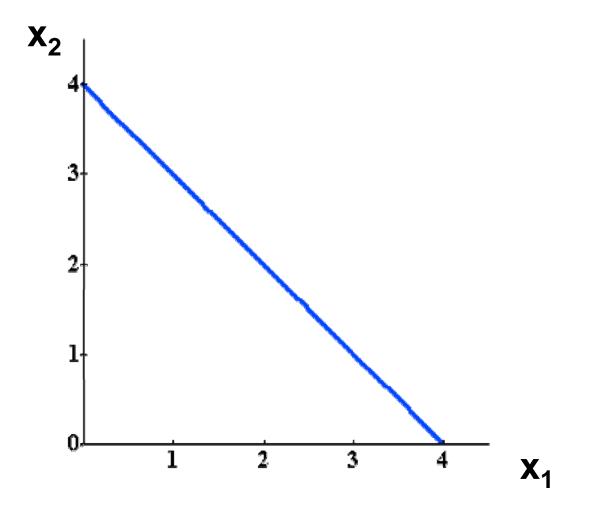


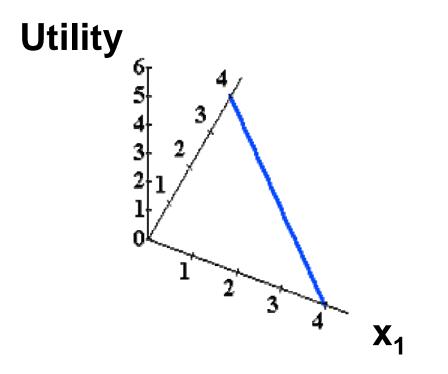
Chapter 5

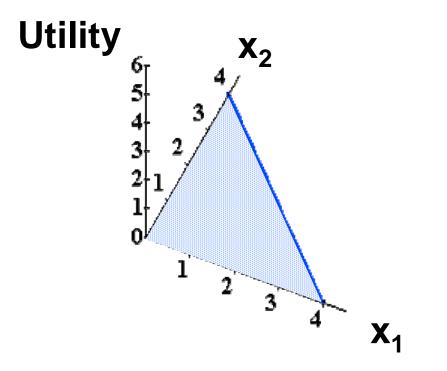
Choice

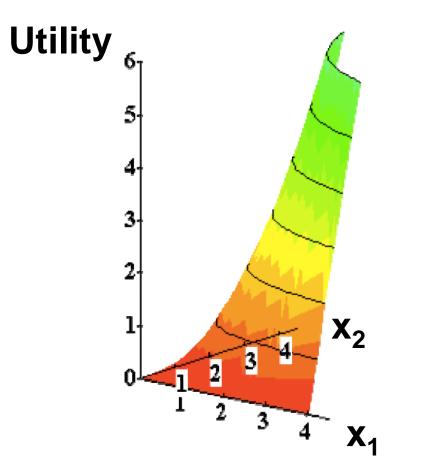
Economic Rationality

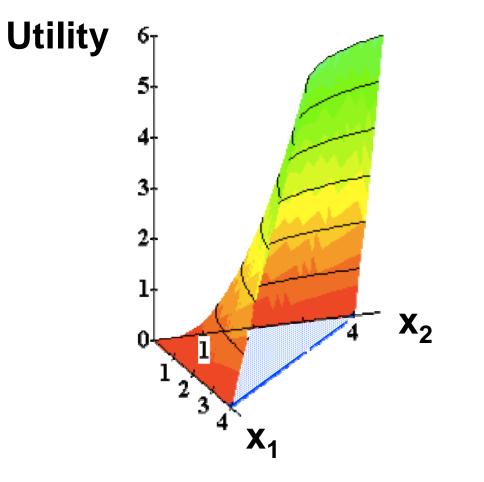
- The principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those available to it.
- The available choices constitute the choice set.
- How is the most preferred bundle in the choice set located?

