
Protocols for Processes:
Programming in the Large for Open Systems

Munindar P. Singh Amit K. Chopra Nirmit Desai Ashok U. Mallya
{singh,akchopra,nvdesai,aumallya}@ncsu.edu

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

ABSTRACT
The modeling and enactment of business processes is being recog-
nized as key to modern information management. The expansion
of Web services has increased the attention given to processes, be-
cause processes are how services are composed and put to good
use. However, current approaches are inadequate for flexibly mod-
eling and enacting processes. These approaches take a logically
centralized view of processes, treating a process as an implementa-
tion of a composed service. They provide low-level scripting lan-
guages to specify how a service may be implemented, rather than
what interactions are expected from it. Consequently, existing ap-
proaches fail to adequately accommodate the essential properties
of the business partners in a process (the partners would be realized
via services)—their autonomy (freedom of action), heterogeneity
(freedom of design), and dynamism (freedom of configuration).

Flexibly represented protocols can provide a more natural ba-
sis for specifying processes. Protocols specify what rather than
how; thus they naturally maximize the autonomy, heterogeneity,
and dynamism of the interacting parties. We are developing an
approach for modeling and enacting business processes based on
protocols. This paper describes some elements of (1) a conceptual
model of processes that will incorporate abstractions based on pro-
tocols, roles, and commitments; (2) the semantics or mathematical
foundations underlying the conceptual model and mapping global
views of processes to the local actions of the parties involved; (3)
methodologies involving rule-based reasoning to specify processes
in terms of compositions of protocols.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; D.2.10
[Software Engineering]: Design; D.2.13 [Software Engineer-
ing]: Reusable Software; I.2.11 [Artificial Intelligence]: Distributed
Artificial IntelligenceMultiagent Systems

General Terms
Standardization, Languages, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-833-4/04/0010 ...$5.00.

Keywords
Open Systems, Interaction Protocols, Business Processes

1. INTRODUCTION
We think of business process modeling and enactment as a form

of programming in the large [DeRemer and Kron, 1976]. Program-
ming in the large is distinguished from the more common program-
ming in the small in several ways. Programming in the large em-
phasizes putting together large software components, built by sev-
eral people over a long period of time, and having their local state,
whereas programming in the small is about developing the individ-
ual components. Programming in the large is a much more chal-
lenging engineering problem.

Business processes, which span multiple autonomous business
partners, are an example of programming in the large. Cross en-
terprise processes, in particular, involve a rich variety of interac-
tions among software components that are independently designed
and configured, and which represent independent (and sometimes
mutually competitive) business interests. Because Web services
simplify interoperation, they have led to a resurgence of interest
in technologies for process modeling and enactment.

Current approaches for the modeling and enactment of business
processes are woefully inadequate, and reflect the similar inade-
quacy of programming in the large in open environments. Whereas
the initial attempts at programming in the large were based on
simple module interconnections, more serious attempts, such as
megaprogramming, employed ontologies to address the heterogene-
ity of the information processed by various components [Wieder-
hold et al., 1992].

However, no good abstractions have been developed to model
the interactive processing of information by multiple components.
Consequently, processes are still specified today as scripts– pro-
viding, in essence, the same level of abstraction as developed in
the job control languages (JCLs) of the mainframes of the 1950s.
The above claim may sound unduly harsh, but while we readily
acknowledge progress in technologies for process management, in
terms of abstractions for modeling processes the progress is incre-
mental at best. Whether you consider any of the modeling tools in
use today, or leading proposed standards such as the Business Pro-
cess Execution Language for Web Services (BPEL) [2003] or the
Web Ontology Language for Services (OWL-S) [DAML-S, 2002],
the process abstractions they offer are constructs such as sequence,
iterate, fork, and join. In other words, the abstractions are little
more than what you might find in a JCL. Hence our claim above.

But, still, why are such abstractions not adequate for processes?
Imperative languages are abstractions that are best suited to pro-

gramming in the small. They assume the invoked components be-
have as expected. However, the main problems that arise in pro-
cesses are problems of programming in the large. Because of en-
vironmental effects, exceptions can arise. Because the participants
are autonomous, they can act to exploit opportunities, and their be-
havior may appear to be unexpected to their partners.

The effect of the above is that current approaches for process
modeling and enactment have some key, well-known limitations
in practice. They are either too rigid (thus frustrating users and
causing systemic inefficiencies), or are extremely expensive in time
and effort to construct and manage, and usually both. Thus some
of the benefits of openness are lost.

1.1 Vision
Our diagnosis of the above challenges is that they reflect a fun-

damental problem for programming in the large. The traditional
(imperative) scripting constructs specify flows. Clearly any process
execution must correspond to a flow. However, this does not mean
that we must specify the set of flows explicitly. Instead, we pro-
pose that processes be captured in terms of protocols, where each
protocol is a flexible encoding of a meaningful set of interactions.

We define (business) protocols as publishable specifications of
business interactions. We propose to model a business process as a
composition of protocols. For example, we can have protocols for
negotiation, for payment, for selecting a shipping company, and so
on. A protocol is an interface, meaning that it specifies only the key
desired aspects of the interactive behavior, not how the interacting
parties are implemented.

Each protocol constrains the business partners involved in it.
Protocols are modular, i.e., functionally decentralized. For exam-
ple, a payment protocol between a customer and a merchant would
be specified independently of the merchant’s inventory fulfillment
protocol for ordering goods from its suppliers. Thus, capturing pro-
cesses via protocols enables us to more easily represent and enact
interactions among autonomous business partners.

To model a process, we first identify the protocols using which
the different participants interact. For example, a merchant and a
customer may interact with each other using a negotiation proto-
col; the merchant, customer, and payment agency may interact via
an escrow protocol; and, the merchant, customer, and shipper may
interact through some specialized logistics protocol. When each
participant acts according to its local reasoning but respecting the
stated protocols, a multiparty business process is enacted but with-
out a global flow necessarily ever having been explicitly encoded.

1.2 Benefits
Our protocol-based approach offers the following natural advan-

tages. One, for process design, protocols are naturally reusable
whereas complete processes are not. More importantly, protocols
lend themselves to modeling abstractions such as specialization and
aggregation. Two, for process enactment, when protocols are flexi-
ble, they enable each party to exercise some discretion in applying
its local policies or preferences while obeying a protocol. For ex-
ample, a merchant may accept only cash for discounted goods and a
customer may prefer to pay for goods after using them for a month.
This flexibility also enables us to capture and handle business ex-
ceptions and opportunities in a natural manner at the level of proto-
cols. Three, for process monitoring, protocols provide a clean basis
for determining that the interacting parties are complying with the
given protocols.

