
FEATURE ARTICLE: BLOCKCHAIN

Hercule: Representing and Reasoning About
Norms as a Foundation for Declarative
Contracts Over Blockchain
Samuel H. Christie V and Munindar P. Singh , North Carolina State University, Raleigh, NC, 27695, USA

Amit K. Chopra , Lancaster University, Lancaster, LA1 4YR, U.K.

Current blockchain approaches for business contracts are based on smart
contracts, namely, software programs placed on a blockchain that are
automatically executed to realize a contract. However, smart contracts lack
flexibility and interfere with the autonomy of the parties concerned. We propose
Hercule, an approach for declaratively specifying blockchain applications in a
manner that reflects business contracts. Hercule represents a contract via
regulatory norms that capture the involved parties’ expectations of one another. It
computes the states of norms (hence, of contracts) from events in the blockchain.
Hercule’s novelty and significance lie in that it operationalizes declarative contracts
over semistructured databases, the underlying representation for practical
blockchain such as Hyperledger Fabric and Ethereum. Specifically, it exploits the
map–reduce capabilities of such stores to compute norm states. We demonstrate
that our implementation over Hyperledger Fabric can process thousands of events
per second, sufficient for many applications.

A contract conceptually underpins any applica-
tion that involves two or more autonomous
parties. Blockchain, by providing shared state

and event ordering across trust boundaries, can
enable shared and automated interpretation and adju-
dication of contracts.

Today’s blockchains support smart contracts, soft-
ware programs meant to automate contracts.15 How-
ever, smart contracts prove unwieldy for assurance; in
combination with the immutability of blockchain, they
can yield disastrous outcomes, as the DAO incident8

illustrates. In conceptual terms, smart contracts
obstruct the autonomy and flexibility of the parties to
a business transaction, which is simply unacceptable
in real-world applications.14 Ricardian contractsa tie a
natural language description with a computational

representation, possibly a smart contract. They face
the fundamental problem of confusion about which
version is correct: the one a human can read or the
one the blockchain executes. Instead, we develop a
declarative model to respect autonomy, improve read-
ability, reduce bugs, and avoid computing the effects
of each transaction on every validator node.

We build on recent work on a declarative represen-
tation for contracts based on regulative norms that
provide high-level abstractions with a precise seman-
tics.14 “Norms” here are not mere descriptions of
social behavior but carry prescriptive force and serve
as elements of legal contracts.13,18 Norms have been
formalized and mapped to a relational information
model of events.2 However, the relational approach
has crucial limitations: 1) it requires a fixed structure
of tables and columns and 2) it is often unavailable.
For example, Hyperledger Fabric, a leading blockchain
architecture, provides only a LevelDB-based key-value
store, and a CouchDB-based document store.

Therefore, to realize declarative contracts on
blockchain platforms, it is important to show how a
logic-based contract language can be implemented
over a semistructured information model. We consider

1089-7801 � 2021 IEEE
Digital Object Identifier 10.1109/MIC.2021.3080982
Date of publication 17 May 2021; date of current version
10 August 2021.

ahttps://iang.org/papers/ricardian_contract.html

July/August 2021 Published by the IEEE Computer Society IEEE Internet Computing 67
Authorized licensed use limited to: Lancaster University. Downloaded on September 28,2022 at 08:29:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1341-0087
https://orcid.org/0000-0003-1341-0087
https://orcid.org/0000-0003-1341-0087
https://orcid.org/0000-0003-1341-0087
https://orcid.org/0000-0003-1341-0087
https://orcid.org/0000-0003-3599-3893
https://orcid.org/0000-0003-3599-3893
https://orcid.org/0000-0003-3599-3893
https://orcid.org/0000-0003-3599-3893
https://orcid.org/0000-0003-3599-3893
https://orcid.org/0000-0003-4629-7594
https://orcid.org/0000-0003-4629-7594
https://orcid.org/0000-0003-4629-7594
https://orcid.org/0000-0003-4629-7594
https://orcid.org/0000-0003-4629-7594
https://iang.org/papers/ricardian_contract.html

document stores wherein documents generally lack a
schema, do not follow a predefined structure, and do
not support the indexes required for efficient join
queries common for relational settings. Instead, docu-
ment stores process queries using maps and reduce
operations for data parallelism.

