
Protocol-Based Engineering of Microservices

Aditya K. Khadse1, Samuel H. Christie V2,
Munindar P. Singh1, and Amit K. Chopra3

1 North Carolina State University, USA
2 Unaffiliated

3 Lancaster University, Lancaster, UK
{akkhadse@ncsu.edu, shcv@sdf.org, mpsingh@ncsu.edu,

amit.chopra@lancaster.ac.uk}

Abstract. The microservices pattern is increasingly used in industry
to realize applications in a decentralized manner, often with the help of
novel programming models such as Microsoft-originated Dapr. Multia-
gent systems have typically been conceptualized as being decentralized.
This naturally brings us to the question: Can multiagent software ab-
stractions benefit the enterprise of realizing applications via microser-
vices?
To answer this question, in this paper, we show how interaction protocols,
a fundamental multiagent abstraction, can be applied toward realizing an
application as a set of microservices. Specifically, we take a third-party
application that exemplifies Dapr’s programming model and reengineer
it based on protocols. We evaluate the differences between our protocol-
based implementation of the application and the Dapr-based implemen-
tation and find that our protocol-based implementation provides an im-
proved developer experience in terms of cleaner, better-structured code.
We conclude that (1) protocols represent a highly promising abstraction
suited to the modeling and engineering of microservices-based applica-
tions and (2) Dapr augmented with a protocol-based programming model
would be highly beneficial to the microservices enterprise.

Keywords: Decentralized systems · coordination · asynchronous mes-
saging · multiagent systems · information protocols · programming mod-
els

1 Introduction

With the recent upsurge of cloud providers and affordable deployment solu-
tions [20], large-scale software is increasingly written using microservices [29].
Microservices are motivated by loose coupling afforded by a decentralized ap-
plication architecture. The microservices that constitute an application can be
independently developed and maintained, possibly using heterogeneous tech-
nologies. Further, each microservice can be deployed in its own container and
scaled independently in the cloud. By contrast, the components in a monolithic
application [21] are tightly coupled.



2 A. Khadse et al.

A challenge with any decentralized architecture is coordination between its
components. With products increasingly adopting the microservices architecture,
programming models that facilitate microservices-based application development
have emerged. Dapr [14] is a leading programming model, originally conceived
within Microsoft, but now an open-source project. To support coordination, Dapr
provides the abstractions of state stores, pub-sub brokers, and so on. Dapr is used
across different industries by companies such as Alibaba Cloud [1] and Bosch [19].
Alibaba Cloud notes that adopting Dapr helped them integrate microservices
written in different languages quickly. Bosch particularly mentions how it was
easy to move to event-driven microservices while using Dapr.

The field of multiagent systems (MAS) has traditionally been concerned with
decentralized architectures, and the connection between services and multiagent
systems has been identified multiple times over the years [2, 22, 23, 26]. Particu-
larly interesting are works on engineering MAS based on protocols [15–17].

Recent developments in engineering MAS have focused on the idea of infor-
mation protocols [24, 33]. An information protocol models a decentralized MAS
by specifying declarative information constraints on message occurrence. Infor-
mation protocols are enacted by decentralized agents via Local State Transfer
(LoST) [25]. Programming models based on information protocols includes De-
serv [9], Bungie [8], Mandrake [10], and Kiko [11]. Kiko, in particular, represents
a conceptual leap because it enables viewing and implementing an agent as a
decision maker, its communications being its decisions.

In this paper, we model an existing Dapr application via information pro-
tocols and implement it using Kiko to highlight the benefits of a multiagent
approach to microservices development. In particular, the benefits include bet-
ter system modeling via protocols and attendant benefits such as verification;
better structured and more correct code; fully decentralized implementations;
and more loosely-coupled components.

2 Background

We now introduce information protocols, Kiko, and Dapr.

2.1 Information Protocols

Information protocols are declarative specifications of interaction between agents.
A protocol specifies the roles (played by agents); a set of public parameters; op-
tionally, a set of private parameters; and a set of messages. Each message spec-
ifies the sender, receiver, and its parameters. Adornments such as ⌜in⌝, ⌜out⌝,
⌜nil⌝ on parameters provide causal structure to the protocol. Key parameters
identify enactments. Together, they constrain when messages may be sent. The
adornment ⌜out⌝ for a parameter means in any enactment, the sender of the
message can generate a binding (supply a value) for the parameter if it does
already know it; ⌜in⌝ means that the parameter binding must already be known
to the sender from some message in the enactment that it has already observed;



Protocol-Based Engineering of Microservices 3

⌜nil⌝ means that the sender must neither already know nor generate a binding
for the parameter. Each tuple of bindings for the public parameters corresponds
to a complete enactment of the protocol. Thus, one can think of a protocol as
notionally computing tuples of bindings via messaging between the roles.