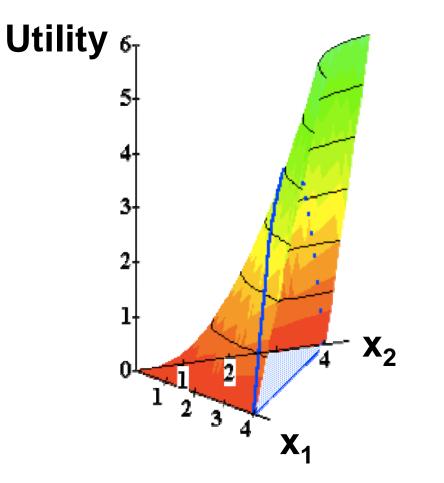


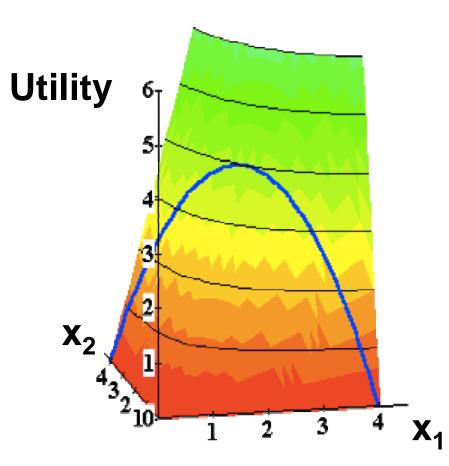


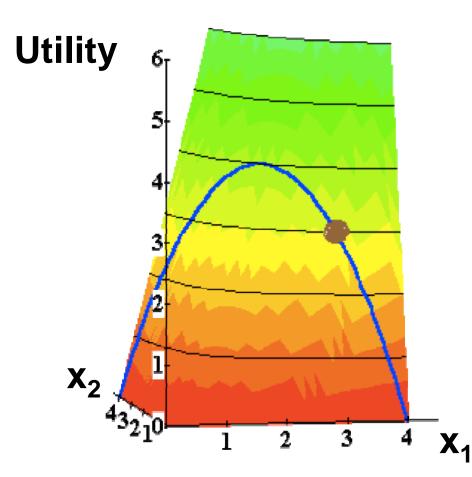


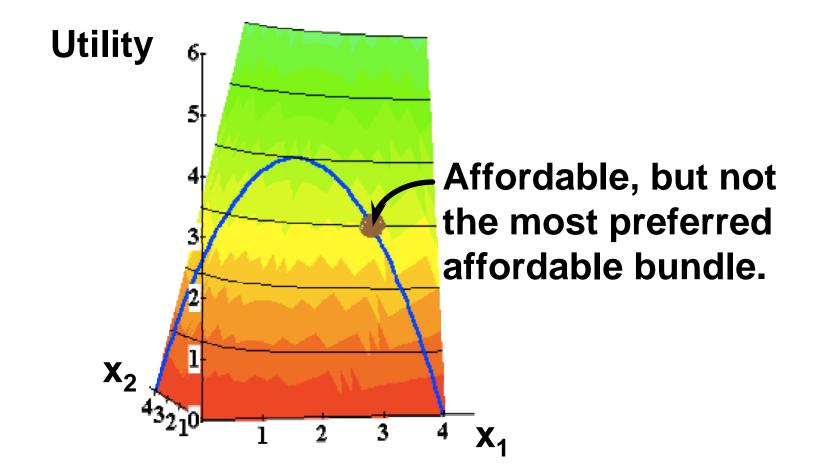


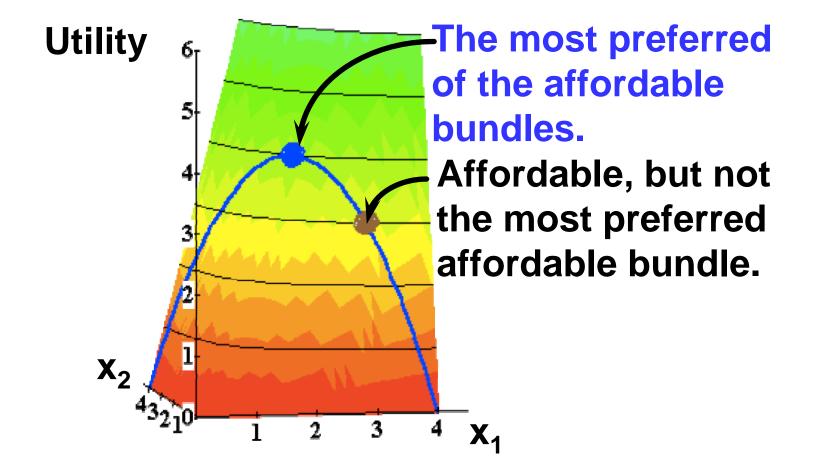


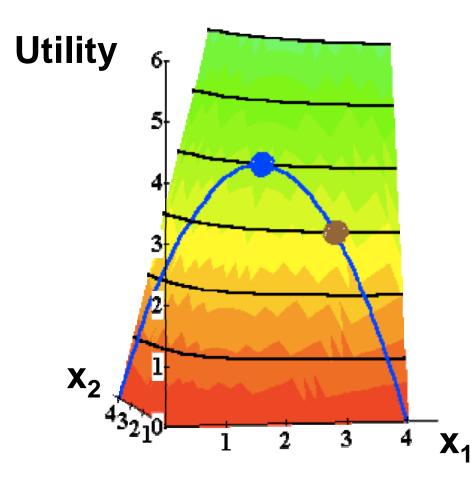


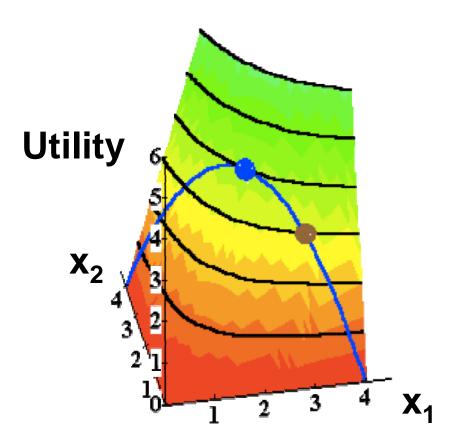


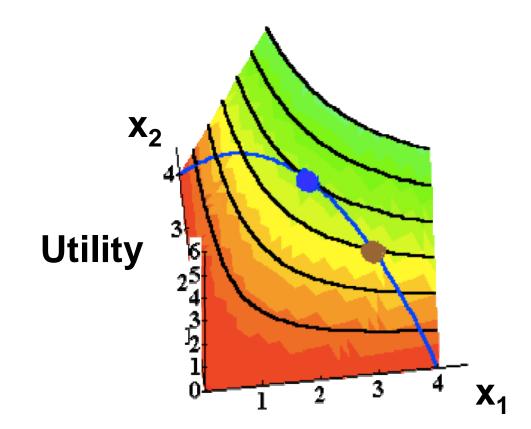


