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Abstract. Early works and retrospectives by the researchers who founded
the network protocols underlying current distributed systems indicate
they were aware of the importance of capturing application meaning
but didn’t know how to handle it programmatically. Therefore, those re-
searchers introduced simplifications in the protocols that violated their
own principle of the end-to-end argument in systems design.
The thesis of this vision paper is the following. First, the above-mentioned
simplifications, especially the reliance on reliable, ordered communica-
tion protocols such as TCP have run their course. Modern applications
demand flexibility that can only be achieved through modeling applica-
tion meaning, and many applications (such as those based on the Internet
of Things) cannot pay TCP’s overhead. Second, the multiagent systems
community has developed alternative meaning-based approaches that
can provide a new foundation for distributed computing at large.

1 Introduction

As originally conceived, a multiagent system (MAS) is decentralized [14]: Agents
in a MAS are autonomous computational entities that communicate and share
information with each other. In many applications of MAS, an agent represents
a real-world party, such as a human or organization, and the autonomy of the
agent reflects the autonomy of the party it represents. Distinctly from other
areas of computing (e.g., Web services, software engineering, and programming
languages), MAS research emphasizes modeling the meaning of interactions [19].
Broadly, meaning refers to the information in an engagement between principals
that is relevant to their decision making. The focus on meaning has led to a rich
body of work on declarative abstractions such as commitments between agents
[7, 8, 12, 24, 25]. The early work on commitments demonstrated that modeling
meaning is the key to enabling flexible interactions between agents, and thus the
key to accommodating their autonomy.

Pioneers in networked computing were aware of the importance of model-
ing distributed applications in terms of meaning [4]; however, they lacked the



abstractions to express meaning. Instead, to support programming, approaches
in distributed computing focused on ordering and reliability guarantees in the
infrastructure. Being application-agnostic, such guarantees are meaningless from
the application perspective. But worse, the guarantees end up subverting auton-
omy by restricting the choices available to an agent in interacting with others.
And in doing so, modern approaches end up violating the end-to-end argument
(E2EA) [18], a fundamental principle of distributed systems. Indeed, Clark [11]
explains as much in a retrospective on Internet protocols and distributed sys-
tems.

We claim that the MAS community’s historical focus on autonomy and mean-
ing has the potential to address a central quest in distributed systems. In a
nutshell, the quest is for programming abstractions that enable programmers
to easily build high-performance distributed applications based on meaning in
a manner compatible with the E2EA. By applying ideas from MAS, we have
the opportunity to fundamentally reshape how practitioners build distributed
application.

2 The Dilemma Posed by Current Approaches

We discuss how each of the two major existing approaches (architectures) for
distributed applications fails to satisfy crucial architectural desiderata, thus pre-
senting developers with a dilemma (a situation with two equally bad choices).

2.1 Desiderata

Consider the two MAS architectures in Figures 1 and 2. In both, the agents
communicate via asynchronous messaging via a communication infrastructure
that offers an API for programming agents. Notice that there is no shared state
between the agents. In the architecture of Figure 1, the communication infras-
tructure guarantees only that it delivers only sent messages. We refer to such
an infrastructure (and architecture) as bare-bones because no real infrastructure
guarantees less. In the architecture of Figure 2, the infrastructure provides the
additional guarantee that all sent messages will be delivered and in FIFO order
between any pair of agents. We refer to such an infrastructure (and architec-
ture) as reliable. In practical systems, bare-bones and reliable infrastructures
are exemplified by UDP over IP and TCP over IP, respectively.

Accommodating Autonomy. The end-to-end argument (E2EA) [18] is a
guiding principle in the design of the Internet. The principle imagines a layered
system architecture and draws our attention to the fact that if implementing
some functionality fully and correctly requires knowledge only available at some
system layer, then that functionality cannot be implemented in a lower sys-
tem layer. Partial implementation of the functionality in a lower layer, however
tempting, should generally be avoided as the layer would impose a model upon
the higher layer (by constraining the choices available at the higher layer) and
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Unordered, Unreliable Communication Infrastructure

Agent Agent

API API

Fig. 1: MAS where agents communicate via a bare-bones infrastructure that
guarantees neither message ordering nor delivery. The API represents program-
ming abstractions offered by the infrastructure.

