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ABSTRACT
Interaction-Oriented Programming (IOP) refers to multiagent con-

cepts, languages, and programming models for engineering appli-

cations that are characterized by interactions between autonomous
parties. Such applications arise in domains such as e-commerce,

health care, and finance. Owing to the autonomy of the principals

involved, such applications are conceptually decentralized.
We demonstrate how to specify a decentralized application flexi-

bly and how to engineer correct, fault-tolerant endpoints (agents)

for the principals in a straightforward manner. Notably, the en-

tire application is realized as agents communicating over an un-

ordered, unreliable messaging infrastructure (our implementations

in fact use UDP). IOP departs from traditional distributed systems

approaches that rely on guarantees in the application’s communi-

cation infrastructure, e.g., for ordering and fault tolerance. Notably,

IOP shows how to address application semantics, the holy grail of

distributed systems.
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1 APPLICATION SEMANTICS: THE HOLY
GRAIL

Despite decades of research, programming robust distributed ap-

plications remains incredibly difficult. The reason for this state of

affairs is quite remarkable: Research and practice in distributed

systems continues to focus on guarantees in the application’s com-

munication infrastructure (e.g., for ordering and fault tolerance) in
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contravention of their own fundamental principles, especially the

end-to-end argument [8]. Evidence the notion of a service mesh, a

middleware for microservice-based applications that transparently

provides fault tolerance and other functionality, and is, in essence,

trying to prop up the conceptually flawed RPC paradigm for build-

ing distributed applications. Evidence QUIC [7], an alternative to

TCP, which in trying to address problems arising from TCP’s FIFO

delivery model, ends up introducing a more complicated delivery

model consisting of multiple FIFO streams.

This continued focus on infrastructure mechanisms stands in

stark contrast to the scant attention paid to application semantics
[1], which is the central challenge motivated by the end-to-end

argument. Broadly, the challenge recognizes that application users

base their decision making on the meaning (the content) of their

communications and, therefore, incorporating meaning is the key

to getting rid of complicated infrastructure solutions. For exam-

ple, in an e-commerce application, what may be meaningful to a

seller for purposes of fulfilling a buyer’s purchase-order (PO) is an

identifier for the PO and the correlated item, price, and address.

The seller cannot fulfill a PO lacking such information, and once

it has this information, the seller can fulfill the PO whenever it

wants—independently of the order in which it observes commu-

nications. Meaning, grounded in information, thus obviates the

need for ordered delivery infrastructures. However, incorporating

meaning requires representing it and therein lies the crux of the

challenge: How can we model distributed applications in a way

that captures the meaning of communications?

More concretely, the quest is for a general method (including

application models and programming abstractions) that enables

and facilitates implementing robust distributed applications directly

over the Internet (or UDP, which is merely a thin shim over IP),

which guarantees neither ordered nor guaranteed delivery. This

means that all concerns stemming from ordering, correlation, and

faults must now be handled at the application level. This quest is

really the holy grail of distributed systems. As David Clark [6] says,

UDP (not TCP) is designed to support application semantics; how-

ever, with the current state of programming abstractions, building

applications over UDP is impractical.

2 APPLICATION SEMANTICS IN
MULTIAGENT SYSTEMS

Independently, to address issues about communication semantics

in multiagent systems, Singh [9] emphasized modeling the social

meaning of communications via abstractions such as commitments

between agents. Developing this theme further, Yolum and Singh

[11] advanced the idea that commitments support more flexible

interactions than protocols that specified rigid message sequences.
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To understand their contribution, consider Figure 1, which shows

a simple e-commerce protocol specified as a state machine (S and

B refer to the seller and the buyer, respectively). Suppose S, for

whatever reason, wanted to send deliver before receiving pay. Such
a move would violate the protocol.

S↦→ B: quote

B↦→ S: pay

B↦→ S: reject

S↦→ B: deliver

Figure 1: A protocol specified as an FSM.

To overcome this inflexibility, one could simply declaratively

specify the meaning of the interaction between S and B via a com-

mitment, e.g., that quote creates a commitment from S to B that if

pay occurs, then deliver will occur. Clearly, S not sending deliver
if it had sent quote and received pay would be a violation of the

commitment; however, the commitment itself does not prescribe

any relative ordering of events. For example, S may send deliver be-
fore receiving pay, even though it doesn’t have to, and B may send

pay after receiving deliver, even though it doesn’t have to. Listing 1

shows how something like the foregoing commitment would be

expressed in Cupid [4], a language for specifying and interpreting

commitments—via queries—over information in a relational data-

base. For example, a Cupid-generated SQL query, given a database

of base events, yields all the violated instances of PurchaseCom.

Listing 1: A commitment specification in Cupid.
base events

quote ( S , B , ID key , i tem , p r i c e , t imestamp )

r e j e c t ( S , B , ID key , i tem , p r i c e , t imestamp )

pay ( S , B , ID key , i tem , p r i c e , addr , t imestamp )

d e l i v e r ( S , B , ID key , i tem , p r i c e , addr , t imestamp )

commitment PurchaseCom S to B

create quote

detach pay within quote + 5 days

discharge d e l i v e r within de t ached PurchaseCom + 10 days

A multiagent system, however, is decentralized; there is no cen-

tral database of events. Each agent has its own database of in-

teraction state (local state), over which it interprets the relevant

commitments [3]. How are these local states being populated? How

are the atoms of meaning (the base events) determined?

To address these questions, Singh invented the idea of declarative

information protocols [10]. Unlike the protocol shown in Figure 1,

an information protocol specifies the computation of an information

object via explicit causality (to capture information dependencies)

and integrity constraints on messages. An agent can send a message

in any local state that satisfies the constraints. Message reception

though is unconstrained; that is, a message can be received no

matter what the receiver’s local state. Listing 2 illustrates how

messages are specified in an information protocol. For example, for

S to send a reject, it must already know the ID and the correlated

item and price from prior communication (all adorned in), but it can

generate any values for dec and fin if it does not already know them

(both adorned out).
Listing 2: An information protocol.

S ↦→ B : quote [out ID key , out i tem , out p r i c e ]

B ↦→ S : r e j e c t [ in ID key , in i tem , in p r i c e , out dec , out
f i n ]

B ↦→ S : pay [ in ID key , in i tem , in p r i c e , out addr , out dec ]

S ↦→ B : d e l i v e r [ in ID key , in i tem , in p r i c e , in addr , out
f i n ]

Information protocols offer fundamental advantages over alter-

native protocol representations [2]. We have proposed a program-

ming model for implementing fault-tolerant multiagent systems

based on information protocols [5]. Its centerpiece is a generic pro-

tocol adapter that sits within each agent and (1) enforces protocol

constraints and therefore ensures that the agent communicates

correctly, (2) provides a local state-based (information-based) API

that abstracts away actual network interfaces and facilitates the

development of agent; and (3) supports fault tolerance by retrans-

mitting and forwarding information already in the agent’s local

state. This programming model can be used to develop distributed

applications as multiagent systems directly over UDP, thus paving

the way to addressing the challenge of application semantics.

3 TUTORIAL
The tutorial elaborates on the foregoing themes. It introduces

desiderata for decentralized applications and the idea of application

semantics. It covers Cupid and information protocols in depth. The

tutorial demonstrates a programming model that enables realiz-

ing decentralized applications as multiagent systems in a manner

compatible with the idea of application semantics.
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