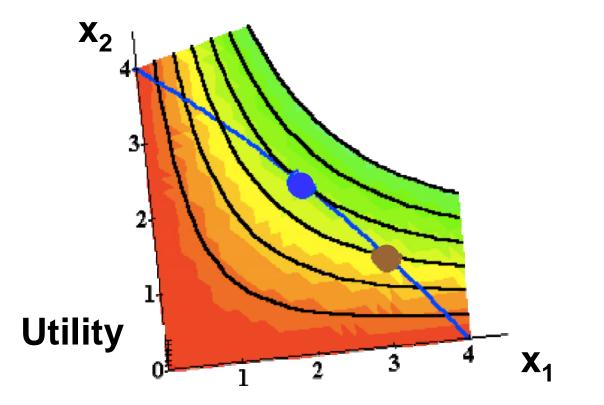


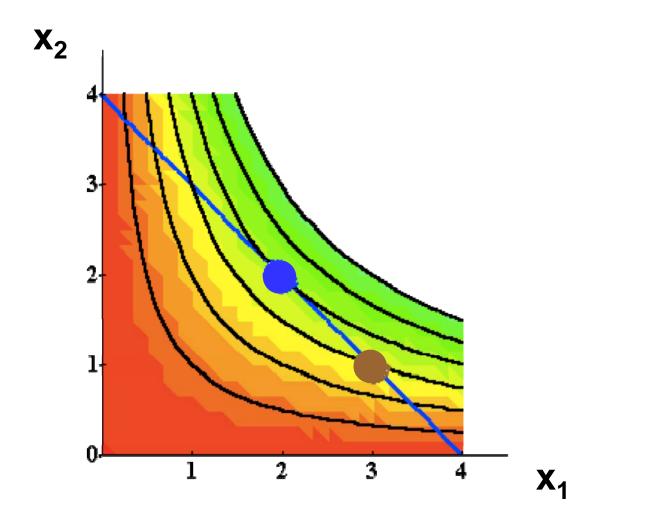


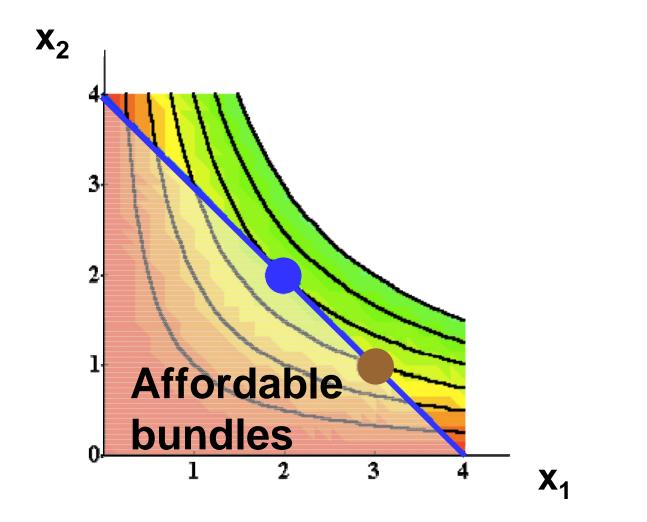


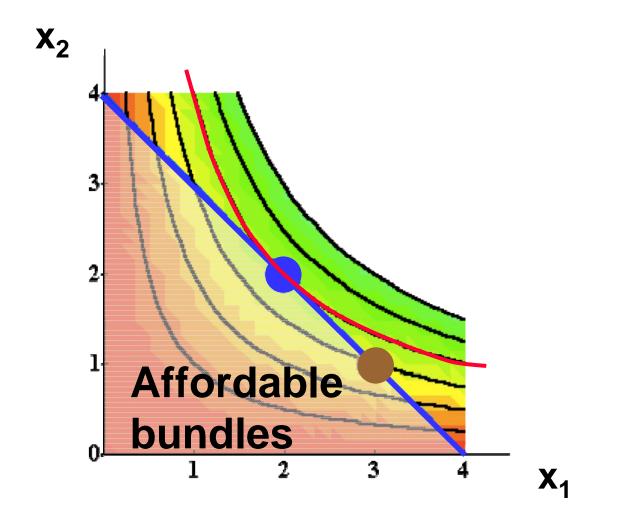


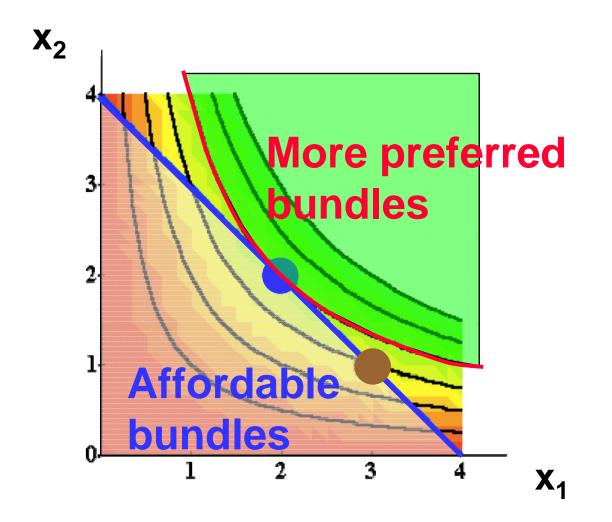


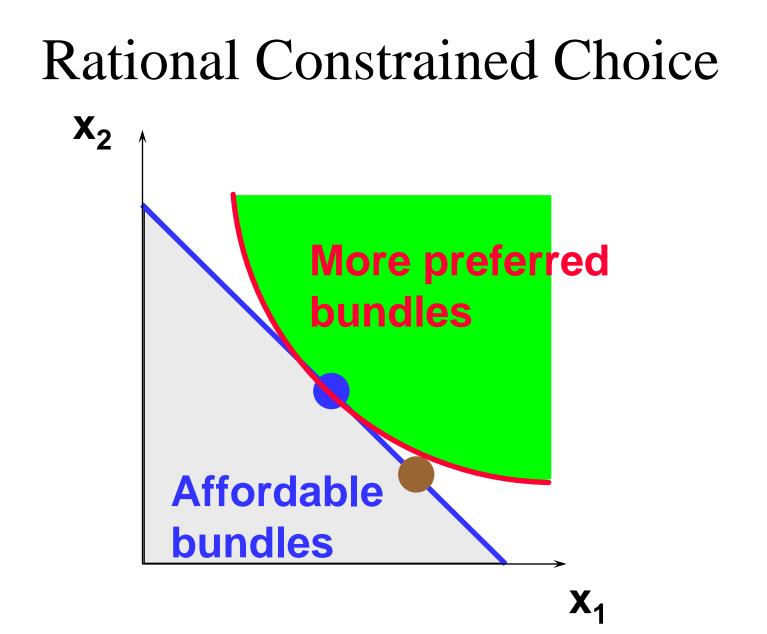


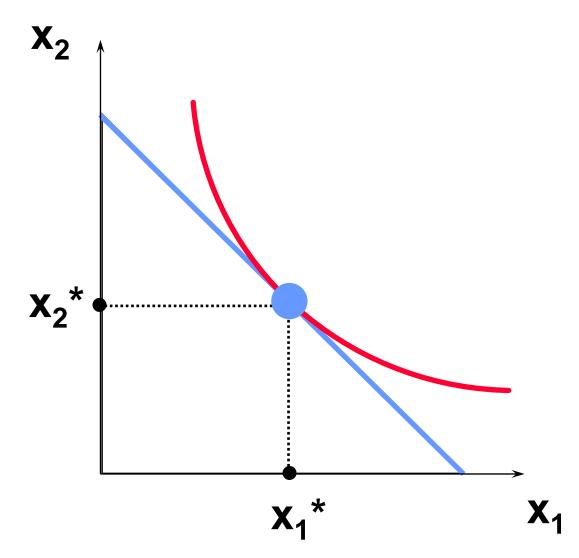


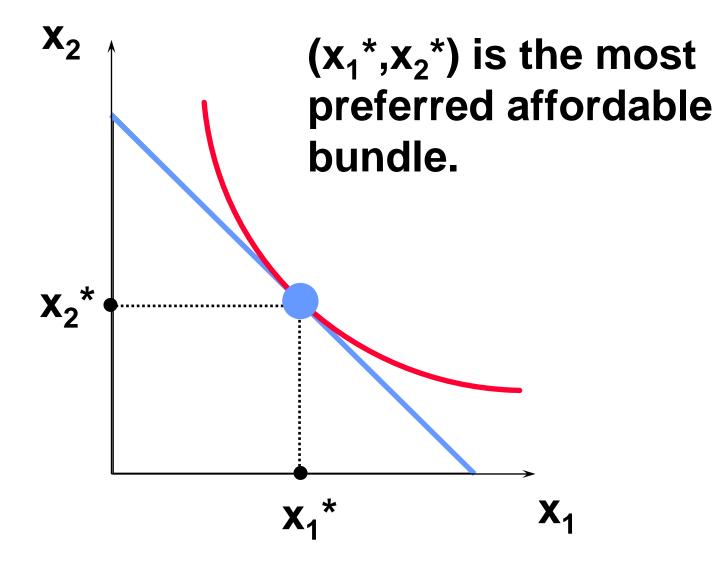