1.3 Trends
Just as network protocols enabled the expansion of the lower lay-

ers of the Web architectures, business protocols will enable the
development of processes involving autonomous, heterogeneous
business partners. For this reason, we expect to see an increasing
set of business protocols to be published and custom protocols to
be designed. Several business protocols have been defined. Some
general-purpose ones are NetBill [Sirbu, 1997], Secure Electronic
Transactions (SET) [2003], Internet Open Trading Protocol (IOTP)
[2003], and Escrow [2003].

RosettaNet is a leading industry effort, involving about 400 elec-
tronics and telecommunications companies. The RosettaNet [1998]
Partner Interface Processes (PIPs), of which 107 are currently listed,
are business protocols in spirit. These modularly describe sev-
eral important business interaction scenarios. RosettaNet is in ac-
tive production use with several billion dollars worth of commerce
being conducted over it, e.g., [Krazit, 2002]. Another major in-
dustry effort is ebXML [2002]. ebXML is similar to RosettaNet
but more general in style. Some of RosettaNet’s components are
gradually shifting over to using ebXML, e.g., for messaging for-
mats. ebXML’s Business Process Specification Schema (BPSS)
describes partner roles and the documents they would exchange.
RosettaNet’s PIPs map to instances of BPSS. ebXML’s Collabora-
tion Protocol Agreement (CPA) describes an agreement (including
conversations) between collaborating parties that is derived from
their individual profiles.

We find the above trends, along with the well-known expan-
sion of service-oriented computing, extremely encouraging. These
trends clearly suggest that industry has understood the problem of
developing cross-enterprise information systems, and is showing us
researchers the way (in terms of what is important). However, cur-
rent integration efforts are tedious and expensive, because they re-
quire extensive hard-coding. RosettaNet’s limitations include that
the PIPs specify interactions rather rigidly and do not offer a formal
semantics. Further, the PIPs seem to specify some internal opera-
tions of each partner. Lastly, the interactions are short (in fact, just
involving two parties and typically no more than a request and a
response pair) and exceptions, where accounted for, are encoded as
separate PIPs. ebXML has the same limitations.

Consequently, although current specifications of the business pro-
tocols are lacking in some respects, an increasing set of such proto-
cols is an indication of the significance of our approach. The main
reason behind the above limitations is that while business processes
apply among autonomous, heterogeneous partners, the program-
ming abstractions are still based on closed systems.

1.4 Key Traditional Approaches
Section 3.2 discusses the related literature in more detail, but it

would help to outline the key approaches here. Conventionally, a
business process is modeled in a conceptually centralized manner
as a global flow. Emerging standards and tools support the specifi-
cation and enactment of business processes specified as flows, but
they cannot escape the fundamental limitations of such representa-
tions. One, it is difficult to create and maintain flows: they become
complex in the face of exceptions and cannot easily be verified.
Two, because a flow represents a central view, it inevitably limits
the autonomy and heterogeneity of the business partners involved,
leading to a suboptimal treatment of exceptions and opportunities.
Three, flow representations are about how a process or composed
service is implemented; what we need are interfaces that assure us
that independent implementations will interoperate.

It helps to distinguish orchestration (how a process is imple-
mented by composing services) from choreography (how services
interact) [Peltz, 2003]. Both BPEL [2003] and OWL-S [DAML-S,
2002] emphasize orchestration by encoding flows. Service compo-

sition has drawn an increasing amount of attention lately. However,
work in this area has concentrated on orchestrating services so as
to accomplish a desired composition. For example, McIlraith et
al. [2001] and Cardoso and Sheth [2003] show how composed ser-
vices may be put together. This body of work addresses how a
composed service may be implemented, not how an autonomous
service would interact with other services.

By contrast, the Web Services Choreography Interface (WSCI)
[2002] describes “conversations” or constraints on how a service
is willing to interact with others, e.g., by requiring login before
purchase. Unfortunately, existing choreography approaches rigidly
specify a series of message exchanges but without an account of
how they could be modularized and combined and how they could
be related computationally to the orchestration approaches.

Like choreography, a protocol describes how services interact,
but unlike traditional choreography, a protocol would consider the
perspective of the interaction rather than of a particular partici-
pant. Further, protocols are conceptually composable to yield pro-
cesses. Lastly, protocols would map into the flows of the partici-
pants, where the flows would interact to yield the desired process,
thereby fulfilling the purpose of orchestration as well.

1.5 Why is this an Onward! Paper
Programming in the large as a topic has been around for almost

three decades. Business process management has seen a phenom-
enal resurgence in interest as it has expanded into cross-enterprise
settings to serve the needs of e-business. The challenges the open
environments pose for process modeling and enactment call for
new approaches for software development. We provide a promis-
ing such approach. This paper outlines several technical aspects of
this approach, indicating that it could be a promising new paradigm
for scientific contributions. However, the results might need further
refinement before they are ready for conventional forums.

1.6 Organization
The rest of this paper is organized as follows. Section 2 describes

our motivations in greater detail, presents our technical framework,
and introduces our approach. Section 3 describes our contributions
in relation to the most relevant literature.

2. APPLYING PROTOCOLS
The above idea, of basing processes on protocols, leads to a se-

ries of technical challenges. The objective of our ongoing research
is to address these challenges in the manner described below.

• How can we compose protocols into processes? How can
we reconcile a global perspective on a process with the lo-
cal perspectives of the participants? For example, a supply
chain is a process whose overall workflow is just one view;
equally important is understanding the participant’s perspec-
tives, which govern their individual actions.

Approach. Develop a formal model for protocols that sup-
ports refinement and aggregation, and to further develop it
into a formal model of processes. For example, the generic
payment protocol can be refined into a rich variety of pro-
tocols, each with different tradeoffs of expense, speed, and
convenience (for one or more of the parties involved). Ex-
amples include handing over cash, paying with a credit card,
paying with a debit card, paying with a personal check, pay-
ing via a third party such as Paypal, and so on. As long as
we recognize that these are payment protocols, our top-level
design goal, namely, to enable some form of payment would
be satisfied.

• How can we support the configuration of processes in a man-
ner that respects the local policies of the participants? How
can we manage implementations of protocols? For example,
a seller may at its discretion waive checking a buyer’s credit
history, even though the process allows it or, conversely, in-
sist on checking a buyer’s credit history even if it is not ex-
plicitly required. That is, it should be possible to modify
local policies and to negotiate additional requirements.
Approach. Employ agents, defined in a broad sense, to rep-
resent the interests of autonomous partners and to carry out
extended interactions with each other. The agents would not
only respect the protocols, but also apply the local policies
and preferences of the participants.

