud(claimNO) A cancel(Com,
C(Com, O, insurance))

A composite protocol Ficp (Fraudulent insurance claim
processing) can be constructed by combining Picp with Fra
(Fraudulent claims) as shown in Figure 4 (insured (1d), re-
pairer (Rp), callCenter (Ca), and assessor (A) are not
shown for Picp). When AGFIL and Lee CS form their re-
lationship, a conditional commitment CC(Com, Con, con-
sultingService, payForService) is created meaning that
AGFIL will authorize payments for handling individ-
ual claims if Lee CS provides the consulting service.
In case of fraud, the company cancels the policy cov-
erage of the insured and the consultant releases the
repairer from the commitment to perform repairs (Ap-

pendix A). The assessor’s advising of a fraud should
discharge CC(A, Con, inspectReq, inspectRes) (Ap-
pendix B) and the consultant’s forwarding it to the com-
pany should mean the consulting service was provided.
These conditions are modeled by the composition ax-
ioms here:

FicpAx1. Ficp.Insured = Picp.Insured, Fra.Owner

FicpAx2. Ficp.Insurer = Picp.Insurer, Fra.Company

FicpAx3. Ficp.Consultant = Picp.Consultant, Fra.Consultant
FicpAx4. Ficp.Repairer = Picp.Repairer

FicpAxS. Ficp.CallCenter = Picp.CallCenter

FicpAx6. Ficp.Assessor = Picp.Assessor, Fra.Assessor

FicpAx7. Picp_.claimNO ~» Fral.claimNO

FicpAx8. Fra.adviseFraud — Picp.inspectRes

FicpAx9. Fra.fraudulent — Picp.consultingService

Notice how the resulting interaction allows AGFIL to
end the process by canceling the commitments in case of a
fraud. Simply adjusting the commitments can allow greater
flexibility without affecting other parties adversely. Here,
the support for structural dynamism comes from the added
interconnections among the existing partners to handle the
exceptions. Support for autonomy comes from the ability to
control the effects of foul behavior of a participant.

3.2. Changes in Business Policy

In handling claims where the value of the car is less
than the estimated cost of repairs, the company may
want to scrap the car, i.e., declare it a total loss. To set-
tle this, it pays the insured a sum equal to the value of
the car and takes possession of the car instead of admin-
istering repairs. Also, if the damage is minor, the insured
may accept a cash settlement instead of having the car re-
paired. Here is the specification of a protocol Pcsc (shown
in Figure 5) that specifies interactions for such a pol-
icy:

Pcscl. start = adviseScrap(claimNO, value) A delegate(Con,
Com, CC(Rp, O, serviceReq A claimValid, claimService))
Pesc2. adviseScrap(claimNO, value) = settle(claimNO, value)

Partial Insurance claim processing

Pay cash and scrap car

handle(claimNO, policyNO)

CC(Ir, Con, consultingService,
payForServieg)

1
|
¢ashOffer(claimNO, amount))

______ 1-accept(claimNO, amount) |

(Picp) . NI (Pesc)
Consultant(Con) Owner(0) Company(Com) : Consultant(Con)
N

|

|

|

| settle(claimNO, value) |]

R 1 {OR} ' |

[
K 1

'
'

'

'

'

'

|

~ '
A i
'

'

'

'

'

'

'

'

settle(claimNO, amount) !
|

Figure 5. Change in business policy

Pcsc3. start = adviseCash(claimNO, amount) A delegate(Con,
Com, CC(Rp, O, serviceReq A claimValid, claimService))

Pcscd4. adviseCash(claimNO, amount) =- cashOffer(claimNO,
amount) A CC(Com, O, acceptCash, settlement)

Pcsc5. cashOffer(claimNO, amount) = accept(claimNO, amount)
Pcsc6. accept(claimNO, amount) A cashOffer(claimNO, amount)
= acceptCash

Pesc7. accept(claimNO, amount) = settle(claimNO, amount)
Pesc8. settle(claimNO, amount) A accept(claimNO, amount) =
settlement

Pcsc9. cashOffer(claimNO, amount) = reject(claimNO, amount)