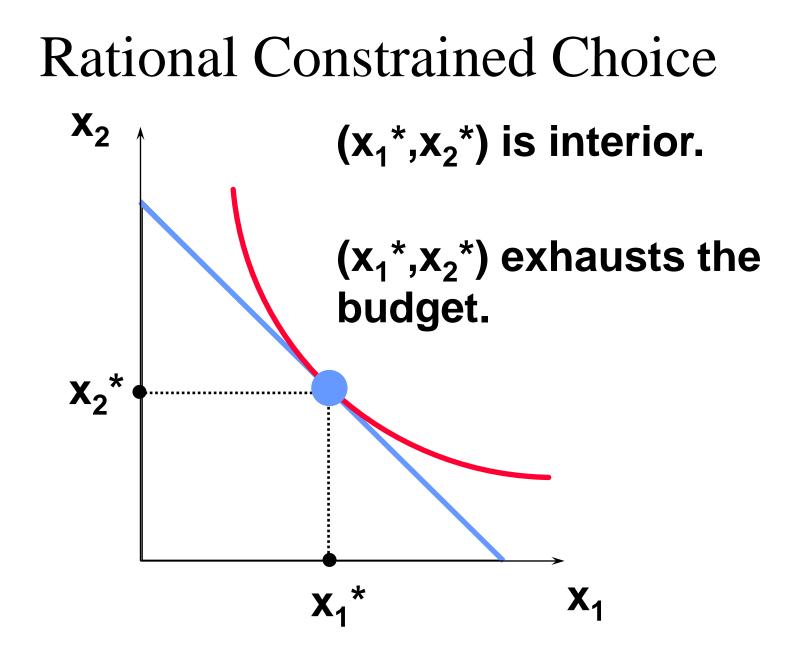


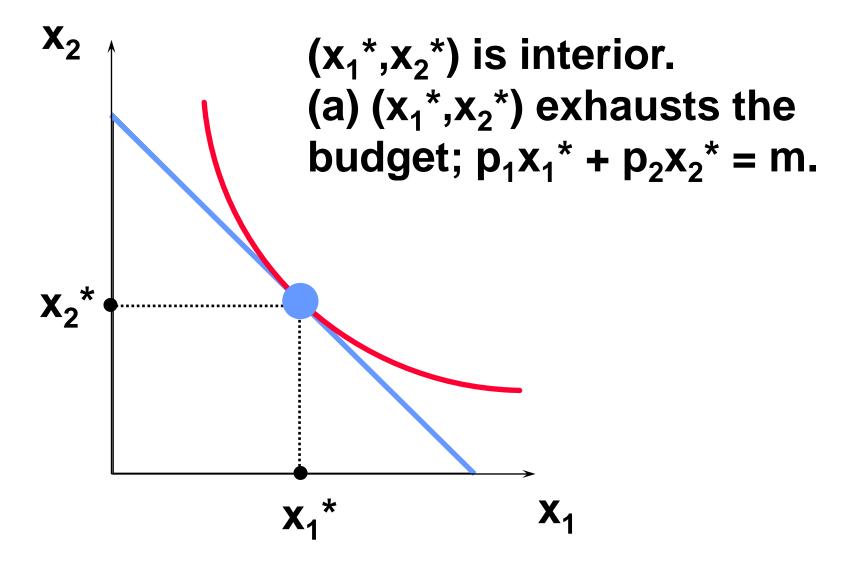


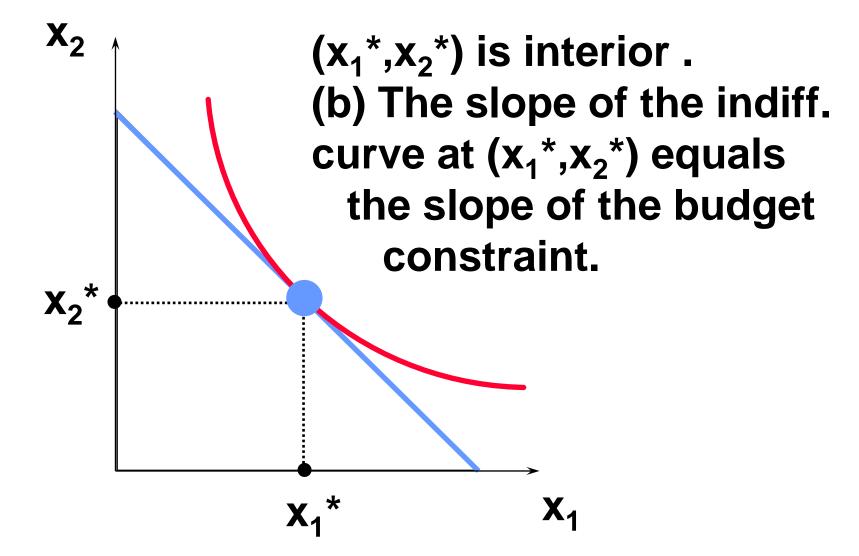


- The most preferred affordable bundle is called the consumer's ORDINARY DEMAND at the given prices and budget.
- Ordinary demands will be denoted by x₁*(p₁,p₂,m) and x₂*(p₁,p₂,m).

- When $x_1^* > 0$ and $x_2^* > 0$ the demanded bundle is INTERIOR.
- If buying (x₁*,x₂*) costs \$m then the budget is exhausted.







- ♦ (x₁*,x₂*) satisfies two conditions:
- (a) the budget is exhausted;
 p₁x₁* + p₂x₂* = m
- (b) the slope of the budget constraint,
 -p₁/p₂, and the slope of the indifference curve containing (x₁*,x₂*) are equal at (x₁*,x₂*).

Computing Ordinary Demands

How can this information be used to locate (x₁*,x₂*) for given p₁, p₂ and m?

 Suppose that the consumer has Cobb-Douglas preferences.

 $\mathbf{U}(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1^{\mathbf{a}} \mathbf{x}_2^{\mathbf{b}}$

 Suppose that the consumer has Cobb-Douglas preferences.