Ordered, Guaranteed Delivery Communication Infrastructure

Agent Agent

API API

Fig. 2: MAS where agents communicate via a reliable infrastructure that guar-
antees message delivery and in FIFO order.

likely result in a performance hit as well. The E2EA famously argues against
reliable infrastructures (as defined above), among other things.

For example, suppose that we wanted to make a medical prescription appli-
cation reliable in the sense that a prescription written by the doctor in response
to a patient complaint should be fulfilled by the pharmacy in a timely man-
ner. To distinguish application reliability from reliability at the infrastructure
level, let’s refer to the former as a-reliability. We can imagine a few measures
to increase a-reliability. One, we could specify a contract that stipulates that
the pharmacy fulfill valid prescriptions in a timely manner. Further, we could
support reminders and acknowledgments between the parties. A reliable infras-
tructure would be oblivious of such measures—they would necessarily have to
be supported at the application level. In particular, no infrastructure-level re-
transmission or acknowledgment of messages can provide a-reliability, because
it depends on the cooperation of multiple higher-level endpoints (the agents).

More insidiously perhaps, FIFO delivery interferes with the application by
delaying the delivery of messages pending the arrival of an earlier message. For
example, if a doctor sends two prescriptions to the pharmacy, one after the other,
then until the first prescription is delivered to the pharmacy, the infrastructure
won’t deliver the second, thus interfering with the pharmacy’s fulfillment of its
commitments and its autonomy (the idea that infrastructures could interfere
with agent autonomy was first articulated in [5]). Consider another example
where the doctor can cancel a prescription after issuing it to the pharmacy.
FIFO delivery would mean that the pharmacy can’t process the cancellation
before receiving the prescription, even though handling cancellation first might
avoid wasting effort and so would be desirable from the pharmacy’s point of
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view. In essence, a-reliability does not require reliable infrastructure, but the
reliable infrastructure gets in the way of a-reliability.

From the application developer’s perspective, the E2EA promotes the idea
of representing application meaning (e.g., the meaning of a prescription and its
cancellation) and implementing agents based on such meaning rather than some
expected message ordering.

Programming Convenience. Historically though, reliable infrastructures have
been favored over bare-bones ones for building applications. The reason is that
in the mind of an application developer, the application is represented as a uni-
tary (as opposed to decentralized) state machine. For example, the developer
implicitly models a state machine where the doctor’s cancellation of a prescrip-
tion happens after the prescription is issued (Figure 3). A state machine is a
convenient abstraction from the point of view of programming. A reliable in-
frastructure helps implement such a state machine in a distributed manner by
making it impossible for the pharmacy to observe and process the cancellation
before observing the prescription.

D 7→ P:Prescription D 7→ P:Cancel

Fig. 3: Fragment of a state machine representing a medical prescription scenario.

Imagine programming such an application over bare-bones infrastructure.
Now, the application developer must implement the pharmacy to deal with can-
cellation arriving before the prescription. In general, prevalent techniques offer no
alternative but to implement business logic for each possible message sequence,
a cumbersome and error prone task at best, especially when several messages
may be in transit at once.

In addition to preventing arbitrary message orders (or nondeterminism), a
reliable infrastructure also saves the application developer from writing logic
to recover from lost messages. Over bare-bones infrastructure, the developer
would have to implement acknowledgments, retransmissions, and the handling
of duplicates. It is no wonder then that application developers prefer reliable
infrastructures.

Loose Coupling. Loosely-coupled architectures are better because a compo-
nent can be replaced with fewer modifications to other components [17, 23].
From the point of view of loose coupling, the bare-bones architecture is better.
This is because the applications that work over a bare-bones infrastructure will
also work over the reliable infrastructure. However, the reverse is not true. If
agents relied on the reliability offered by the infrastructure, then switching to
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bare-bones infrastructure would result in errors. As we saw above, if the phar-
macy were implemented to expect Cancel after Prescription, then the pharmacy
wouldn’t work over a bare-bones infrastructure.

2.2 The Dilemma

From the foregoing discussion, it would seem that agent programmers are faced
with a dilemma.

1. Either build flexible applications in a manner compatible with the E2EA—
over bare bones infrastructure—but without the benefit of high-level, meaning-
based programming abstractions. In particular, programmers would have to
implement complex code to track the state of the interaction.