CONTRIBUTIONS
We contribute Hercule, an approach to realize con-
tracts as norms over event histories that can be
securely shared between multiple agents using a
blockchain. We show how to automatically generate
map–reduce queries from norms.

We empirically evaluate our implementation and
show that it is efficient enough to be used in any situa-
tion where Hyperledger Fabric is practical, while pro-
viding the requisite expressiveness and flexibility.

CONTRACTS AND SMART
CONTRACTS

A contract is a document describing a legal relation-
ship between multiple parties stating what each party
may expect from the others under what conditions.

A smart contract is a programmatic description
of a contract along with an architecture for automatic
verification and enforcement. For example, a vending
machine that automatically provides a product to any-
onewhopays the requisite amount is a smart contract.15

Bitcoin, the first blockchain,10 represents financial
transactions as simple, limited programs that verify
the claims made against them. Subsequent block-
chain platforms, such as Ethereum and Hyperledger
Fabric, extend the concept of smart contracts to arbi-
trary executable programs, often called distributed
applications or Dapps.

However, specifying contracts as arbitrary pro-
grams has major drawbacks. First, since the program
is the source of truth regarding the meaning of a
smart contract, there is no recourse against unin-
tended behaviors, as the infamous DAO incident
highlighted.14 Second, a program omits the portions of
a business relationship that cannot be automated, lim-
iting the participants’ ability to exercise their auton-
omy. In general, a party to a contract would exercise
its discretion in acting, including deciding what terms
to violate and penalties to risk.

Automation is infeasible wherever human insight is
needed. For example, even if sharing a patient’s health
information is normally prohibited, a physician might
share the information with a specialist during a medi-
cal emergency; an automated system would be unable
to violate the prohibition. An auditor can decide

afterward whether the physician was justified in violat-
ing the prohibition. Automation is also infeasible if
external resources are involved. For example, a hospi-
tal may borrow supplies from another hospital promis-
ing to return them on request. To guarantee
automatic return, a Dapp must control the supplies
and not let them be used, which would defeat the pur-
pose of borrowing.

COMPACTS AND REGULATORY
NORMS

Hercule seeks to capture the essence of real-life con-
tracts by specifying the legal relationships between
the parties without curtailing their autonomy. We
adopt the name compact for our formal notion to dif-
ferentiate it from natural language contracts.

We summarize established terminology and
semantics on norms.2 A norm (instance) is a directed
expectation between two agents, the expector and
expectee. A norm is generally conditional, featuring an
antecedent and a consequent, both events (possibly
complex: logical expressions over simpler events).
Three major norm types, commitment, prohibition,
and authorization, are adequate for illustrating Hercu-
le’s language and reasoning.

To illustrate these norm types, we adopt a scenario
from healthcare as our running example. Healthcare
providers (HCPs) possess electronic health record
(EHR) data about their patients that could be useful in
research, but privacy regulations prevent them from
sharing that data to outside organizations, unless spe-
cifically authorized by the patient. We motivate four
main requirements on HCPs, which we formalize via
norms: storing data, destroying data, enabling legiti-
mate access, and preserving confidentiality.

In a commitment norm, the expectee (debtor)
commits to the expector (creditor) that if the anteced-
ent occurs, then the consequent will occur. If the
antecedent occurs but the consequent doesn’t, then
the commitment is violated; if the consequent occurs,
it is satisfied. N1 and N2 below specify commitments
in our EHR scenario compact.

N1. (StoreData) An HCP commits to store a patient’s
data (consequent) after they visit (antecedent).
The HCP is the debtor and the patient is
the creditor; if a patient visits but the HCP does
not store their data, the HCP violates the
commitment.

N2. (DestroyData) The HCP commits to destroying a
patient’s data (which must not be stored directly
on the blockchain!) upon request by the patient.

68 IEEE Internet Computing July/August 2021

BLOCKCHAIN

Authorized licensed use limited to: Lancaster University. Downloaded on September 28,2022 at 08:29:18 UTC from IEEE Xplore. Restrictions apply.

In a prohibition norm, the expectee is prohibited
by the expector from bringing about the consequent if
the antecedent holds. If the antecedent and the con-
sequent both occur, then the prohibition is violated; if
the antecedent occurs but not the consequent, it is
satisfied. N3 in our EHR compact is a prohibition.

N3. (Access) An HCP is prohibited from sharing
patient data with an agent (consequent) unless
the patient has granted access (antecedent).