AGFIL would have delegated its conditional commit-
ment CC(S, B, serviceReq A claimValid, claimService) to
Lee CS, thereby making Lee CS responsible for servic-
ing claims, who would in turn delegate it to the repairer.
When the consultant advises scrapping the car, it ful-
fills its commitment to provide the consulting service and
the commitment to service the claim falls back to the com-
pany as the car is not to be repaired but to be paid
for. Similarly, when the consultant advises a cash pay-
ment for a minor damage, and the insured agrees to
it, it fulfills the commitment for the consulting ser-
vice and the company becomes committed to paying the
insured. Rules Pcscl and Pcsc3 model these by delega-
tion. Assuming that Picp is the current interaction protocol
among the partners, Pcsc can be composed with Picp yield-
ing the composite protocol Icp (Insurance claim process-
ing) that handles this policy change via the following ax-
ioms:

IcpAx1. Icp.Insured = Picp.Insured, Pcsc.Owner

IcpAx2. Icp.Insurer = Picp.Insurer, Pcsc.Company
IcpAx3. Icp.Consultant = Picp.Consultant, Pcsc.Consultant
IcpAx4. Icp.Repairer = Picp.Repairer

IcpAxS. Icp.CallCenter = Picp.CallCenter

IcpAx6. Icp.Assessor = Picp.Assessor

IcpAx7. Picp_.claimNO ~» Pcscl.claimNO

IcpAx8. Picp_.claimNO ~» Pcsc3.claimNO

IcpAx9. Pcsc.adviseScrap — Picp.consultingService

IcpAx10. Pcsc.adviseCash A Pcsc.accept — Picp.consultingService
IcpAx11. Pcsc.settlement — Picp.claimService

IcpAx12. Pcsc.settle(claimNO, value) A Pcsc.adviseScrap(claimNO,
value) — Picp.claimService

Figure 5 shows the composition graphically (insured
(Id), repairer (Rp), callCenter (Ca), and assessor (A) are not
shown for Picp). Notice how a business policy change inter-
nal to AGFIL is accommodated across the business process.
Here, support for structural dynamism comes from the mod-
ified interconnections among the existing partners to handle
the policy change. Support for heterogeneity comes from
the fact that a change of business logic internal to AGFIL
could be accommodated.

3.3. Changes in Business Model

Quite often, enterprises change their business models to
respond to changes in their business environment. Business
process outsourcing (BPO) [8] has recently become a pop-
ular approach for conducting business.

The composition of Bas discussed in Section 2.3 al-
ready illustrated this type of adaptation. Let’s assume AG-
FIL could handle claims itself. AGFIL outsourced its call
center to Europ Assist to focus on its core business of sell-
ing insurance policies. Thus, the business model of AGFIL
changed to have a partnership with Europ Assist.

Obviously, a change in the business model is a big
shift for an enterprise; new partnerships are formed and
new interconnections among the parties emerge. Thus, such
a change features not only structural dynamism, but also
design-time membership dynamism. Both are supported via
composition with protocols having new roles.

Software Designer

specify a
_SPeey) Axioms

0

AGFIL
Skeleton +
(Jess) B o

L 7

Bas J T
AGFIL

Local
Process

qegister
5 2ieed 8
4@2&33
Lookup Bas -

Insured 9
Skeleton |«
(Jess)

Protocol
Repository

Local
Policy|
d

10
Insured Local Uil
Process)

Figure 6. A typical usage scenario

JMS JNDI
Naming

register

omIncCcwz—

4. Prototype

The above insurance protocols among several others
have been modeled in OWL-P [14]. The prototype OWL-
P framework, described here, further establishes the practi-
cality of the proposed approach. This framework includes
tools with which a designer may compose and adapt proto-
cols.

The Composer tool automatically generates a compos-
ite protocol from a set of component protocols and a com-
position profile having composition axioms.

The OWLPZ2Jess tool translates a protocol specification
in OWL-P to an equivalent set of Jess rules, which can then
be executed by the Jess rule engine [7]. These rules cap-
ture the role skeletons that provide the business logic stubs
to specify an agent.

A plugin for the Protégé ontology editor enables a de-
signer to specify new protocols and composition profiles,
generate role skeletons from protocols, and examine them.