2. Or benefit from some programming convenience, but at the cost of violating
the E2EA and subverting autonomy.

Neither alternative is ideal since we really want both high-level communica-
tion abstractions and compatibility with the E2EA. Work in distributed systems,
however, has historically favored Alternative 2, as evidenced by work on middle-
ware. Message queues (e.g., MQTT) support reliable, FIFO messaging. Causal
delivery generalizes FIFO delivery to more than two endpoints. RPC (remote
procedure call), a technique whose limitations were laid bare decades ago, has
made a comeback with microservices.

3 Meaning-Based MAS Architecture

In contrast to traditional approaches for creating distributed applications, a
strand of MAS research has emphasized modeling a MAS in terms of the meaning
of interactions between agents. The motivation behind modeling meaning is to
support flexible decision-making by enabling flexible interactions between agents.

In current work, the meaning is usually modeled in terms of how messages
affect the states of the normative expectations (norms, e.g., commitments) be-
tween agents [7, 8, 12, 24, 25]. Recent work has demonstrated how the decentral-
ized computation of norms may be operationalized over information protocols
[16, 20, 21]. In a nutshell, agents compute the atoms of meaning, or base events,
by enacting information protocols. The base events an agent has observed are
materialized in its local state. Each agent computes higher-level meanings as
views on the local state.

Figure 4 describes a promising meaning-based MAS architecture schemati-
cally. Several things are notable about the architecture. One, the application is
specified by norms and information protocols; collectively, the interaction specifi-
cation. The specification would be jointly determined by application stakeholders
following some design process, e.g., [6]. Two, the interaction specification is the
extent of the coupling between the agents. There is no hidden coupling between
the agents. In particular, nothing is assumed of the communication infrastruc-
ture except that it respects physical causality; that is, the infrastructure delivers
only sent messages.
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Decision making

Meaning computer
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Decision making

Meaning computer
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Fig. 4: Meanings-based MAS. An agent’s local meaning computer computes
meanings based upon a specification of interactions, here, norms and information
protocols. The meaning computer offers a high-level API which a developer can
use to plug in decision making policies. The meaning computer is generic and
interfaces with an asynchronous communication infrastructure via a low-level
communication interface (Comms).

Each agent consists of two components: Meaning Computer (MC) and De-
cision making. The MC is a generic component. It interprets the information
protocol and ensures that the agent is compliant with it. It also records the
incoming and outgoing messages, collectively the base events that the agent has
observed. Further, the MC interprets norm specifications over the base events
to infer the states of the norms. An agent developer would plug in the agent’s
decision making policies via an API to the MC.

Returning to the example of prescription cancellation, the architecture in
Figure 4 enables the possibility of the pharmacy handling the prescription can-
cellation before receiving the prescription if the cancellation is received first. As
modeled in the information protocol, the cancellation would refer to the pre-
scription being canceled via a unique identifier. If the cancellation is received
before the prescription, then the pharmacy’s MC disables the fulfillment of the
prescription (based on the information protocol) so that when the prescription
eventually arrives, there is nothing to do.

The information protocol approach represents a key breakthrough in protocol
languages in that it supports meaning and flexible interaction far better than
choreographic (message ordering-based) approaches [5]. Remarkably, although
a choreography is an application-level abstraction, its reliance on message or-
dering for correctness recreates the problems of reliable infrastructures at the
application level.
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4 Directions

4.1 Specification

Natural language contracts (agreements) capture the high-level meaning of en-
gagements between parties by setting out the relevant norms, e.g., commitments,
authorizations, prohibitions, and powers. The virtue of a contract is that it sup-
ports both autonomy and correctness. That is, a party may decide to act as
it pleases; however, if it violates a norm, that would amount to an observable
violation.

Smart contracts (the blockchain variety) have caught the world’s attention
for not having that virtue. Their motivation is to cut out the social aspects of
decision making by touting inviolability [22]. Inviolability though is antithetical
to autonomy, which is probably one reason why smart contracts have not caught
on as a general purpose technology. Herein lies a great opportunity for MAS
research—declarative representations of violable contracts—to make a real-world
impact.