In an authorization norm, the expectee authorizes
the expector for the consequent when the antecedent
occurs. If the antecedent occurs, then if the conse-
quent cannot occur (e.g., due to incorrect access con-
trol settings), then the authorization is violated, else it
is satisfied. N4 in our EHR compact is an authorization.

N4. (Confidentiality) A hospital may authorize a fam-
ily member for access to a patient’s health
records (consequent) if the patient submits a
release form (antecedent).

Any norm is instantiated (created) as specified
events occur, but expires if its antecedent doesn’t
occur. For example, when the patient sends a specific
directive identifying the data item and recipient, the
authorization is instantiated for that patient, that
item, and that recipient.

DECLARATIVE CONTRACTS USING
NORMS

We adopt a simplified notion of the components and
lifecycle of a compact17:

Provisions, or the clauses describing what is
expected of or offered to each party.

Operational model, or how participants may move
in reference to a compact and the outcomes of their
moves.

Enforcement or how violations are handled.
Hercule implements compacts specified using

norms to represent the provisions of a compact, which
yield flexible operationalization and enforcement.
Although Hercule does not provide tools for specifying
the operational model or enforcement (outside of
defining additional provisions), these components can
be deployed as part of the implementation. This
approach to implementing operational constraints is
similar to defining the standard procedures of a legal
jurisdiction in which a compact is interpreted; not
every compact needs to specify the procedures used
in the courtroom for adjudication, because they are

assumed from the legal context. From this perspec-
tive, Hercule is a framework for implementing a juris-
diction or legal context in which compacts can be
formed, leaving the exact operational and enforce-
ment models largely out of scope for the compacts
themselves.

We propose using regulative norms as a model for
higher level declarative specifications that capture
intentions and relationships, instead of low-level pro-
cedures. Our model shares an intuition with Bitcoin, in
which events are recorded to the blockchain but the
interpretations are made by the clients. Specifically,
Bitcoin does not use scripts to update balances stored
on the blockchain; indeed, it does not store user bal-
ances at all. Instead, it records individual transactions,
and users compute their total balances by aggregating
the relevant transactions. In the same way, we use the
blockchain as a history of events that can be validated
and preserved in themselves, with the interpretation
supplied externally by a client. External interpretations
are acceptable, because ultimately enforcement will
be carried out by some external authority (which may
be an automated service); this is the same as tradi-
tional contracts, where each party may have their own
opinions about whether a violation has occurred, but
the ultimate decision belongs to an arbiter.

Unlike most smart contract systems, which require
all nodes to redundantly compute results during trans-
action processing, in Hercule only those clients that
care about a given compact state are required to com-
pute it. Also, Hercule separates the enactment of a
compact from its enforcement, enabling flexible social
enforcement methods and updates to the compact
that reinterpret past events without forking the
history.

Hercule builds on a concept of histories of events,
related by logical propositions. Using this simple foun-
dation, we build up to a normative framework with
explicit support for commitments, authorizations, and
prohibitions as well as the flexibility to define custom
norm types.

Architecture
Whereas Hercule can be applied in multiple settings,
Figure 1 illustrates the architecture of a consent man-
agement system built with Hercule and deployed on
top of a distributed ledger such as Hyperledger Fabric.

Events
Events are immutable descriptions of information
observed by an agent. Hercule represents events as
JSON documents.

July/August 2021 IEEE Internet Computing 69

BLOCKCHAIN

Authorized licensed use limited to: Lancaster University. Downloaded on September 28,2022 at 08:29:18 UTC from IEEE Xplore. Restrictions apply.

Listing 1 shows a single instance of the Store
event. Importantly, each event is recorded by a spe-
cific agent at a specific time, represented here by the
$by and $time attributes. For simplicity, we represent
time as an integer.

Histories
A history is a record of the information produced in an
interaction between multiple parties. In Hercule, a his-
tory is represented as a single JSON document with a
unique identifier in which attributes and values are
only added and never modified. A single ledger may
record multiple histories that are mutually unrelated.
All events and norms are interpreted relative to a
given history.

New information is added to a history through a
transaction on the ledger when an event occurs.
When updating a history, both the new event and cop-
ies of the new information it produces are added to
the history as attributes. Although binding attributes

on the history itself adds some overhead, doing so
generalizes information away from the events that
produce it, so that compact provisions can be written
to depend on the information instead of the specific
events.