• How can we enact such processes in a distributed manner
using current techniques (which are not geared toward proto-
cols)? In particular, how can process enactment support re-
covery for a protocol while guaranteeing some transactional
properties and how can we determine compliance of the par-
ticipants’ behavior?
Approach. Compile protocols into skeletal flows that can be
completed based on local policies and executed using con-
ventional business flow engines and rule engines. The flows
would produce and consume messages to yield the desired
choreography. They would determine if any of the protocol
requirements were being violated. Compliance verification
is harder when flexible actions are allowed.

We do not directly study how individual protocols are invented.
Our other work deals with the specification and verification of flex-
ible protocols based on a nonmonotonic logic formalism [Chopra
and Singh, 2003; Yolum and Singh, 2003]. That work addresses
a limitation of conventional techniques for developing protocols,
by improving their flexibility. For our present purposes, we can
assume that protocols are available and specified in a monotonic
formalism, although possibly derived from nonmonotonic repre-
sentations. We do represent and reason about protocols.

2.1 Conceptual Model and Definitions
Figure 1 shows our conceptual model for a protocol-based treat-

ment of business processes. The abstract entities (sharp rectangles)
are publishable interfaces, which must be implemented to yield
configurable entities (rounded rectangles) that can be fielded in a
running system.

An agent is an implementational entity, something that can rep-
resent a real-world business partner with its own local business
rules and configurations. For our purposes, agents are persistent
computations capable of forming commitments with other agents.
Agents naturally represent parties such as the partners involved in a
business scenario, who might collaborate but retain their autonomy.
There is no assumption of any of the aspects of agents traditionally
associated with artificial intelligence.

A business protocol is a specification of a logically self-contained
interaction, i.e., an interface that can be captured in a registry. A
protocol involves two or more roles and is specified via some pro-
tocol logic. The protocol logic is strong enough to encode the con-
tractual obligations of the various parties and is formalized through
the notion of commitments, which we introduce in Section 2.2.1. A
role’s behavior for participating in a protocol can be extracted from
the protocol logic into a protocol-specific skeleton or P-Skel. When
a role plays more than one roles, its different P-Skels must be com-
bined and reconciled into a composite skeleton or C-Skel. Protocols
can also be aggregated from other protocols, but for simplicity we
don’t emphasize such relationships here.

Figure 1: Conceptual model

An agent may participate in multiple business protocols by adopt-
ing a role in each of them, e.g., a bookstore may adopt the role of
a seller while interacting with customers and the role of a buyer
while interacting with publishers. A local flow is an executable re-
alization of an agent’s view of its tasks for its various protocols and
incorporating its local business logic. Such a flow would invoke the
right services in order to realize the C-Skels that it implements.

A business process aggregates the local flows of the agents par-
ticipating in it. For example, a supply chain business process would
be the aggregation of the local flows of the consumer, the retailer,
the supplier, and the manufacturer, each flow incorporating the poli-
cies of its respective party. The contractually required parts would
have been encoded in the protocols that are employed; the other
parts may only be in the policies of the participants and would gen-
erally not be visible externally.

2.2 Representations
We briefly introduce our key representations, which are geared

to supporting reasoning about protocols and processes as motivated
above. To talk about how a protocol specializes or aggregates one
or more protocols presupposes that we can characterize the com-
putations allowed by a protocol and the evolving states of those
computations so that we can consider whether a particular refine-
ment or detour is legitimate. For business protocols, therefore, this
means we must represent not just the behaviors of the participants
but also how the contractual relationships among the participants
evolve over the course of an interaction. Doing so enables us to
determine if the interactions are indeed compliant with the stated
protocols.

2.2.1 Commitments
The contractual relationships of interest are naturally represented

through commitments. A legal notion of contracts was identified by
Hohfeld [1919]. Commitments capture the directed obligations of
one party to another and cover Hohfeld’s notions [Singh, 1999]. In
simple terms, a commitment is a directed obligation from an agent
(the debtor) to another agent (the creditor) regarding a particular

condition that, in effect, the debtor promises to bring about. For
example, the customer’s agreement to pay the price for the book
after it is delivered is a commitment that the customer has towards
the bookstore. Using commitments enables us to model not just a
participant’s actions, but also how the actions advance the ongoing
business interaction, which enables us to more readily detect and
accommodate business exceptions and opportunities.

Commitments lend coherence to the interactions because they
enable agents to plan based on the actions of others. Commitments
can be manipulated through a small set of operations, including cre-
ate, discharge, cancel, release, assign, and delegate [Singh, 1999],
which we lack the space to discuss here.

In principle, violations of commitments can be detected and,
with the right architecture, commitments can be enforced—by pe-
nalizing agents who do not comply with their commitments. En-
forceability of contracts is necessary in practical settings where the
participants are autonomous and heterogeneous [Singh, 1998].

2.2.2 Branching Model of Time
We use a branching model of time to represent the evolving state

of a system. Each point in the model corresponds to a snapshot
of the possible state of the system. Like in traditional applica-
tions of temporal logic, the state of the system is identified by the
atomic propositions that are true therein. However, we go beyond
traditional approaches in considering the commitments among the
different participants of the system, and the operations on commit-
ments that they continually perform as they enact various protocols.

Except for the “interpretation” (in the mathematical logic sense
of the term), our model of time is a standard one [Emerson, 1990].
The language we use is the well-known Computation Tree Logic
(CTL). This is helpful in enabling us to benefit from traditional
tools for temporal logic.

We describe our model using the following example scenarios
that can arise during a book purchase interaction. Each of these
scenarios requires a different amount of effort from the participants
in terms of protocol execution, planning, and coordination. In these
scenarios, customer or c represents the customer’s agent, bookstore
or b the bookstore’s agent, bank or k the bank’s agent, and shipper
or x the shipper’s agent. Circles represent states, labeled by si,
and arrows are labeled by the messages passed between the agents.
These messages correspond to actions that the agents take.

1. Normally, the customer would ask the bookstore for a price
quote on the book he wishes to buy, and upon receiving a
quote from the bookstore, would accept the bookstore’s of-
fer. The bookstore would then ship the book, after which the
customer would send the payment. This is modeled after the
NetBill protocol [Sirbu, 1997].