Listing 1 is an example of an information protocol between a buyer, a seller,
and a shipper for the purchase of an item.

Listing 1. The Purchase protocol [24].

Purchase {

roles Buyer , Seller , Shipper

parameters out ID key , out item , out price , out outcome

private address , resp , shipped

Buyer -> Seller: rfq[out ID , out item]

Seller -> Buyer: quote[in ID, in item , out price]

Buyer -> Seller: accept[in ID , in item , in price , out

address , out resp]

Buyer -> Seller: reject[in ID , in item , in price , out

outcome , out resp]

Seller -> Shipper: ship[in ID, in item , in address , out

shipped]

Shipper -> Buyer: deliver[in ID , in item , in address , out

outcome]

}

Let’s unpack how the protocol works. The name of the protocol is Purchase
and Buyer and Seller are its roles. The parameters line specifies the tuple
computed by a complete enactment of Purchase; parameterID is annotated key,
meaning that it identifies tuples and the other parameters in the tuple are item,
price, and outcome. These parameters are public and may be used toward compo-
sition with other protocols. A protocol may also have private parameters; here,
address, resp, and shipped.

Every message has a sender, a receiver, a name, and a schema. The sequence
in which these messages are written is unimportant. Causality is explicitly spec-
ified via parameter adornments. Specifically, to send a message instance of a
particular schema, the bindings of its ⌜in⌝ parameters must already be known;
the bindings of its ⌜out⌝ parameters must be generated in sending the instance
and become known thereafter; and the bindings of its ⌜nil⌝ parameters must
neither be known nor generated in the sending the instance. This means that
in Purchase, Buyer can send an rfq at any point since all its parameter are
adorned with ⌜out⌝. Once a Seller has received an rfq, it can send the corre-
sponding quote since it knows the ID and item and it can generate price. And so
on.

Messages can be made mutually exclusive (thus supporting choice within
protocols) by adorning the same parameter as ⌜out⌝ in the messages. In the
listing, the messages accept and reject both have resp adorned with ⌜out⌝. If



4 A. Khadse et al.

buyer sends accept, it would have generated a binding for resp, which would
mean that the sending of or reject would be disabled hence; and vice versa.

If reject is sent, the parameter address is never bound, and in effect, the
messages ship and deliver will never be enabled. The enactment will be deemed
as completed as all the needed parameters would be bound.

2.2 Kiko

Kiko is an information protocol-based programming model for agents. In other
words, Kiko provides programming abstractions for implementing agents based
on protocols.

Kiko takes to heart the idea that in a multiagent system, an agent’s commu-
nications to others represent its decisions (it is in this sense that in multiagent
systems, you have decentralized decision making). An agent is envisaged as run-
ning a loop in which upon the occurrence of certain events, it executes some
business logic that may result in the making of new decisions, that is, the send-
ing of messages to others.

Fig. 1. The Kiko agent architecture [11].

To write an agent (Figure 1), an agent’s programmer configures the agent
with the multiagent systems it is playing roles in (based on protocols). In par-
ticular, it is configured with the identities of the other agents also playing roles
in those multiagent systems and how to reach them over the network. Listing 2
shows an example of how configuration can be set up for MAS based on the
protocol in Listing 1. We define one multiagent system named SysName0 with



Protocol-Based Engineering of Microservices 5

one agent for each role in the protocol. Bob is a buyer, Sally is a seller and
Sheldon is a shipper.

Listing 2. A configuration of a multiagent systems using Kiko.

systems = {

"SysName0 ": {

"protocol ": Purchase ,

"roles": {

Buyer: "Bob",

Seller: "Sally",

Shipper: "Sheldon"

}

}

}

agents = {

"Bob": [("192.168.0.1" , 1111)],

"Sally": [("192.168.0.2" , 1111)],

"Sheldon ": [("192.168.0.3" , 1111)]

}

Kiko’s main abstraction is that of a decision maker. The programmer also
writes a set of decision makers. A decision maker is a procedure written by the
agent programmer that captures business logic. It is invoked upon the occurrence
of a specified trigger event; it is supplied with the enabled (possible) decisions
given the agent’s communication history; and its body contains the logic to make
some decisions (possibly none) from among the possible decisions. The possible
decisions are known as forms and are supplied by the agent’s protocol adapter,
which keeps track of protocol enactments based on the messages the agent has
observed. The name ’form’ captures the idea that enabled decisions have their
⌜in⌝ parameters already filled in but the ⌜out⌝ parameters are yet to be bound,
which is the job of the logic in the body. The fleshed-out forms are the message
instances and are emitted on the wire by the adapter when the procedure returns.
Message receptions are performed by the adapter transparently from the business
logic. Kiko empowers programmers by enabling them to focus on business logic.