In Hercule, a history is represented as a single
JSON document. Listing 2 shows an example history,
building on the previous Store event. The history has a
unique ID, and comprises several events each repre-
sented by a subdocument. Each subdocument has
attributes and values corresponding to information
parameters bound by one of the events.

The document representation matches the map–
reduce querying facility of the CouchDB database
underlying a Hyperledger Fabric ledger. Map and
reduce operate only on individual documents in isola-
tion, so any information that needs to be correlated
for computing a query result must be stored together.

Norms
Norms are specified as a set of states, which are logi-
cal formulas over events, usually involving multiple
parties. A norm is instantiated in a history if any of its
states are satisfied by that history. Generally, the first
state of a norm is the created state, which determines
whether a norm is relevant to a history. All other
states of the norm are conjunctions involving the cre-
ated state.

FIGURE 1. High-level schematic description of a potential

Consent Management System built on Hercule, and how it

interfaces with the main stakeholders and with external infor-

mation stores. Here, a contributor is a patient’s physician or

laboratory or clinical trial firm; a recipient is a researcher. Her-

cule provides norm specifications and a norm state evaluator

overlaid on a ledger that captures a consensus view of

events. The identity handler maps a patient identity to identi-

fiers in external information stores, and is not emphasized in

this article.

LISTING 1. Example event object.

LISTING 2. An example history document.

70 IEEE Internet Computing July/August 2021

BLOCKCHAIN

Authorized licensed use limited to: Lancaster University. Downloaded on September 28,2022 at 08:29:18 UTC from IEEE Xplore. Restrictions apply.

Listing 3 specifies the norms described in the
“Compacts and Regulatory Norms” section.

Listing 3 specifies the four norms introduced in the
“Compacts and Regulatory Norms” section.

StoreData is a commitment with three specified
states, created, detached, and discharged. Each state
contains an event expression used to select matching
enactments from the database. The event expression
in the created state specifies an event named Visit,
which is created by PATIENT and contains an attribute
named date. Thus, any enactment containing a Visit
event matching this description is considered as cre-
ating an instance of StoreData. Expressions can be
composed from simpler ones using operators such as
and, or, and except. The other norm specifications fol-
low the same pattern.

Event expressions can be extended by time
expressions, appended with the @ symbol, which either

label the time at which an event occurs (as in Access.
created, which occurs at time t) or constrain it. The
time expression may perform a simple comparison, as
in t2 > t1, or restrict it to an interval, such as
½t2; t2 þ 10�.

We now explain how an instance of a norm may be
created and progress through its states. An instance
of StoreData is created when a patient visits the phy-
sician—when the patient’s agent reports a Visit event
containing the patient and the date of the visit. That
instance is detached when the physician’s agent
reports the Record event with attributes describing
both which patient the record is for, and what item is
being recorded. And, that instance is discharged when
the hospital permanently stores the item, as indicated
when the hospital’s agent reports a Store event with
the item as an attribute.

Hercule provides special handling of commitments,
prohibitions, and authorizations, which all have standard
states and semantics, andmapwell to real-life contracts.
For example, Hercule automatically derives the violated
state of a commitment based on the detached and dis-
charged components of its specification. Hercule could
be readily enhancedwith additional norm types.

IMPLEMENTATION
We adopted Hyperledger Fabric as our platform
because it provides CouchDB as a document store
that supports advanced queries.

Events are recorded by submitting them via trans-
actions to the Hyperledger Fabric network. Fabric
interprets transactions using chaincode, plugin pro-
grams that execute in containers on every node. The
Hercule chaincode adds the submitted events to the
appropriate history documents, making changes to
the ledger and updating the underlying database to
match. Hyperledger Fabric handles the consensus pro-
cess by synchronizing and committing changes across
all relevant nodes.

CouchDB supports map–reduce processing via
views;16 indexes or collections of derived data that
can be queried like a normal collection. Views are
computed by JavaScript functions that are stored in
special design documents. Hercule processes norm
specifications to produce a design document for each
norm, with one view for each state. When loaded into
the database and queried, each view is applied to the
data to produce a separate collection of matching
norm instances. Hercule queries these collections to
discover the current states of various norm instances
and inform agent behavior, e.g., by detecting past vio-
lations by an HCP.