2. The bookstore might be willing to give a refund if the cus-
tomer returns the book for some reason. This scenario is
similar to the above scenario until the stage where the book
is delivered to the customer. However, this scenario has more
steps, since the customer returns the book, and terminates
only when the bookstore sends the refund to the customer.

3. The customer might delegate the payment to a third party,
e.g., a bank. Such a situation is not very different from using
a credit card to pay for goods. The customer, after accept-
ing the bookstore’s price quote and later receiving the book,
sends a message to both the bookstore and the bank (although
only one arrow is shown in the figure, between states s4 and
s21) indicating that the bank will honor the customer’s com-
mitment to pay.

.....

.....

.....

s
0

s
3

sendGoods(b,c,g)

reqQuote(b,x,[gc])
 s
11

s
4

sendMoney(c,b,p)
 s
5

authPay(x,p)

s
21

s
5

cancel(c,C(c,b,p))
 s
100

sendMoney(k,x,p)

t
0
 t
3

t
4
 t
5

t
6
 t
7
 t
8

Figure 2: Branching model corresponding to the book purchase example

Figure 2 shows how the evolution of our scenarios can be rep-
resented in branching time. States s1 and s2 are not shown for
the sake of brevity. The ti’s represent instants of time increas-
ing from left to right. Each path from the root s0 of the tree to
a leaf node denotes one computation of the system. The computa-
tion s0, . . . , s3, s4, s5 is a valid one, corresponding to scenario 1,
while the computation s0, . . . , s3, s4, s100 is invalid, because the
customer cancels his commitment to pay after receiving the book.

2.3 Protocol Semantics and Design
Figure 3 shows two simple protocols, also based on the book

purchase example. The protocols show states and transitions.

2.3.1 Modeling protocols
Information modeling involves the application of some key ab-

stractions such as classification, aggregation, and relationships among
components. However, traditional process models don’t readily
support such abstractions. Because they are based on data and
control flow, they correspond to flow abstractions (e.g., sequence,
branch, and so on). These abstractions take the perspective of one
party whereas business processes are inherently distributed among
autonomous entities. In essence, whether a given process is a spe-
cialization or a generalization of another process is not easy to de-
cide, especially because the contributions of a given partner may be
radically different in the two processes.

By contrast, because protocols are modular, they enable abstrac-
tions that are on par with the classification, aggregation, and rela-
tionships for information modeling. Protocols can be defined based
on other protocols and they can be combined to yield a desired pro-
cess. Instead of comparing entire processes, we can compare their
protocols. For example, a process may use a more general payment
protocol and a less general shipping protocol than another process.

2.3.2 Protocols and computations
In essence, each protocol allows a set of computations. More

general protocols allow more computations than the protocols that
refine them. In simple terms, if we begin with a protocol and elimi-
nate even one of the computations in it, we would have produced a
refinement of it. However, in practice, the refinement of a protocol
involves more than just selecting some of the computations it al-
lows. Typically, the refinement involves that additional constraints
and wrinkles be added to the computations. For example, a simple
payment protocol might require that the payer transfer funds to the
payee. A particular refinement of this might be through payment
with a check. To pay with a check, the payer would send a check to
the payee who would deposit the check to his bank, which would
present it to the payer’s bank, which would (presumably after deb-
iting the appropriate amount from the payer’s account) send the
funds to the payee’s bank, which would make those funds available

to the payee. Thus payment by check is a specialization of pay-
ment, but it involves a lot more steps. We know it is a refinement
of the payment protocol because, just as the payment protocol re-
quires, it ends up transferring funds to the payee. That is, the com-
mitments at critical states in the two protocols line up correctly.

In general, the refinement of protocols can involve a mix of
shrinkage along the dimension of the number of computations and
expansion along the dimension of the number of steps in an allowed
computation. Protocols that allow many short computations are the
most flexible because there are numerous ways to satisfy such pro-
tocols. Protocols that allow fewer computations limit the ways in
which they can be satisfied. Protocols that allow a few long com-
putations are the most restrictive because there are only a few ways
to satisfy them. Protocols that allow many long computations are
more flexible than the above, because they offer more alternatives.

Protocols with a few long computations restrict the autonomy of
the participants. Such protocols are not necessarily bad, though.
They have a distinct advantage in checking compliance. In an ex-
treme case, if a protocol allows exactly one sequence of actions,
you will know immediately if it has been violated when one of the
expected actions does not occur. There is thus a tradeoff between
the flexibility of protocol execution on the one hand and the com-
plexity of verifying compliance on the other.

2.3.3 Protocols and commitments
An advantage of incorporating commitments is that they directly

represent contractual relationships, are flexible, and lend coherence
to the otherwise disjointed interactions of the participants in a pro-
cess. The formalization of the specialization and generalization
hierarchy of protocols is made more interesting and useful because
of the presence of commitments and roles in our model. Instead
of considering uninterpreted sequences of states, we can consider
how the commitments of the various roles evolve over different
computations. The use of commitments enables more sophisticated
business reasoning than in traditional approaches. In particular, it
enables us to characterize the similarity of states and subsumption
among protocols in potentially subtle ways. For example, we can
look beyond the messages exchanged to the commitments of the
participants. An example is when a participant from its local per-
spective considers two states as interchangeable simply because it
features as the creditor and debtor in the same commitments regard-
less of the other parties. In other words, instead of merely consid-
ering raw computations, we would often need to normalize them in
terms of commitments so as to make more precise judgments about
how protocols relate to one another.

2.4 Designing Processes
Let us consider a simple but effective methodology for process

design. This can be considered a top-down methodology. First,

Customer,
c

sendMoney(k,x,p)

authPay(x,p)

s
20

s
21

Bank,
k

Payment

s
10

reqQuote(b,x,
[
gc
]
)

sendQuote(x,b,[gc], px)

sendAccept(b,x,[gc],px)

s
11

s
12

s
13

s
13

sendGoods(b,g,x)

s
14

Shipper,
x
Bookstore,
b

Shipping

s
15

sendMoney(b,x,px)

s
16

sendGoods(x,c,g)

c authorizes its bank to pay the amount p to b.

Essentially c delegates
C
(c, b, p) to k.

authPay
(c, b, p)

b refunds the money p to c.
sendRefund
(b, c, p)

c returns g to b.
returnGoods
(c, b, g)

c delegates the commitment C to k.
delegate(c, k, C)

c sends the money p to b.
sendMoney
(c, b, p)

b sends g to c.
sendGoods
(b, c, g)

c accepts the price p quoted by b for g. c is

now committed to pay if the book is sent to it.

sendAccept
(c, b, g, p)

b quotes price p to the c, for g.
sendQuote
(b, c, g, p)

c asks b what the price of g is.
reqQuote
(c, b, g)

c authorizes its bank to pay the amount p to b.