Listing 3 shows a decision maker for Buyer Bob. Its trigger is InitEvent,
which represents the start of the agent. Thus, when the agent starts, this decision
maker will be invoked by the adapter. The decision rfq is accessible as a form
via the enabled argument. Bob is interested in a watch and so bind item in rfq
to watch. The corresponding message instance is sent by the adapter to Sally
(based on configuration) when the procedure returns.

Listing 3. Bob sending the RFQ message to Sally.

@adapter.decision(event=InitEvent)

def start(enabled):

ID = str(uuid.uuid4())

item = "watch"

for m in enabled.messages(RFQ):

m.bind(ID=ID , item=item)



6 A. Khadse et al.

Let’s say that Sally has replied with a quote message providing the value of
price. Now, Bob has to decide whether to accept or reject the quote. Listing 4
explains how an agent makes a decision.

Listing 4. Bob deciding whether to accept or reject a quote.

@adapter.decision

def decide(enabled):

for m in enabled.messages(Buy):

if m["price "] < 20:

m.bind(address ="1600 Pennsylvania Avenue NW",

resp=True)

else:

reject = next(enabled.messages(Reject ,

ID=m["ID"]))

reject.bind(outcome=True , resp=True)

The developer is in control of what is to be done at each junction of making a
decision. Kiko provides this control through the use of sets of enabled messages.
If an agent attempts to send both accept and reject, the messages would fail
emission as the instances being sent are inconsistent with each other.

Because of our foundation in protocols (and roles), each agent may be im-
plemented by a different programmer, thus highlighting Kiko’s support for loose
coupling. The steps below summarize the steps an agent programmer follows.

1. Define the configuration of the desired multiagent system (in Python).
2. Create an instance of an Adapter for each role using the class provided by

Kiko (in Python).
3. Specify decision makers based on the information protocol using the previ-

ously written instance of an adapter (in Python). This specification of the
decision makers ends up as an agent.

4. Start the agent (in Python).

The following details the services and API of the protocol adapter, a generic
component of the programming model.

1. The protocol adapter is initiated within every agent, with the current agent’s
name, the configuration of the systems as well as the configuration of the
other agents.

2. Depending on the protocol and the currently available information, certain
decision makers are invoked by the protocol adapter. The protocol adapter
provides forms, which are message instances with unbound parameters the
decision maker can fill out.

3. These filled-out message instances are processed by the protocol adapter as
attempts. The protocol adapter then checks the attempts for inconsistencies.
In case of no inconsistencies, the message instances are successfully emitted;
otherwise, they are dropped.

4. The protocol adapter relies on the communication service for transporting
messages between agents. The default communication service is UDP, which
is sufficient for enacting the information protocols. The adapter receives
messages from other agents.



Protocol-Based Engineering of Microservices 7

2.3 Dapr

Dapr is an event-driven runtime that promises resilient, stateless, and stateful mi-
croservices that interoperate. Dapr provides building blocks called components.
Some popular types of components are:

– State Store: These components can be used as a database that is accessible
to any Dapr application.

– PubSub Brokers: These components provide a system that supports the pub-
lishing of messages to a topic. Applications can then subscribe to these topics
and receive published messages.

– Bindings & Triggers: These components enable Dapr applications to com-
municate to external services without integration of respective SDKs.

Dapr also provides a new type of component called Pluggable components.
These components are not bundled as part of the Dapr runtime and run inde-
pendently of it. The primary advantage of using a pluggable component is that
it can be written in any language that supports gRPC.

3 Traffic Control Application

Traffic Control [32] is a sample application that emulates a traffic control system
using Dapr. Figure 2 describes the application using a UML sequence diagram.
It is inspired by the speeding-camera setup present on some Dutch highways.
An entry camera is installed at the start of a highway and an exit camera is
installed at a certain distance from the entry camera to capture vehicle license
information. If a vehicle is going faster than the speed limit, the driver of the
vehicle can be fined.