LISTING 3. Privacy norm specifications in Hercule, with refer-

ences to the compact clauses specified above.

July/August 2021 IEEE Internet Computing 71

BLOCKCHAIN

Authorized licensed use limited to: Lancaster University. Downloaded on September 28,2022 at 08:29:18 UTC from IEEE Xplore. Restrictions apply.

When triggered by a query, CouchDB applies the
map and reduce functions of a view to all documents
in the database (or incrementally to documents cre-
ated or updated since the last query) to produce the
view collection. Views are derived from blockchain
data but do not modify it, so they do not need to be
synchronized across all of the Fabric nodes. As such, a
view needs to be computed not by all nodes in the net-
work, but only those nodes that query it. The view col-
lections are provided by the underlying CouchDB
database independent of the ledger, so agents can
query the norm states either by invoking a chaincode
query or by directly querying the database.

Listing 4 shows the StoreData part of the design
document generated by Hercule for the norm specifi-
cations in Listing 3.

As a design document, StoreData consists of two
keys, language and views. Each view has the name of
the state as its key, and a single map function imple-
menting the query logic. Each map function is applied
to every document in the database, via the parameter
doc, to produce one or more results via emit.

Each map function contains a single Boolean
expression testing whether a given doc matches the
specified norm state. For example, the created func-
tion in StoreData simply emits all documents that con-
tain the Visit event. Hercule compiles the various
states following the “Norms” section. For example, the
detached function for StoreData checks that both
Visit and Record have occurred. Similarly, for the other
states.

CONCEPTUAL EVALUATION
We now compare our approach to smart contract
systems.

Autonomy
Smart contracts operate automatically, precluding
autonomy. This automation means smart contracts
are inviolable, and is sometimes touted as an advan-
tage, but in practice it means that many useful con-
tracts cannot be adequately represented, as the
examples in the “Contracts and Smart Contracts” sec-
tion show.

Because Hercule does not automatically enforce
norms, agents are free to handle violations as they see
fit. Moreover, an enforcement clause may itself be
expressed as a norm. Sharing data without authoriza-
tion may normally result in punishment, but a hospital
may determine that it was necessary for properly
responding to a medical emergency.

Enactment Scope
The Bitcoin blockchain implements a single history, in
which each transaction is interpreted according to
the same rules and can depend on the results of any
previous transactions. Thus, the scope of enactment
is broad and could include all the participants and
events on the blockchain.

Ethereum includes a similar accounting system,
but each Dapp has separate storage6: one Dapp may
invoke another but cannot read or modify another’s
information directly. The scope of Dapp history could
be restricted to selected participants and events or be
a long-running open system that every agent may
eventually participate in, as in ERC20 tokens, which
are themselves full accounting systems.5

As in Ethereum, Hercule has separate histories for
each instance of a compact, which is sufficient for all
compacts involving prespecified participants and
events. Thus, the history model reflects the mutual
independence of the compacts; if information across
histories is essential, the compacts should be speci-
fied as one. Of course, an agent participating in two
compacts may copy information from one history to
another—but that’s purely its choice.

Operational Model
In Bitcoin’s operational model, each transaction
depends on the outputs of prior transactions, and
must satisfy the scripts of those prior transactions to
be validated and added to the ledger.10

In Ethereum’s operational model, a Dapp when
invoked may produce whatever new state its code

LISTING 4. StoreData design document (generated from

Listing 3).

72 IEEE Internet Computing July/August 2021

BLOCKCHAIN

Authorized licensed use limited to: Lancaster University. Downloaded on September 28,2022 at 08:29:18 UTC from IEEE Xplore. Restrictions apply.

would output, but the length of the computation is
bounded by the amount of gas provided by the
invoker.6 If the computation does not complete before
the gas runs out, no updates are recorded but the gas
is consumed as fees for the miners.

Hercule does not specify an operational model.
Events must be consistent with the history they are
added to, but there are otherwise no constraints on
the content of the events themselves or who may sub-
mit them. Norms can be written to identify histories as
valid or invalid, but such would only provide warnings
to agents (if they looked), not prevent them from mak-
ing such changes.

Hercule is intended to be customized for specific
domains, not operated as a standalone universal sys-
tem. A domain-specific deployment could embed an
operational model, e.g., requiring that only agents
bound to a role in a history can submit events, or using
agent signatures to demonstrate consent for changes
to the norms.