Essentially c delegates
C
(c, b, p) to k.

authPay
(c, b, p)

b refunds the money p to c.
sendRefund
(b, c, p)

c returns g to b.
returnGoods
(c, b, g)

c delegates the commitment C to k.
delegate(c, k, C)

c sends the money p to b.
sendMoney
(c, b, p)

b sends g to c.
sendGoods
(b, c, g)

c accepts the price p quoted by b for g. c is

now committed to pay if the book is sent to it.

sendAccept
(c, b, g, p)

b quotes price p to the c, for g.
sendQuote
(b, c, g, p)

c asks b what the price of g is.
reqQuote
(c, b, g)

Meaning
Message
 Meaning
Message

Figure 3: A shipping and a payment protocol

model a process in terms of a short sequence of abstract actions,
which take the process execution from one stage to the next. Pro-
cesses are refined by using protocols to implement stages. This is
where it helps to have a library of protocols, organized in a taxon-
omy according to the above discussion.

Consider purchase again. At a high level of abstraction, this
example is implemented by a process that has three stages: an ini-
tial negotiation stage, followed by a shipment stage, and finally
a payment stage. In the purchase scenario, states s0, s1, s2, and
s3 belong to the negotiation stage, states s3 and s4 belong to the
shipment stage, and states s4 and s5 belong to the payment stage.

The first motivation is simplifying design through abstraction
and reusability. However, it also potentially yields an improved
flexibility for the participants, because the protocols more clearly
delineate what a participant should do and thus leave more choices
to be made by each. For instance, an alternative process that al-
lows the payment stage to precede the shipping stage essentially
achieves the same goal as purchase, that of exchanging goods for
money.

For simplicity, let us adhere to the following order for the pur-
chase process: negotiation, then shipment, then payment. This
three-stage process can be refined, for example, by substituting, or
splicing in, any one of the numerous shipping protocols available.
One can ship via regular mail or use return-receipt mail. Whatever
the shipping protocol used, the splicing works because shipping is
specified as an interface, and the shipping protocol adheres to the
interface. For example, the shipping protocol of Figure 3 can be
spliced into purchase as shown in Figure 4. Similarly, the payment
stage can be substituted for by the payment protocol of Figure 3.

2.4.1 Role of semantics
In general, protocols may be combined in the above way only be-

cause the underlying representation of commitments tells us whether
the combination is sound. If there were no underlying content, any
modification to the protocol would be fraught with risk of unsound-
ness. A protocol can be spliced into by another if the contractual re-
lationships between the participants in each protocol are preserved.
That is, the commitments of the parties involved are not affected
except as desired. Commitments help reason about legal and ille-
gal designs since commitments have a clear operational semantics
across domains.

Armed with the semantics, we can support operations that are

richer than the case where one protocol is nested within another
(i.e., becomes a subprotocol of the other). Specifically, when a pro-
tocol p2 is spliced into a protocol p1, p2 itself might be spliced into
by parts of p1. As a particular case, consider shipping, a protocol
that takes a circuitous run to achieve the delivery of the goods to
the customer. However, the shipper is not paid by the bookstore
until the customer has paid the bookstore. Therefore, shipping has
essentially been spliced in between stages s14 and s15. From the
point of view of shipping, the bookstore waits at state s15. From
the point of view of purchase, the customer receives the goods, and
performs the payment via the bank.

In this manner, our approach supports the design abstractions
of refinement (specialization and generalization) and aggregation
(substituting a protocol for a place-holder stage or for another pro-
tocol). It also supports relationships among protocols where one
protocol achieves the state that is needed by another to make fur-
ther progress. This leads to a subtle kind of aggregation where two
protocols might even be interwoven so as to make the best progress
in the given process. Such aggregations, in general, would require
rules to capture the local behaviors of the participants.

2.5 Enacting Processes
An important challenge is to enact processes in a distributed

manner based on the stated protocols. As explained in Section 2.1,
each protocol yields a P-Skel for each of the roles in it.

In preliminary work, we have prototyped a tool to generate local
skeletal flows of the roles in a protocol. These skeletal flows can
be augmented with business rules to produce local flows that each
participant can execute.

To show how our approach could be layered above the current
flow-centric infrastructure, we render these flows in BPEL [2003].
We expose the protocol interfaces of each participant as services via
the corresponding WSDL specifications. An example is discussed
next.

Consider a finite state representation of NetBill as shown in Fig-
ure 5. Figure 6 shows the BPEL skeletal flow of the customer gen-
erated from the above protocol representation. A similar skeleton
is generated for the merchant along with WSDL specifications for
both roles. These generated flows are complete except for the busi-
ness rules to handle each message received from other participants.
We use Collaxa BPEL Orchestration Engine 2.0 [2003] to deploy,
instantiate, and execute the BPEL flows of each role. The above

Refined
Purchase

reqQuote(c,b,g)

sendQuote(b,c,g,p)

sendAccept(c,b,g,p)

s
0

s
1

s
2

s
3

s
4

s
5

authPay(x,p)

s
21

sendMoney(k,x,p)

reqQuote(b,x,[gc])

sendQuote(x,b,[gc], px)

sendAccept(b,x,[gc],px)

s
11

s
12

s
13

s
13

sendGoods(b,g,x)

s
14

sendMoney(b,x,px)

s
16

sendGoods(x,c,g)

Shipper,
x
Bookstore,
b
Customer,
c
Bank,
k

Shipping

Payment

reqQuote(c,b,g)

sendQuote(b,c,g,p)

sendAccept(c,b,g,p)

sendMoney(c,b,p)

s
0

s
1

s
2

s
3

s
4

s
5

Bookstore,
b
Customer,
c

sendGoods(b,c,g)

Purchase

Figure 4: Refinement of purchase by splicing in shipping and payment

(C, M): Request

(M, C): Offer

(C, M): Accept

(M, C): Goods

(C, M): Payment

(M, C): Receipt

2

4

5

3

6

1

7
(M

, C
): O

ffer9

8

(C, M
): A

cce
pt

(M, C): Goods

(C
, M

): P
ay

men
t

(M, C): Goods
(M, C): Goods(C, M

): Accept
Figure 5: NetBill Protocol

tool is limited in that it doesn’t accommodate the commitments of
the participants.