The time difference between an entry camera capturing a vehicle and an exit
camera capturing the same vehicle will calculate the speed of the vehicle. Based
on the speed of the vehicle, there is a decision to be made about whether the
driver should be fined for driving over the speed limit.

3.1 Using Dapr

To develop this system in Dapr, four applications were created:

– Camera Simulation: A .NET Core console application that simulates passing
cars.

– Traffic Control Service: A ASP.NET Core WebAPI application that defines
two endpoints /entrycam and /exitcam

– Fine Collection Service: Another ASP.NET Core WebAPI application with
only one endpoint /collectfine for collecting fines,

– Vehicle Registration Service: An ASP.NET Core WebAPI application with
only one endpoint /vehicleinfo/{license-number}, which links a vehicle
to its owner.



8 A. Khadse et al.

Fig. 2. A UML sequence diagram for the traffic control sample application.



Protocol-Based Engineering of Microservices 9

A rundown of how this system operates follows:

1. Camera Simulation generates a random license number and sends a Vehi-
cleRegistered message (which contains the license number, the lane number,
and the timestamp) to the /entrycam endpoint of Traffic Control Service.

2. The Traffic Control Service then stores the details in a database.
3. After a random interval of time, the Camera Simulation sends another Ve-

hicleRegistered message, but this time to the /exitcam endpoint of Traffic
Control Service.

4. The Traffic Control Service then fetches the previously stored details and
calculates the average speed of the vehicle.

5. If the average speed of the vehicle is greater than the speed limit, the
Traffic Control Service sends the details of the incident to the endpoint
/collectfine Fine Collection Service, where the fine is calculated.

6. The Fine Collection Service retrieves the email of the vehicle’s owner by send-
ing the details of the vehicle to the endpoint /vehicleinfo/{license-number}
of the Vehicle Registration Service and sends the fine to the owner via email.

To enable the developer to focus on the business logic, Dapr provides com-
ponents that are generic such as a database for storing the vehicle’s information,
providing an endpoint that can connect to an SMTP server that sends an email,
and an asynchronous messaging queue that exchanges messages between the
services.

Listing 5 shows how the /exitcam endpoint of the Traffic Control application
deals with sending the fine. In particular, the endpoint is responsible for sending
a NotFound() in case a vehicle that is not in the vehicleStateRepository is
detected by the exit camera.

Listing 5. The traffic control application’s /exitcam endpoint.

1 [HttpPost (" exitcam ")]

2 public async Task < ActionResult >

VehicleExitAsync(VehicleRegistered msg , [FromServices]

DaprClient daprClient) {

3 try {

4 // get vehicle state

5 var state = await _vehicleStateRepository

6 .GetVehicleStateAsync(msg.LicenseNumber);

7 if (state ==

8 default (VehicleState)) {

9 return NotFound ();

10 }

11
12 // update state

13 var exitState = state.Value with {

14 ExitTimestamp = msg.Timestamp

15 };

16 await _vehicleStateRepository

17 .SaveVehicleStateAsync(exitState);



10 A. Khadse et al.

18
19 // handle possible speeding violation

20 int violation = _speedingViolationCalculator

21 .DetermineSpeedingViolationInKmh(

22 exitState.EntryTimestamp ,

23 exitState.ExitTimestamp.Value

24 );

25
26 if (violation > 0) {

27 var speedingViolation = new SpeedingViolation {

28 VehicleId = msg.LicenseNumber ,

29 RoadId = _roadId ,

30 ViolationInKmh = violation ,

31 Timestamp = msg.Timestamp

32 };

33
34 // publish speedingviolation (Dapr pubsub)

35 await daprClient.PublishEventAsync (" pubsub",

"speedingviolations", speedingViolation);

36 }

37
38 return Ok();

39 } catch (Exception ex) {

40 return StatusCode (500);

41 }

42 }

3.2 Using Kiko

To implement the Traffic Control system in Kiko, we initially need to create
a protocol that can accommodate all of our requirements. Listing 6 shows an
example of a protocol that would enable us to fulfill the requirements and is
supported by the tooling.

Listing 6. The TrafficControl protocol.