PERFORMANCE
Characterizing the performance of a Hyperledger Fab-
ric network is challenging, because of the number of
variables and nontrivial interactions between them.
However, unlike smart contract systems, which per-
form validation and computation when a transaction
is submitted prior to the consensus process, Hercule
minimally checks each event for consistency during
submission, with most of the computation occurring
later when the state of a norm is queried. Furthermore,

CouchDB can be used to replicate the data to sepa-
rate nodes, so that querying can be performed inde-
pendently of blockchain operations. Since event
submission is trivial in Hercule, and norms can be que-
ried against separate CouchDB instances, Hercule’s
performance is independent of Hyperledger Fabric’s
performance. This motivates our experimental design
to measure throughput of norm queries—to verify
that Hercule is fast enough to handle the maximum
throughput of a Hyperledger Fabric system, and there-
fore suitable for practical use.

We measured average throughput by creating a
new database to prevent caching and data reuse,
loading 200,000 randomly generated enactments, and
probing the changes per second statistic while the
database created a view after starting a query. The
number of enactments was selected to achieve a rea-
sonable minimum number of performance samples.
Each enactment was generated with a uniformly dis-
tributed degree of progress—e.g., enactments in
which only Visit occurred were more common than
those that also included Shared.

Our experiment was run on a multiprocess, single-
node CouchDB installation in Docker. All tests were
performed on a laptop running Gentoo Linux, kernel
version 4.19.27, with an Intel i7-6600 U CPU, 16 GB of
DDR3 memory, and 1 TB SSD. This setup provides a
lower bound for performance, since CouchDB can be
shared to run map–reduce operations in parallel
across a cluster.

Figure 2 shows our results grouped by norm and
state. The measured throughput ranges from three to
six thousand changes per second across up to eight
parallel tasks. Note that Confidentiality does not have
detached or discharged states.

Within a given norm, the later states generally have
lower throughput than the earlier ones because the
later states usually depend on and thus subsume the
logic of the earlier ones. Thus, later states require
more processing, approximately linear with the size of
the logical formula (excepting possible short-
circuiting).

Conversely, the later norms have higher through-
put in a given state than StoreData because fewer
enactments satisfy their conditions for creation;
rejecting objects is the fastest way to process them.

These results correspond to an approximate
throughput of three thousand norm state changes per
second. That could be three thousand norms applied
to one updated history, or a single norm applied to
three thousand changed histories. Also, if more than
one event is added to a history before a norm state is
queried again, they will result in only a single change.

FIGURE 2. View construction performance of the example

norms.

July/August 2021 IEEE Internet Computing 73

BLOCKCHAIN

Authorized licensed use limited to: Lancaster University. Downloaded on September 28,2022 at 08:29:18 UTC from IEEE Xplore. Restrictions apply.

A recent performance analysis of Hyperledger Fab-
ric showed that the maximum throughput of a Fabric
network is around 400 transactions per second.11

Thus, Hercule appears to have sufficient throughput
for practical use. Even if Hercule were slower than
Fabric on our test laptop, it scales much better than
the Fabric consensus process because each node
computes norm states only when queried, and the
computation itself is a map–reduce operation that
can be distributed across a CouchDB cluster.

DISCUSSION
Hercule demonstrates a possible approach to repre-
senting contractual relationships in a way that cap-
tures social aspects that cannot be automated, and
supports agent autonomy.

A side benefit of Hercule being modeled on norms
is that it facilitates incorporating frameworks for intel-
ligent agents that rely on norms to capture social and
organizational reasoning capabilities1 and compliance
monitoring.3,9 Such approaches typically involve rule-
based reasoning about events and often map from
norms to cognitive models based on beliefs and goals.

Previous approaches based on logic indicate the
viability of a declarative approach. However, they suf-
fer from the common limitation of adopting the auto-
matic enforcement pattern of smart contracts.
Governatori et al.7 discuss imperative and declarative
smart contracts and their lifecycles, capabilities, and
possible implementations, but do not provide a spe-
cific model or implementation. Purnell and Schwitter12

demonstrate a logic program to implement a will on
Ethereum. Unlike Hercule, their approach lacks gener-
ality and suffers from inefficiency by requiring a logic
programming module to be run on all Ethereum nodes
to process a transaction. Kruijff and Weigand4 suggest
a commitment-based approach for smart contracts
using RuleML as the specification language. They nei-
ther support other kinds of norms nor provide an
implementation.