3. DISCUSSION
We introduced a technical approach for modeling protocols that

provides a natural basis for principled methodologies for design-
ing custom business protocols. The main contributions lie in the
formalization of protocol specialization and aggregation. This can
further be employed to perform subsumption reasoning and to carry
out more interesting operations on protocols, such as splicing. Re-
lated work can broadly be classified under the following research
areas.

3.1 Existing or Emerging Standards
Among conventional standards, BPEL [2003] primarily captures

a flow model. BPEL also includes a significant component of data

handling. BPEL also includes so-called protocols, which are mod-
eled as processes whose variables are bound late to values. WSCI
describes conversations in which a given service may participate.
WSCI [2002] conversations are not business protocols. Protocols
impose interrelated requirements on all participants, not just on the
users of a particular service. Each WSCI specification corresponds
to a role in our scheme. WSCI Conversations are specified with-
out any semantics, so that transitions and states cannot be reasoned
about.

The transactional requirements of the composition could be par-
tially derived from the nature of the composition. A leading ap-
proach for transactional support for Web service computations is
described in the WS-Coordination [Cabrera et al., 2003] and WS-
Transaction specifications [Cabrera et al., 2002], which has sup-
port for Atomic Transactions (ATs) and Business Activities (BAs).
Most of our intended applications will fall under business activities.
OASIS’s Business Transaction Protocol (BTP) introduces an alter-
native, but similar, framework for coordinating Web transactions
[Dalal et al., 2003]. BTP includes atom (all or none) and cohe-
sion (application-specific) transactions. The Web Services Com-
posite Application Framework (WS-CAF) [Bunting et al., 2003]
is another industry initiative to support transactional properties of
business processes. The above approaches are similar enough for
our purposes. They take a flow-oriented stance on processes and
attempt to encapsulate certain steps as transactions. Our approach
would apply transactional properties at the level of protocols.

Semantic Web efforts have converged into the Web Ontology
Language (OWL) [McGuiness and van Harmelen, 2003]. One of
the best current works on semantic Web services is OWL-S (de-
rived from DAML-S) [DAML-S, 2002]. OWL-S is an OWL ontol-
ogy for services, which includes service grounding, service profile,
and process model. The profile is key for specifying and discover-
ing services. The process model describes how a service may be
implemented in terms of a set of scripting constructs, such as for
sequencing, concurrency, branching, and iteration. In this respect,
OWL-S resembles BPEL, which describes processes with which
services can be implemented as compositions of others. Although
such process specifications may be useful in tools to implement

<process name="NetbillConsumer" …>

<partnerLinks>

<partnerLink name="merchant"

partnerLinkType="cns:merchantLT"

myRole="netbillConsumer"

 partnerRole="netbillMerchant"/>

 ...

</partnerLinks>

<variables>

<variable name="requestM"

 messageType="mns:RequestMessage"/>

 <variable name="offerM" …/>

 ...

<variable name="state" …/>

</variables>

<sequence>

<!--First basic activity must be “start”-->

<receive partnerLink="initiator"

 operation="start"

 variable="startM"

 createInstance="yes" ...>

 ...

 </receive>

 <!-- start up logic -->

 <switch>

 <!-- decide among request/accept/wait for

 merchant -->

 ...

<!-- update state accordingly-->

 ...

<case condition="bpws:getVariableData(

 'state' ,'value') = X">

<!--Take action: current state is X-->

 ...

<invoke partnerLink="merchant" ...

 operation="..."

 inputVariable="...">…</invoke>

<!--Change current state accordingly-->

 ...

 </case>

 ...

 </switch>

 <!-- P-FSM logic -->

<while condition=”…">

 <pick>

 <onMessage partnerLink="merchant" ...

 operation="receiveOffer"

 variable="offerM">

<switch>

<!--OfferM OK in current state ?-->

 <case condition="…">

 ...

 <invoke partnerLink="merchant"...>

 </invoke>

 <!-- Change current state -->

 </case>

 <case …/>

 …

<otherwise …/>

 </switch>

 </onMessage>

 <onMessage partnerLink="merchant" ...>

 ...

 </onMessage>

 ...

 </pick>

 </while>

</sequence>

</process>

Figure 6: BPEL flow for NetBill customer

services, they are not directly suited for standardization. In our ap-
proach, some of this functionality shifts to protocol specifications.

3.2 Relevant Literature

3.2.1 Traditional formal methods
Current modeling formalisms, such as finite state machines and

Petri Nets, originated in distributed computing and apply at lower
levels of abstraction than needed for flexible business interactions
[Emerson, 1990; Harel and Gery, 1997]. When applied to business
protocols, these formalisms result in specifications that are over-
constrained to the level of specific sequences of actions. However,
the rigor of these approaches is attractive. Our approach employs
temporal logic augmented with commitments to accommodate flex-
ibility.

A recent work in this direction is on conversation protocols, e.g.,
[Bultan et al., 2003]. This body of work essentially models services
as components that send messages to one another. It is a direct ap-
plication of traditional formal techniques to services. This is valu-
able. However, this work is ultimately limited by fact of ignoring
the challenges of business processes. In particular, because it lacks
semantics in the form of commitments (or other model of contrac-
tual relationships), it has no account of flexible behavior by the
participants. Without the benefit of such semantics, the refinement
of protocols (not addressed by the cited paper) would at best con-
sider sets of computations but would not recognize when syntac-
tically distinct computations were actually alike. In simple terms,
you don’t know if a deviation is legitimate, because you don’t know
what the conversation means.

3.2.2 Semantic Web services
OWL-S and some semantic composition approaches were al-

luded to above. In the Web Services Modeling Framework (WSMF)
[Bussler et al., 2002], the process implementing a given service is,
in general, not exposed. However, WSMF enables a variety of con-
straints on the invocations of services, e.g., concurrent execution,
data and control flows among services, and a compensation strategy
for a service (what to do if it fails). In this sense, WSMF supports
a process model similar to the OWL-S process model. Capabilities
are modeled in terms of preconditions and postconditions to enable
service discovery. WSMF also includes components of ontologies
and mediators for data sharing. These are complementary to our
present approach.

3.2.3 Process modeling
There has been an enormous amount of work on process mod-

eling. Much of that work has developed languages for expressing
flows and systems for enacting such flows. Of greater relevance in-
tellectually is the MIT Process Handbook (MITPH) project [Mal-
one et al., 2003], which aims to create an extensive classification
and systematic organization of business processes based on two
dimensions of process hierarchies, one that composes the uses of
a process out of its constituent parts, and another that subclasses
generalizations of a process into specializations.