TrafficControl {

roles EntryCam , ExitCam , FineCollector , VehicleMngr

parameters out regID key , out entryTS , out exitTS , out

email

private amount , avgSpeed , query

EntryCam -> ExitCam: Entered[out regID , out entryTS]

ExitCam -> FineCollector: Fine[in regID , in entryTS , out

exitTS , out avgSpeed]

FineCollector -> VehicleMngr: Query[in regID , in

entryTS , in avgSpeed , out query]

VehicleMngr -> FineCollector: Result[in regID , in

entryTS , out email]

}



Protocol-Based Engineering of Microservices 11

Let’s unpack how this protocol works. The roles involved would be En-
tryCam, ExitCam, FineCollector, VehicleMngr. The parameters nec-
essary for the completion of an enactment are regID which stands for registra-
tion ID, entryTS which stands for entry timestamp, exitTS which stands for exit
timestamp, and outcome. Private parameters that may or may not be bound are
amount, avgSpeed which stands for average speed, and query.

The first message that will be sent out is Entered. This denotes the En-
tryCam alerting the ExitCam that a vehicle has entered the highway. The
next message that will be sent out is Fine. This is where the decision maker
defined by the developer will come into play. Listing 7 shows one such imple-
mentation of the decision maker. The code is written in Python by the developer
and uses the Kiko library [7]. Constants in uppercase are part of the configura-
tion. Currently, the entry camera is simulated by a trigger event that is invoked
at random times. The exit cam is simulated by adding a random amount of time
to a known entry timestamp. This could easily be replaced with a blocking call
to the method that would wait to observe a vehicle and continue in case the
vehicle matches the registration. An observation that could be made is that it is
unnecessary to explicitly store the exit timestamp as every observation is stored
in the local store.

Listing 7. A decision maker for the exit camera.

@adapter.decision(event=VehicleExit)

async def check_vehicle_speed(enabled , event):

for m in enabled:

if m.schema is Fine and m["regID "] == event.regID:

avgSpeed = DISTANCE / (event.ts - m[" entryTS "])

if avgSpeed > SPEED_LIMIT:

m.bind(exitTS=event.ts , avgSpeed=avgSpeed)

return m

We create a single decision maker for deciding whether Fine message should
be sent next. If the Fine Collector receives the message Fine, it then retrieves
the details of the owner of the vehicle from the Vehicle Manager and sends
the email detailing the fine. The code for this implementation can be found on
https://gitlab.com/masr/kiko-traffic-control. Figure 3 shows the UML
sequence diagram for our implementation using Kiko.

Internal computations are omitted from the UML diagram. For example, the
average speed is calculated by Exit Cam, hence a message like Exit is not explicit
in the protocol.

4 Evaluation

We evaluate the implementation based on the differences in the Kiko and Dapr
implementations of the scenario.



12 A. Khadse et al.

Fig. 3. A UML sequence diagram for our traffic control sample application written
using Kiko.

4.1 Protocol Specifications

Protocols are at the heart of both implementations. The Kiko implementation
relies on the formal specification of the protocol. The protocol can be verified
statically for properties such as safety and liveness. Further, an adapter takes
the protocol as input (serving as a runtime) and enables implementing the agent
based on the protocol. In the Dapr-based implementation, the protocol is spec-
ified only informally using UML interaction diagrams. They afford neither veri-
fication nor a protocol-based programming model.

4.2 Typing and Structuring of Agent Implementations

In Kiko, the information protocol already captures crucial domain aspects related
to the interaction, such as the entry and exit identifiers, registration identifiers,
and so on. These domain-related aspects are not modeled or are captured only
in low-level data structures in the Dapr implementation (line 6 in Listing 5).
Kiko can enforce integrity checking based on identifiers that are annotated as
key. In Dapr, the agent developer has to write such integrity-checking code.

Kiko shines in structuring the agent implementation and focusing the devel-
oper on writing the business logic, with fewer possibilities for errors in decision
making. Its notion of forms is particularly helpful as it provides decisions (mes-
sages) that have known information already filled in and points the developers
to writing code that generates the missing information. By contrast, Dapr de-
velopers must construct entire messages by hand (line 27 in Listing 5), which
introduces possibilities for errors.

The Dapr implementation contains code for getting and updating the state
(Lines 5–17) that doesn’t appear in the Kiko implementation because the adapter



Protocol-Based Engineering of Microservices 13

automatically maintains the state. Further, the Dapr implementation contains
code for the ‘error’ of exit being recorded but there is no record of entry (Lines
7–9). Such error handling doesn’t appear in the Kiko decision maker in Listing 7:
if the exit camera doesn’t hasn’t received the message denoting entry, then the
corresponding Fine form will not appear in the set of forms supplied by the
adapter. Whether exits correlate with entries is something worth keeping track
of as missing entries or exits may indicate problems with the cameras; however,
such code need not have to be in the exit camera.