The OWL-P approach uses conventional technologies
where possible. In particular, it instantiates a J2EE-based
agent that loads the Jess rules, and communicates using a
JMS queue in an EJB container (WebSphere Application
Server 6.0, in our prototype). OWL-P software, tools, and
documentation are publicly available [15]. Figure 6 shows a
typical usage scenario for enacting a business process from
Bas; CallCenter agent is not shown.

5. Discussion and Future Work

This paper demonstrates the value of taking an
interaction-oriented approach to business process adapta-
tion.

Business processes have been traditionally modeled as
workflows. However, workflows do not take interactions
into account, and therefore, cannot adequately handle inter-
organizational settings in which the autonomy of the partic-
ipants is crucial [11, 3].

Agents (and therefore interactions) are an impor-
tant abstraction for modeling autonomous participants.
Agent-oriented software methodologies such as Tro-
pos [2], Gaia [19], and others [9] support the modeling
of inter-organizational applications such as business pro-
cesses. In these approaches, however, protocols are de-
signed from first principles usually depending on the
organizational structure. As such, they do not exploit pro-
tocols as first-class abstractions. The proposed approach
complements these methodologies by treating proto-
cols as building blocks that can be composed and adapted.

Service composition has been extensively investigated.
Local processes in the present framework correspond to
services in SOC terminology. BPEL [1] is a language for
specifying the static composition of Web services. How-
ever, it mixes the interaction activities with the business
logic, making it unsuitable for reuse and systematic adapta-
tions. OWL-S [5], which includes a process model for Web
services, uses semantic annotations to facilitate dynamic
composition. While dynamic service composition has some
advantages, it assumes a perfect markup and an ontologi-
cal matching of the services being composed. By contrast,
the proposed approach does not emphasize dynamic service
composition and instead seeks to provide a human designer
with tools to facilitate service composition.

Vitteau et al. studied composing protocols from micro-
protocols in a bottom-up manner [18]. However, micropro-
tocols cannot be arbitrarily interleaved and can be com-
posed only in limited ways. Our composition axioms add
a level of indirection which allows us to arbitrarily com-
pose protocols. Composite protocols can also be built in a
top-down manner by associating refinements with abstract
transitions in Colored Petri Nets [12]. Again, the refinement
cannot interleave with the protocol and thus arbitrary depen-
dencies cannot be handled.

OMG’s Model-Driven Architecture (MDA) [13] pro-
motes multiple levels of abstractions (or models) of a sys-
tem. Transformations between these models can be defined,
allowing a much better way of handling a change at a partic-
ular level. In this regard, MDA philosophy is the most rel-
evant to the concept of adaptation. MDA is highly generic
and our approach can be seen as a special case in it.

Future Work.

The present paper introduces key computational abstrac-
tions and primitives with which to model processes and
their adaptations. This opens up a fruitful line of research
for service-oriented computing. The following are some in-
teresting research questions. What are the boundaries of

adaptability? Can any protocol be adapted to any other pro-
tocol? If not, then what are the conditions that would al-
low such an adaptability? Also, successfully handling the
changes takes more than a change of design. In particu-
lar, a change in the business model may trigger a variety
of changes in the organizational structure. How would or-
ganizational structure and adaptation feature in a treatment
of process adaptation?

References

[1] BPEL. Business process execution language for
web services, version 1.1, Feb. 2005. WWW-
106.ibm.com/developerworks/webservices/library/ws-bpel.

[2] P.Bresciani, A. Perini, P. Giorgini, F. Guinchiglia, and J. My-
lopolous. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems,
8(3):203-236, May 2004.

[3] C.Bussler. The role of B2B protocols in inter-enterprise pro-
cess execution. In Proceedings of the International Work-
shop on Technologies for E-Services, pages 16-29, 2001.

[4] CrossFlow consortium / AGFIL. Insurance (motor damage
claims) scenario. Technical report, CrossFlow consortium,
1999. Document identifier: D1.a, http://www.crossflow.org.

[S] DAML Services Coalition. DAML-S: Web service descrip-
tion for the semantic Web. In Proceedings of the 1st Interna-
tional Semantic Web Conference (ISWC), July 2002.