As the “Histories” section explains, Hercule maps
each compact to a single history. Some blockchain
uses do not readily map to a simple compact. For
example, a token accounting system like Bitcoin’s is
better thought of as a specialized environment with a
particular operational model in which unboundedly
many transactions can be linked. One approach to
representing such a system would be to treat a trans-
action as a single history with copies of the input
transactions included, and an operational model that
prevents the creation of internally inconsistent histo-
ries or histories referencing invalid predecessors. A

future direction is to extend the Hercule chaincode
interface to enable postprocessing on map–reduce
queries to handle joins across histories, and produce
results agents can use more easily than raw norm
states.

Although a typical contract has a lifecycle possibly
involving multiple stages of negotiation such as for-
mation, modification, and termination, Hercule
focuses on computing the state of active contract
instances and leaves the negotiation to external pro-
cesses. However, it is straightforward to extend Her-
cule to support compact modification for a specific
application. For example, the norm specification could
be versioned using the blockchain, possibly with an
approval process for all parties to consent to a new
version. Then, anyone interested in the compact could
evaluate queries according to the most recent version.

Although the design of Hercule supports flexibility
in the operational models and enforcement schemes
that can be implemented, leaving them out of scope
for the core system places additional burdens on the
platform implementers and the participating agents. A
future direction is to investigate extensions to com-
pacts supported by Hercule in terms of more sophisti-
cated event syntax and flexible models for operations
and enforcement.

SOURCES
All sources are available at https://gitlab.com/masr/
hercule.

ACKNOWLEDGMENTS
This work was supported in part by the National Sci-
ence Foundation under Grant IIS-1908374, in part by
Engineering and Physical Sciences Research Council
under Grant EP/N027965/1, and in part by IBM. The
authors would like to thank Aditya Parkhi and Bha-
vana Balraj for assistance in integrating Hercule with
Hyperledger Fabric.

REFERENCES
1. M. Baldoni, C. Baroglio, F. Capuzzimati, and R. Micalizio,

“Commitment-based agent interaction in JaCaMo,”

Fundamenta Informaticae, vol. 159, no. 1–2, pp. 1–33,

2018, doi: 10.3233/FI-2018-1656.

2. A. Chopra and M. Singh, “Custard: Computing norm

states over information stores,” in Proc. Int. Conf.

Auton. Agents MultiAgent Syst. 2016, pp. 1096–1105, doi:

10.5555/2936924.2937085.

74 IEEE Internet Computing July/August 2021

BLOCKCHAIN

Authorized licensed use limited to: Lancaster University. Downloaded on September 28,2022 at 08:29:18 UTC from IEEE Xplore. Restrictions apply.

https://gitlab.com/masr/hercule
https://gitlab.com/masr/hercule
http://dx.doi.org/10.3233/FI-2018-1656
http://dx.doi.org/10.5555/2936924.2937085

3. M. Dastani, P. Torroni, and N. Yorke-Smith, “Monitoring

norms: A multi-disciplinary perspective,” Knowl. Eng.

Rev., vol. 33, 2018 Art. no. e25, doi: 10.1017/

S0269888918000267.

4. J. de Kruijff and H. Weigand, “An introduction to

commitment based smart contracts using

ReactionRuleML,” in Proc. Int. Workshop Value Model.

Bus. Ontologies., 2018, pp. 149–157.

5. Ethereum, “ERC-20 Token Standard,” Dec. 2020.

[Online]. Available: https://ethereum.org/en/

developers/docs/standards/tokens/erc-20/

6. Ethereum, “Ethereum whitepaper,” Feb. 2021. [Online].

Available: https://ethereum.org/en/whitepaper/

7. G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret,

G. Sartor, and X. Xu, “On legal contracts, imperative and

declarative smart contracts, and blockchain systems,”

Artif. Intell. Law, vol. 26, no. 4, pp. 377–409, 2018,

doi: 10.1007/s10506-018-9223-3.