Dapr’s implementation relies on the developers being responsible for integrat-
ing the endpoints. It is possible that an external agent tries to send an invalid
request to an endpoint. Kiko’s implementation on the other hand only relies on
agents conforming to the protocol. Even if an external agent attempts to
push a message to the agent, if the history does not match with the message, it
will be ignored by Kiko.

4.3 Decentralization and Loose Coupling

Although microservices aspire to decentralization, the Dapr implementation ac-
tually relies on a shared state between the entry and exit camera endpoints.
Specifically, the entry camera endpoint stores information about the entry in a
shared store which is then retrieved by the exit camera endpoint to update it
with the exit information and to calculate the average speed (Lines 3–15). By
contrast, there is no shared state between Kiko agents. The only way for Kiko
agents to share information is to transfer their local state via messaging.

Being able to independently implement and maintain endpoints is evidence of
loose coupling. Since the Dapr implementation is not based on a high-level system
model (the information protocol) and to interoperate the endpoint developers
would have to share code, loose coupling is better supported by Kiko than by
Dapr.

For asynchronous communication between microservices, the Dapr imple-
mentation relies on publish-subscribe communication via message queues. The
Kiko implementation by contrast uses UDP (a lossy, unordered communication
service) as the underlying communication service highlighting the fact that or-
dered message delivery is unnecessary. Other information protocol-based works
[10] have shown how agents can deal with message loss.

5 Discussion

Based on this evaluation, we can conclude that the Kiko implementation provides
a better developer experience and is better suited to decentralization and loose
coupling.

Since the Kiko implementation of the traffic control application does not rely
on message ordering for processing, it is possible that the exit camera agent
records VehicleExit occurs prior to the reception of the Entered message. In
this case, as the Fine message would not be enabled and therefore there is no



14 A. Khadse et al.

possibility of a fine being issued. This may not be the desired effect but can be
remedied by writing a decision maker that iterates over enabled messages on the
reception of the Entered message.

Using the microservice architecture also requires a fair amount of knowledge
dealing with deploying different services. A dedicated DevOps team was found
to be necessary for software that followed microservice architecture [28]. With
only about 10% of respondents claiming to be a DevOps specialist in the 2022
Developer Survey [27] by Stack Overflow, developers end up being the ones
deploying the applications. Using Dapr, this job becomes easier to deal with
when using applications written in different languages.

We posit that the conceptual integration between MAS and web architec-
ture would facilitate the construction of multiagent systems that are widely
distributed and inherit architectural properties such as scalability and evolvabil-
ity [13]. The integration of Kiko with Dapr would enable the users to build a
MAS that has the benefits of microservice architecture such as scalability but
also the benefits of observability and secret management. Further, this concep-
tual integration can also lead to the resulting system being close to a Hypermedia
MAS [12].

Multiagent systems need to provide an account of what happened during an
abnormal situation [4, 6]. Kiko would provide the protocol as a blueprint while
Dapr would provide robust tooling for the observation of intercommunication of
the microservices.

Microservices of the future should look at a move towards asynchronous com-
munication [18] and this idea is supported in information protocols through their
causal nature and their ability to operate on lossy, unordered protocols such as
UDP. A not surprising lesson learned in an exploratory study of promises and
challenges in microservices [31] was that changes that break the API should be
discouraged. The use of information protocols enables the developers to version
interactions between the microservices. Since the protocol file defines all valid
interactions between microservices, it also defines implemented interactions be-
tween microservices of a release ready for the production environment. Timeouts
within a microservice system is a problem that is remedied by using a circuit
breaker [30] but has the tradeoff of requiring an update on all microservices.
With the use of information protocols, we move away from synchronous commu-
nication and remove the need for timeouts and consequently circuit breakers.

5.1 Future Work

To fully obtain the benefits of Kiko under Dapr, the ideal solution would be
to build a Pub/Sub–based pluggable component in Python, that uses Kiko to
work on the messages. The queues that would be created as part of the Pub/Sub
communication between applications, must have their messages assessed through
Kiko. This way we would emulate Kiko’s protocol adapter within this pluggable
component and send forms to be filled out as attempts by the applications. Since
Kiko can act as a verification agent, it would enable runtime verification of the
developed MAS similar to existing solutions for other MASs [5]. Verification at



Protocol-Based Engineering of Microservices 15

design time [3] would also be possible as endpoints within Dapr applications are
registered and known to Dapr prior to any communication between applications.