[6] N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh.
Interaction protocols as design abstractions for business
processes. IEEE Transactions on Software Engineering,
31(12):1015-1027, 2005.

[7]1 E. J. Friedman-Hill. Jess in Action: Java Rule-based Sys-
tems. Manning, 2003.

[8] P. Harmon. Business Process Change: A Manager’s Guide
to Improving, Redesigning, and Automating Processes. Mor-
gan Kaufmann, 2002.

[9] B. Henderson-Sellers and P. Giorgini. Agent-Oriented
Methodologies. IDEA Group Publishing, 2005.

[10] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A semantic web rule
language combining OWL and RuleML, May, 2004 (W3C
Submission). http://www.w3.org/Submission/2004/SUBM-
SWRL-20040521/.

[11] N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien, and
B. Odgers. Autonomous agents for business process manage-
ment. Applied Artificial Intelligence, 14(2):145-189, 2000.

[12] H.Mazouzi, A. E. F. Seghrouchni, and S. Haddad. Open pro-
tocol design for complex interactions in multi-agent systems.
In Proceedings of AAMAS, pages 517-526, 2002.

[13] OMG. MDA: Model driven
http://www.omg.org/mda.

[14] OWL-P Examples. Business protocols modeled with owl-p.
http://research.csc.ncsu.edu/mas/OWL-P/.

[15] OWL-P Project. Software, tools, and documentation.
http://projects.semwebcentral.org/projects/owlp/.

architecture.

[16] Protégé. The Protégé ontology editor and knowledge acqui-
sition system, 2004. http://protege.stanford.edu/.

[17] M. P. Singh and M. N. Huhns. Service-Oriented Computing:
Semantics, Processes, Agents. Wiley, 2005.

[18] B. Vitteau and M.-P. Huget. Modularity in interaction proto-
cols. In F. Dignum, editor, Advances in Agent Communica-
tion, volume 2922 of LNCS, pages 291-309, 2004.

[19] E. Zambonelli, N. R. Jennings, and M. Wooldridge. Develop-
ing multiagent systems: The Gaia methodology. ACM Trans-
actions on Software Engineering Methodology, 12(3):317—
370, 2003.

A. Protocol Rep

Repl. start A CC(Rp, O, serviceReq A claimValid, claim-
Service) = repairReq(claimNO, policyNO) A CC(O, Rp, re-
pairServed, affirm)

Rep2. repairReq(claimNO, -) = repaired(claimNO, -)

Rep3. repaired(claimNO, -) = repairOK(claimNO, approval)
Rep4. repaired(claimNO, policyNO) = repairNOK(claimNO,
policyNO)

RepS. repairReq(claimNO, policyNO) =- serviceReq

Rep6. repaired(claimNO, policyNO) A repairReq(claimNO, poli-
cyNO) = repairServed

Rep7. repairOK(claimNO, approval) A repaired(claimNO, poli-
cyNO) = affirm

Rep8. repairNOK(claimNO, policyNO) A repaired(claimNO, pol-
icyNO) = affirm

Rep9. repaired(claimNO, policyNO) A repairOK(claimNO, -) =
claimService

B. Protocol Han

Hanl. start A CC(A, H, inspectReq, inspectRes) = esti-
mate(claimNO, price) A CC(G, H, acceptEstimate, performRe-
pair)

Han2. estimate(claimNO, price) = deal(claimNO, price) A
CC(H, G, performRepair, payment)

Han3. estimate(claimNO, price) = noDeal(claimNO, price)
Hand. estimate(claimNO, price) = inspect(claimNO)

HanS. inspect(claimNO) = inspected(claimNO, cost)

Han6. deal(claimNO, price) = bill(claimNO, price, ap-
proval)

Han?7. bill(claimNO, price, approval) = pay(claimNO, price)
Han8. pay(claimNO, price) A bill(claimNO, price, -) = pay-
ment

Han9. inspect(claimNO) = inspectReq

Han10. inspected(claimNO, -) A inspect(claimNO) = inspec-
tRes

Han11. deal(claimNO, price) A estimate(claimNO, price) = ac-
ceptEstimate

Han12. bill(claimNO, price, approval) A deal(claimNO, price) =
performRepair