8. M. Mehar et al., “Understanding a revolutionary and

flawed grand experiment in blockchain: The DAO

attack,” J. Cases Inf. Technol., vol. 21, no. 1, pp. 19–32,

2019. doi: 10.4018/JCIT.2019010102

9. S. Modgil, N. Oren, N. Faci, F. Meneguzzi, S. Miles, and

M. Luck, “Monitoring compliance with e-contracts and

norms,” Artif. Intell. Law, vol. 23, no. 2, pp. 161–196, 2015,

doi: 10.1007/s10506-015-9167-9.

10. S. Nakamoto, “Bitcoin whitepaper,” 2009, [Online].

Available: https://bitcoin.org/bitcoin.pdf

11. Q. Nasir, I. Qasse, M. Talib, and A. Nassif, “Performance

analysis of hyperledger fabric platforms,” Secur.

Commun. Netw., vol. 2018, pp. 3976093:1–3976093:14,

2018, doi: 10.1155/2018/3976093.

12. K. Purnell and R. Schwitter, “Towards declarative smart

contracts,” in Proc. Symp. Distrib. Ledger Technol. 2019,

pp. 18–21. [Online]. Available: https://symposium-dlt.

org/SDLT2019-FinalProceedings.pdf

13. M. Singh, “An ontology for commitments in multiagent

systems: Toward a unification of normative concepts,”

Artif. Intell. Law, vol. 7, pp. 97–113, 1999, doi: 10.1023/

A:1008319631231.

14. M. Singh and A. Chopra, “Computational governance

and violable contracts for blockchain applications,”

IEEE Comput., vol. 53, no. 1, pp. 53–62, Jan. 2020,

doi: 10.1109/MC.2019.2947372.

15. N. Szabo, “Formalizing and securing relationships on

public networks,” First Monday, vol. 2, no. 9, 1997,

doi: http://dx.doi.org/10.5210/fm.v2i9.548.

16. Apache, “CouchDB,” 2018. [Online]. Available: http://

couchdb.apache.org/

17. J. V�azquez-Salceda, V. Dignum, and F. Dignum,

“Organizing multiagent systems,” Auton. Agents Multi-

Agent Syst., vol. 11, no. 3, pp. 307–360, 2005,

doi: 10.1007/s10458-005-1673-9.

18. G. Von Wright, Norm and Action. New York, NY, USA:

Humanities Press, 1963.

SAMUEL H. CHRISTIE V is currently working toward the PhD

degree at NC State University, Raleigh, NC, USA, and a research

associate at the School of Computing and Communications,

Lancaster University, Lancaster, U.K. He is the corresponding

author of this article. Contact him at schrist@ncsu.edu.

AMIT K. CHOPRA received the Ph.D. degree in computer sci-

ence from North Carolina State University. He is currently a

Senior Lecturer at the School of Computing and Communica-

tions, Lancaster University, Lancaster, U.K. His research

focuses on decentralized multiagent systems. Contact him at

amit.chopra@lancaster.ac.uk.

MUNINDAR P. SINGH received the Ph.D. degree in computer

sciences from The University of Texas at Austin, Austin, TX,

USA. He is currently a Professor in Computer Science and a

Co-director of the Science of Security Lablet, NC State Univer-

sity, Raleigh, NC, USA. His research focuses on sociotechnical

systems. He is a Fellow of AAAI, AAAS, and IEEE, and a former

Editor-in-Chief of IEEE Internet Computing and ACM Transac-

tions on Internet Technology. Contact him at singh@ncsu.edu.

July/August 2021 IEEE Internet Computing 75

BLOCKCHAIN

Authorized licensed use limited to: Lancaster University. Downloaded on September 28,2022 at 08:29:18 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1017/S0269888918000267
http://dx.doi.org/10.1017/S0269888918000267
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/whitepaper/
http://dx.doi.org/10.1007/s10506-018-9223-3
http://dx.doi.org/10.4018/JCIT.2019010102
http://dx.doi.org/10.1007/s10506-015-9167-9
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1155/2018/3976093
https://symposium-dlt.org/SDLT2019-FinalProceedings.pdf
https://symposium-dlt.org/SDLT2019-FinalProceedings.pdf
http://dx.doi.org/10.1023/A:1008319631231
http://dx.doi.org/10.1023/A:1008319631231
http://dx.doi.org/10.1109/MC.2019.2947372
http://dx.doi.org/http://dx.doi.org/10.5210/fm.v2i9.548
http://couchdb.apache.org/
http://couchdb.apache.org/
http://dx.doi.org/10.1007/s10458-005-1673-9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