Currently, Kiko can invoke methods on the reception of a particular message
or event or the enablement of a particular message. We cannot invoke a method
only if multiple events are received or multiple messages are received. A future
iteration could support how decision makers may be invoked when a specified
set of events (i.e., messages) are received.

In cases where enactments are not fulfilled, the messages stay in the local
store forever. These dangling enactments would eventually prevent storing new
enactments. An automated job that gets rid of these enactments can be added
to be run after a fixed time interval. As all enactments are linked via the key
parameters, it is easy to identify what messages must be discarded.

Acknowledgments

We thank the EMAS 2023 reviewers and audience for their helpful comments.
We acknowledge support from the UK EPSRC (grant EP/N027965/1) and the
US NSF (grant IIS-1908374).

References

1. Ao, S.: How Alibaba is using Dapr, https://blog.dapr.io/posts/2021/03/19/
how-alibaba-is-using-dapr/, accessed 19 February 2023

2. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh, M.P.: Choice,
interoperability, and conformance in interaction protocols and service choreogra-
phies. In: Proceedings of the 8th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS). pp. 843–850. IFAAMAS, Budapest (May
2009). https://doi.org/10.5555/1558109.1558129

3. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verification
for guaranteeing interoperability in open environments. In: Proceedings of the 4th
International Conference on Service-Oriented Computing (ICSOC). Lecture Notes
in Computer Science, vol. 4294, pp. 339–351. Springer, Chicago (Dec 2006). https:
//doi.org/10.1007/11948148_28

4. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Accountability in multi-
agent organizations: From conceptual design to agent programming. Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS) 37(1), 7 (Jun 2023).
https://doi.org/10.1007/s10458-022-09590-6

5. Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of jade mul-
tiagent systems. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C. (eds.)
Intelligent Distributed Computing VIII. pp. 81–91. Springer International Publish-
ing, Cham (2015)

6. Chopra, A.K., Singh, M.P.: Accountability as a foundation for requirements in
sociotechnical systems. IEEE Internet Computing (IC) 25(6), 33–41 (Sep 2021).
https://doi.org/10.1109/MIC.2021.3106835

7. Christie, S.: Kiko, https://gitlab.com/masr/bspl/-/tree/kiko/, accessed 15
February 2023



16 A. Khadse et al.

8. Christie V, S.H., Chopra, A.K., Singh, M.P.: Bungie: Improving fault tolerance via
extensible application-level protocols. IEEE Computer 54(5), 44–53 (May 2021).
https://doi.org/10.1109/MC.2021.3052147

9. Christie V, S.H., Chopra, A.K., Singh, M.P.: Deserv: Decentralized serverless com-
puting. In: Proceedings of the 19th IEEE International Conference on Web Ser-
vices (ICWS). pp. 51–60. IEEE Computer Society, Virtual (Sep 2021). https:
//doi.org/10.1109/ICWS53863.2021.00020

10. Christie V, S.H., Chopra, A.K., Singh, M.P.: Mandrake: Multiagent systems as
a basis for programming fault-tolerant decentralized applications. Journal of Au-
tonomous Agents and Multi-Agent Systems (JAAMAS) 36(1), 16:1–16:30 (Apr
2022). https://doi.org/10.1007/s10458-021-09540-8

11. Christie V, S.H., Singh, M.P., Chopra, A.K.: Kiko: Programming agents to enact
interaction protocols. In: Proceedings of the 22nd International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS). pp. 1–10. IFAAMAS,
London (May 2023)

12. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems
with hypermedia. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) Engineering Multi-
Agent Systems. pp. 285–301. Springer International Publishing, Cham (2019)

13. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A
decade in hindsight: The missing bridge between multi-agent systems and the world
wide web. In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems. p. 1659–1663. AAMAS ’19, International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC (2019)

14. Dapr: Dapr – Distributed Application Runtime (2019), https://dapr.io/, ac-
cessed 14 February 2023

15. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design
abstractions for business processes. IEEE Transactions on Software Engineering
31(12), 1015–1027 (Dec 2005). https://doi.org/10.1109/TSE.2005.140

16. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: OWL-P: A methodology for
business process development. In: Agent-Oriented Information Systems III, 7th
International Bi-Conference Workshop, AOIS2005, Utrecht, Netherlands, July 26,
2005, and Klagenfurt, Austria, October 27, 2005, Revised Selected Papers. pp.
79–94. No. 3529 in Lecture Notes in Computer Science, Springer, Berlin (2006).
https://doi.org/10.1007/11916291_6

17. Ferrando, A., Winikoff, M., Cranefield, S., Dignum, F., Mascardi, V.: On enactabil-
ity of agent interaction protocols: Towards a unified approach. In: Proceedings of
the 7th International Workshop on Engineering Multi-Agent Systems (EMAS).
Lecture Notes in Computer Science, vol. 12058, pp. 43–64. Springer, Montréal
(May 2019). https://doi.org/10.1007/978-3-030-51417-4_3

18. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: The
journey so far and challenges ahead. IEEE Software 35(3), 24–35 (2018). https:
//doi.org/10.1109/MS.2018.2141039

19. Microsoft: Bosch builds smart homes using Dapr and
Azure, https://customers.microsoft.com/en-us/story/

1435725395247777374-bosch-builds-smart-homes-using-dapr-azure, ac-
cessed 19 February 2023

20. PwC: Cloud business survey, https://www.pwc.com/us/en/tech-effect/cloud/
cloud-business-survey.html, accessed 14 February 2023

21. Richardson, C.: Monolithic architecture pattern, https://microservices.io/

patterns/monolithic.html, accessed 8 February 2023



Protocol-Based Engineering of Microservices 17

22. Singh, M.P.: Synthesizing distributed constrained events from transactional work-
flow specifications. In: Proceedings of the 12th International Conference on Data
Engineering (ICDE). pp. 616–623. IEEE, New Orleans (Feb 1996). https://doi.
org/10.1109/ICDE.1996.492212

23. Singh, M.P.: Distributed enactment of multiagent workflows: Temporal logic for
web service composition. In: Proceedings of the 2nd International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS). pp. 907–914. ACM
Press, Melbourne (Jul 2003). https://doi.org/10.1145/860575.860721

24. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the
Blindingly Simple Protocol Language. In: Proceedings of the 10th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS). pp. 491–
498. IFAAMAS, Taipei (May 2011). https://doi.org/10.5555/2031678.2031687

25. Singh, M.P.: LoST: Local State Transfer—An architectural style for the distributed
enactment of business protocols. In: Proceedings of the 9th IEEE International
Conference on Web Services (ICWS). pp. 57–64. IEEE Computer Society, Wash-
ington, DC (Jul 2011). https://doi.org/10.1109/ICWS.2011.48

26. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based service-oriented archi-
tecture. IEEE Computer 42(11), 72–79 (Nov 2009). https://doi.org/10.1109/
MC.2009.347

27. Stack Overflow: Stack Overflow 2022 Developer Survey, https://survey.

stackoverflow.co/2022/, accessed 14 February 2023
28. Taibi, D., Lenarduzzi, V., Pahl, C.: Continuous architecting with microservices

and DevOps: A systematic mapping study. In: Proceedings of the 8th Interna-
tional Conference on Cloud Computing and Services Science (CLOSER): Re-
vised Selected Papers. Communications in Computer and Information Science,
vol. 1073, pp. 126–151. Springer, Funchal, Madeira, Portugal (Mar 2018). https:
//doi.org/10.1007/978-3-030-29193-8_7

29. Thönes, J.: Microservices. IEEE Software 32(1), 116–116 (2015). https://doi.
org/10.1109/MS.2015.11

30. Tighilt, R., Abdellatif, M., Moha, N., Mili, H., Boussaidi, G.E., Privat, J.,
Guéhéneuc, Y.G.: On the study of microservices antipatterns: A catalog proposal.
In: Proceedings of the European Conference on Pattern Languages of Programs
2020. EuroPLoP ’20, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3424771.3424812

31. Wang, Y., Kadiyala, H., Rubin, J.: Promises and challenges of microservices: an
exploratory study. Empirical Software Engineering 26(4), 63 (May 2021). https:
//doi.org/10.1007/s10664-020-09910-y

32. vanWijk, E., Molenkamp, S., Hompus, M., Kordowski, A.: Dapr traffic control sam-
ple, https://github.com/EdwinVW/dapr-traffic-control, accessed 15 February
2023

33. Winikoff, M., Yadav, N., Padgham, L.: A new Hierarchical Agent Protocol Nota-
tion. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 32(1),
59–133 (Jan 2018). https://doi.org/10.1007/s10458-017-9373-9