 $\mathbf{U}(\mathbf{x}_1,\mathbf{x}_2) = \mathbf{x}_1^{\mathbf{a}}\mathbf{x}_2^{\mathbf{b}}$

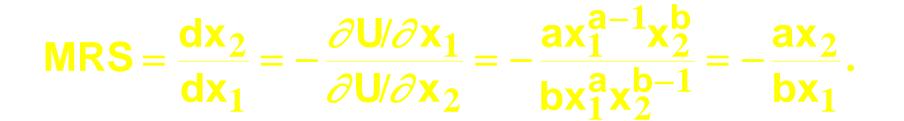
• Then $MU_1 = \frac{\partial U}{\partial x_1} = ax_1^{a-1}x_2^b$

$$\mathsf{MU}_2 = \frac{\partial \mathsf{U}}{\partial \mathsf{x}_2} = \mathsf{b} \mathsf{x}_1^{\mathsf{a}} \mathsf{x}_2^{\mathsf{b}-1}$$

So the MRS is

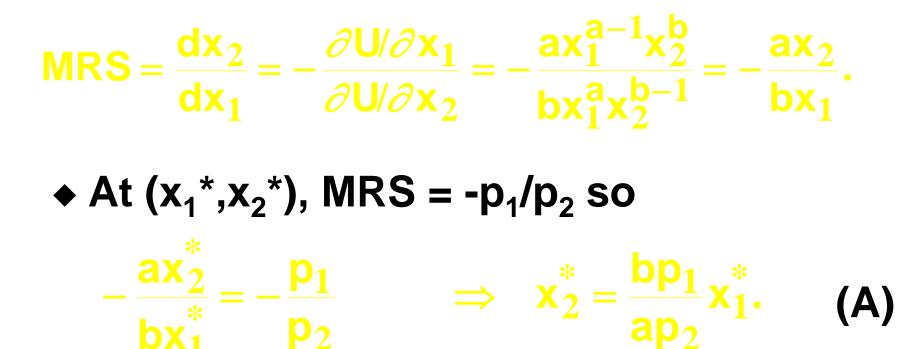
 $MRS = \frac{dx_2}{dx_1} = -\frac{\partial U/\partial x_1}{\partial U/\partial x_2} = -\frac{ax_1^{a-1}x_2^b}{bx_1^a x_2^{b-1}} = -\frac{ax_2}{bx_1}.$