Our contributions include Cupid, a declarative language for specifying and
computing norms over a database of business events [7, 8]. Clouseau [21] shows
how to leverage Cupid contracts in a decentralized setting with several agents,
each with its own local database. We also developed a proof-of-concept imple-
mentation of Cupid for the R3 Corda distributed ledger [22]. More is needed
for practical applications. In particular, a contract bundles norms and has its
own lifecycle (it enters into force upon parties signing up to it and it may be
amended, breached, and terminated). Further, contracts involve operations such
as delegation and assignment and notions such as jurisdictions that need to be
properly formalized.

We need methodologies for specifying and verifying contracts. One important
question is how may stakeholders starting from their requirements arrive at a
contract. Protos [6], a methodology for refining requirements into commitments,
offers some ideas. A broader question is that of governance, which requires tak-
ing into account the actual outcomes from enacting a contract in the process
of revising a contract. Further, contracts need to be to related to multiagent
organizations (institutions). An organization (itself an agent) would normally
serve as the arbiter of disputes and provide other services such as identity, dis-
covery, and reputation. An organization may further help enforce contracts by
sanctioning agents, e.g., by expelling an agent for repeated violations.

A related question is what constitutes a fair contract? Consider a contract
between a lender and borrower, whereas a notification sent by the lender counts
when the lender sends it, whereas a notification sent by the borrower counts
when the lender receives it. All other things being equal (e.g., they are using
the same communication infrastructure), such a contract seems unfair to the
borrower because all decisions are made from the lender’s perspective. Other
questions relate to the enactability of a contract. For example, a contract may
only be partially enactable or it may be enactable only in odd ways (e.g., a
commitment which comes into force only after it is already satisfied).
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4.2 Programming Models

A challenge for any interaction-based approach of specifying applications is how
to facilitate the implementation of agents based on contracts and protocols. In
contrast to traditional approaches [1, 2, 3], a suitable programming model would
be based on information, thus abstracting away the challenges of asynchrony. It
would also ensure that the interactions progress in decentralized yet consistent
manner. We have explored some initial ideas in Stellar [13] and PoT [10], which
demonstrate that an information-based programming model saves significant
programming effort and avoids errors. A yet uncharted area is how to support
programming based on contracts.

Early work on commitment machines identified semantic exception handling
as a benefit [25]. Exception handling naturally relates to the theme of fault tol-
erance. The remarkable thing is that application-level fault tolerance is not op-
tional; any application must ensure that it achieves its own objectives. Although
properly addressing causes may reduce the probability of failure and improve
performance, what ultimately matters to an application is success. However,
current approaches (following a long tradition) focus on handling faults as close
to their causes as possible, and thus encourage delegating fault tolerance to the
infrastructure. For example, in a paradigm as new as microservices, fault toler-
ance is left to the underlying service mesh [15]. The focus on infrastructure has
meant that today we lack the tools to program fault tolerance effectively at the
application level. PoT and Bungie [9] present some initial ideas about how to
implement fault tolerance at the application level—in the agents.

Most future applications will be programmed to run in the cloud, possibly as
a composition of microservices. It would be timely for MAS researchers to con-
sider how their techniques could benefit from cloud-based mechanisms (e.g., for
scalability) and what they might in turn have to offer to application developers.
Programming models such as Function-as-a-Service (FaaS) intend to make pro-
gramming cloud applications easier. However, such models currently offer neither
any programming abstractions for managing state nor composition mechanisms
for building realistic applications. Meaning-based programming models can help
address these gaps and potentially enable highly concurrent agent implementa-
tions that can take advantage of scalability mechanisms in the cloud.

5 Conclusion

Current approaches for building distributed applications pose a dilemma: Either
build applications in violation of the E2EA or build them without any program-
ming support. A fundamentally multiagent approach based on meaning has the
potential to provide the way out: satisfy the E2EA by enabling the deploy-
ment of applications on bare-bones infrastructure, and facilitate programming
via high-level programming abstractions.

The multiagent systems community has long expressed angst about the lack
of direct impact on systems development practice. We suggest here that perhaps
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it is because we have sought to make small incremental changes, which since
they don’t align well with traditional thinking are largely disregarded by practi-
tioners. We suggest that it would be worth (1) understanding the foundational
problems in distributed systems, that is, those that lie beyond the capacity of
current approaches and (2) showing how multiagent systems can address those
problems in a natural manner. The history of distributed computing indicates
that the founders were quite aware of the simplifications, and revisiting those
design decisions could be a pathway toward introducing multiagent systems into
practice.
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