Grosof and Poon [2003] develop a system to represent and exe-
cute business rules from MITPH. Wyner & Lee [2003] study spe-
cialization for data flow diagrams. Their approach can form the ba-
sis of the processes identified in MITPH. These concepts turn out to
be complex and not readily applicable to entire business processes.
Further, since Wyner & Lee do not capture the content through a
high-level representation such as commitments, the results are not
intuitive.

The pi-calculus [Milner, 1991] has recently been suggested as an
approach for modeling processes, e.g., [Meredith and Bjorg, 2003].
This can be potentially quite useful, but only if applied at the level
of interaction protocols. It is conventionally applied simply to en-

code orchestrations as in XLANG [Thatte, 2001] (now absorbed
into BPEL) or to even to specify choreographies as in WSCI. How-
ever, even according to some of its proponents, some of the subtle
features of the pi-calculus, e.g., reconfigurability, end up not being
needed [Wischik, 2003]. A more challenging and potentially more
valuable application of the pi-calculus would be in the context of
business protocols as in our approach. Because protocols involve
commitments and operations on commitments, they can potentially
benefit from the advanced features of the pi-calculus, e.g., to type-
check whether a given participant can play a certain role in a proto-
col and evolve its commitments in a certain manner. We defer this
to future work.

3.2.4 Commitments and contracts
Commitments have been studied at length in the multiagent sys-

tems literature. Commitments fare better than traditional deontic
logic because they are directed, whereas deontic logic only deals
with what is obligatory or permissible and thus disregards an agent’s
obligations to another agent. Previous work on commitments has
not been used for operational characterization of protocols. A no-
table exception is Verharen, who develops a contract specification
language, CoLa, to specify transactions and contracts [1997]. Ver-
haren’s approach benefits from commitments in expressing actions,
but it treats commitments as obligations, and does not allow manip-
ulation of commitments as in our approach. Further, Verharen only
considers base-level commitments, without capturing conditional
commitments as we have done through metacommitments [Singh,
1999].

3.2.5 Commitment-based protocols
Yolum and Singh [2002] is one of the first accounts of the use of

commitments in modeling agent interaction protocols and the flex-
ibility that it affords the participating agents. Fornara and Colom-
betti [2003] describe how commitments relate to FIPA-ACL mes-
sages and demonstrate this with an example. Both approaches
highlight the benefits of a commitment-based approach to interac-
tion protocol design. Johnson et al. [2003] develop a scheme for
identifying when two commitment-based protocols are equivalent.
Their scheme, however, is simplistic, classifying protocols based
solely on their syntactic structure. Our work provides stronger re-
sults from an application point of view and relates better to the Web
Services approach.

Bussmann et al. [2002] present a design methodology to aid in
the selection of a protocol from a library of existing protocols to
apply to agent-based control applications. They identify criteria
like the number of agents, the number of roles, and the number and
kind of commitments and use these to select a protocol from an ex-
isting pool of interaction protocols. This approach is quantitative,
and lacks a formal semantics to base the methodology on.

3.3 Contributions and Directions
To summarize, we have argued that the problems of program-

ming in the large arise with renewed vigor in open environments,
as exemplified by the world of cross-enterprise business process
management. Current programming abstractions are ineffective for
such settings. A simple, but promising, idea is to modularize in-
teractions analogous to the way we traditionally modularize local
behaviors: let’s have roles and protocols as first-class entities just
as classes and methods were in traditional programming. We de-
scribed key elements of our research program, which in simple
terms, seeks to take the above idea to its logical conclusion. We
hope to have convinced the reader that a number of benefits can be
derived from this exercise.

We don’t claim that all important problems are solved or even
framed with precision, but we think we are getting there. To this
end, we have identified some avenues of research that are especially
promising.

Design. Sophisticated process design tools based on our theory of
processes and protocols would help designers create process
models with greater productivity. Key questions are about
design rules and sanity checks on processes and protocols.

Enactment. An execution framework for agents to play roles in
different protocols so as to enact a process in a truly dis-
tributed manner would maximize the autonomy of business
partners. It would eliminate the need for centralized pro-
cess execution with its concomitant bottlenecks and failure
modes.

Monitoring. Compliance verification is a key challenge for open
environments. It becomes even more important when the par-
ticipants are given more autonomy as in our approach. The
richer semantics of our approach, in terms of commitments
and temporal models, would help us develop stronger results
than in other approaches.

Negotiation. We can frame the choice of protocol as a run-time de-
cision to be made by the various participants. In particular,
participants would then use the refined version of a proto-
col that best matches their local preferences. For example, a
customer might choose to deal with a business that requires
no authentication steps rather than with a business that of-
fers similar services, but requires a number of authentication
steps. In other cases, the parties involved may negotiate with
each other to settle upon the particular refinement of a proto-
col that they would follow in their mutual interactions.

Overall, we believe this could prove to be a fruitful research pro-
gram for our community.

4. ACKNOWLEDGMENTS
This research is supported by DARPA and by the National Sci-

ence Foundation under grant DST-0139037.

References
BPEL. Business process execution language for

web services, version 1.1, May 2003. www-
106.ibm.com/developerworks/webservices/library/ws-bpel.

Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversa-
tion specification: A new approach to design and analysis of e-
service composition. In Proceedings of the Twelfth International
World Wide Web Conference (WWW), pages 403–410, 2003.

Doug Bunting, Martin Chapman, Oisin Hurley, Mark Little, Jeff
Mischkinsky, Eric Newcomer, Jim Webber, and Keith Swenson.
Web services composite application framework (WS-CAF), July
2003. http://www.iona.com/ devcenter/ standards/ WS-CAF/
WS-CAF.pdf.

Christoph Bussler, Dieter Fensel, and Alexander Maedche. A con-
ceptual architecture for semantic Web enabled Web services.
ACM SIGMOD Record, 31(4):24–29, December 2002.

Stefan Bussmann, Nicholas R. Jennings, and Michael Wooldridge.
Re-use of interaction protocols for agent-based applications.
In Proceedings of the 3rd International Workshop on Agent-
Oriented Software Engineering, 2002.

Felipe Cabrera, George Copeland, Bill Cox, Tom Freund, Johannes
Klein, Tony Storey, and Satish Thatte. Web services transaction
(WS-Transaction), August 2002. http://www-106.ibm.com/ de-
veloperworks/ webservices/ library/ ws-transpec/.

Luis Felipe Cabrera, George Copeland, William Cox, Max
Feingold, Tom Freund, Jim Johnson, Chris Kaler, Johannes
Klein, David Langworthy, Anthony Nadalin, David Orchard,
Ian Robinson, John Shewchuk, and Tony Storey. Web
services coordination (WS-Coordination), September 2003.
ftp://www6.software.ibm.com/ software/ developer/ library/ ws-
coordination.pdf.

Jorge Cardoso and Amit Sheth. Semantic e-workflow composi-
tion. Journal of Intelligent Information Systems (JIIS), 12(3):
191–225, November 2003.

Amit Chopra and Munindar P. Singh. Nonmonotonic commitment
machines. In Frank Dignum, editor, Advances in Agent Commu-
nication: Proceedings of the 2003 AAMAS Workshop on Agent
Communication Languages, LNAI. Springer-Verlag, 2003.

Collaxa. Collaxa BPEL orchestration server, 2003.
http://www.collaxa.com/home.index.jsp.

Sanjay Dalal, Sazi Temel, Mark Little, Mark Potts, and Jim Web-
ber. Coordinating business transactions on the Web. IEEE Inter-
net Computing, 7(1):30–39, January 2003.

DAML-S. DAML-S: Web service description for the semantic
Web. In Proceedings of the 1st International Semantic Web
Conference (ISWC), July 2002. Authored by the DAML Ser-
vices Coalition, which consists of (alphabetically) Anupriya
Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, David L.
Martin, Drew McDermott, Sheila A. McIlraith, Srini Narayanan,
Massimo Paolucci, Terry R. Payne and Katia Sycara.

Frank DeRemer and Hans H. Kron. Programming-in-the-large ver-
sus programming-in-the small. IEEE Transactions on Software
Engineering, 2(2):80–86, June 1976.

ebXML. Electronic business using eXtensible markup lan-
guage, 2002. Technical Specifications release, URL:
http://www.ebxml.org/specs/index.htm.

E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B,
pages 995–1072. North-Holland, Amsterdam, 1990.

Escrow.com. Online escrow process, 2003.
http://www.escrow.com/solutions/escrow/process.asp.

Nicoletta Fornara and Marco Colombetti. Defining interaction
protocols using a commitment-based agent communication lan-
guage. In Proceedings of the 2nd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages
520–527. ACM Press, July 2003.

Benjamin N. Grosof and Terrence C. Poon. SweetDeal: Represent-
ing agent contracts with exceptions using XML rules, ontolo-
gies, and process descriptions. In Proceedings of the 12th In-
ternational Conference on the World Wide Web, pages 340–349,
2003.

David Harel and Eran Gery. Executable object modeling with stat-
echarts. IEEE Computer, 30(7):31–42, July 1997.

Wesley Newcomb Hohfeld. Fundamental Legal Conceptions as
Applied in Judicial Reasoning and other Legal Essays. Yale Uni-
versity Press, New Haven, CT, 1919. A 1919 printing of articles
from 1913.

IOTP. Internet open trading protocol (IOTP), Octo-
ber 2003. IETF: Internet Engineering Task Force,
http://www.ietf.org/html.charters/trade-charter.html.

Mark W. Johnson, Peter McBurney, and Simon Parsons. When
are two protocols the same? In Marc-Philippe Huget, editor,
Communication in Multiagent Systems: Agent Communication
Languages and Conversation Policies, volume 2650 of LNAI,
pages 253–268. Springer-Verlag, Berlin, 2003.

Tom Krazit. Intel conducts $5b in transactions via RosettaNet, De-
cember 2002. http://archive.infoworld.com/ articles/ hn/ xml/
02/12/10/ 021210hnintelrose.xml.

Thomas W. Malone, Kevin Crowston, and George A. Herman, ed-
itors. Organizing Business Knowledge: The MIT Process Hand-
book. MIT Press, Cambridge, MA, 2003.

Deborah L. McGuiness and Frank van Harmelen. Web Ontology
Language (OWL): Overview. www.w3.org/TR/2003/WD-owl-
features-20030210/, February 2003. W3C working draft.

Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic
Web services. IEEE Intelligent Systems, 16(2):46–53, March
2001.

L. Greg Meredith and Steve Bjorg. Contracts and types. Commu-
nications of the ACM, 46(10):41–47, October 2003.

Robin Milner. The polyadic pi-calculus: A tutorial. TR LFCS
report ECS-LFCS-91-180, School of Informatics, University of
Edinburgh, 1991.

Chris Peltz. Web service orchestration and choreography. IEEE
Computer, 36(10):46–52, October 2003.

RosettaNet. Home page, 1998. www.rosettanet.org.

SET. Secure electronic transactions (SET) specifications, 2003.
http://www.setco.org/ set specifications.html.

Munindar P. Singh. Agent communication languages: Rethinking
the principles. IEEE Computer, 31(12):40–47, December 1998.

Munindar P. Singh. An ontology for commitments in multiagent
systems: Toward a unification of normative concepts. Artificial
Intelligence and Law, 7:97–113, 1999.

Marvin A. Sirbu. Credits and debits on the Internet. IEEE Spec-
trum, 34(2):23–29, February 1997.

Satish Thatte. XLANG, Web services for business process
design, 2001. www.gotdotnet.com/team/xml-wsspecs/xlang-
c/default.htm.

Egon M. Verharen. A Language-Action Perspective on the Design
of Cooperative Information Agents. Catholic University, Tilburg,
Holland, 1997.

Gio Wiederhold, Peter Wegner, and Stefano Ceri. Toward megapro-
gramming. Communications of the ACM, 35(11):89–99, Novem-
ber 1992.

Lucian Wischik. Process calculi for Web choreography, March
2003. http://www.wischik.com/lu/ research/ lucian-piforweb-
w3c-mar2003-handout.pdf.

WSCI. Web service choreography interface 1.0, July 2002.
wwws.sun.com/ software/ xml/ developers/ wsci/ wsci-spec-
10.pdf.

George M. Wyner and Jintae Lee. Defining specialization for pro-
cess models. In Malone et al. [2003], chapter 5, pages 131–174.
MIT Press, 2003.

Pınar Yolum and Munindar P. Singh. Flexible protocol specification
and execution: Applying event calculus planning using commit-
ments. In Proceedings of the 1st International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), pages
527–534. ACM Press, July 2002.

Pınar Yolum and Munindar P. Singh. Reasoning about commit-
ments in the event calculus: An approach for specifying and
executing protocols. Annals of Mathematics and Artificial In-
telligence, 8(I–II):47–71, 2003.