So the MRS is



♦ At (x₁*,x₂*), MRS = -p₁/p₂ so

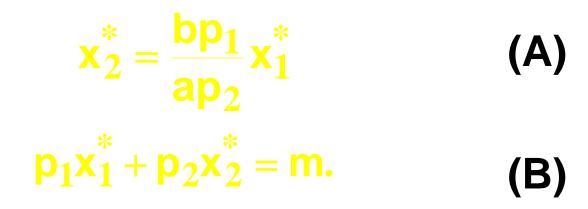
So the MRS is

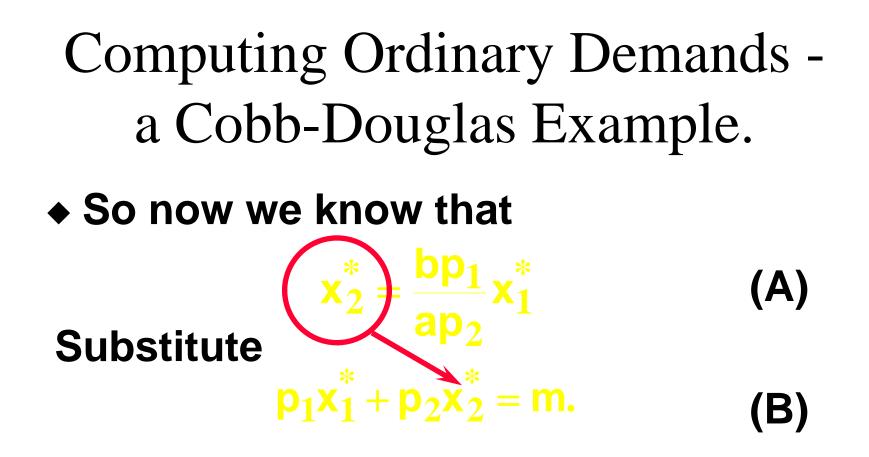


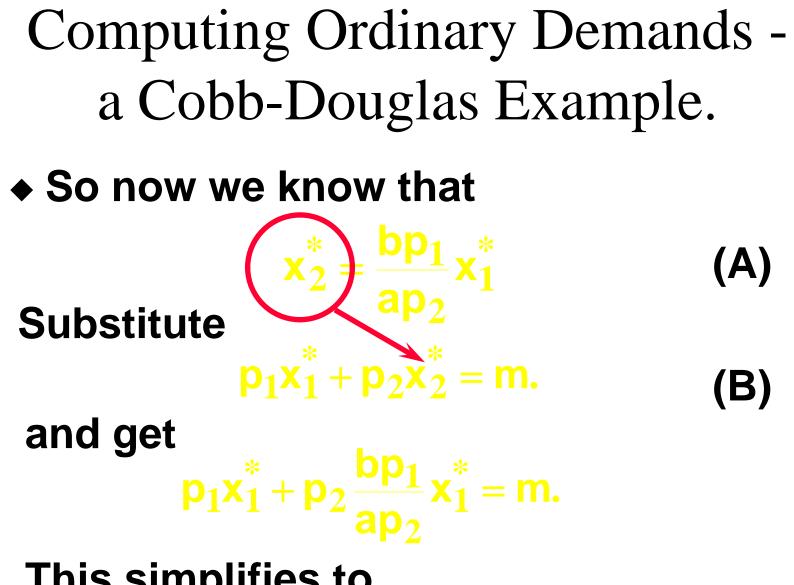
(x₁*,x₂*) also exhausts the budget so

$p_1 x_1^* + p_2 x_2^* = m.$ (B)

So now we know that







This simplifies to

 $\mathbf{x}_1^* = \frac{am}{(a+b)p_1}.$

 $\mathbf{x}_1^* = \frac{am}{(a+b)p_1}.$

Substituting for x_1^* in $p_1x_1^* + p_2x_2^* = m$

then gives

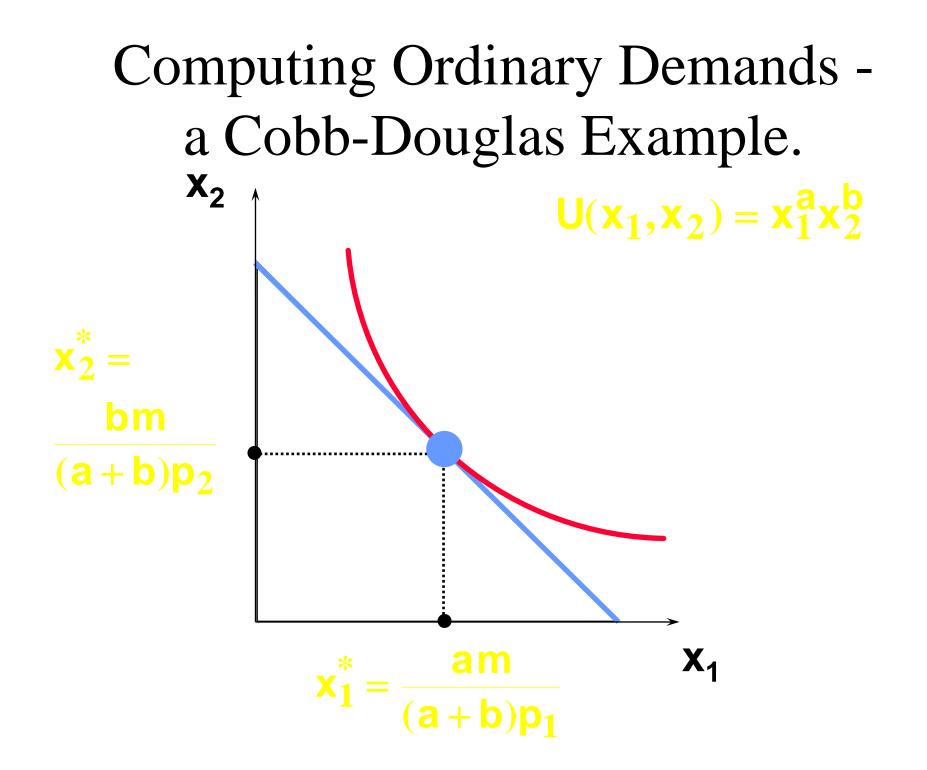
 $\mathbf{x}_2^* = \frac{\mathbf{bm}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_2}.$

So we have discovered that the most preferred affordable bundle for a consumer with Cobb-Douglas preferences

 $\mathbf{U}(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1^{\mathbf{a}} \mathbf{x}_2^{\mathbf{b}}$

 $(\mathbf{x}_1^*, \mathbf{x}_2^*) = \left(\frac{\mathsf{am}}{(\mathsf{a}+\mathsf{b})\mathsf{p}_1}, \frac{\mathsf{bm}}{(\mathsf{a}+\mathsf{b})\mathsf{p}_2}\right).$

is

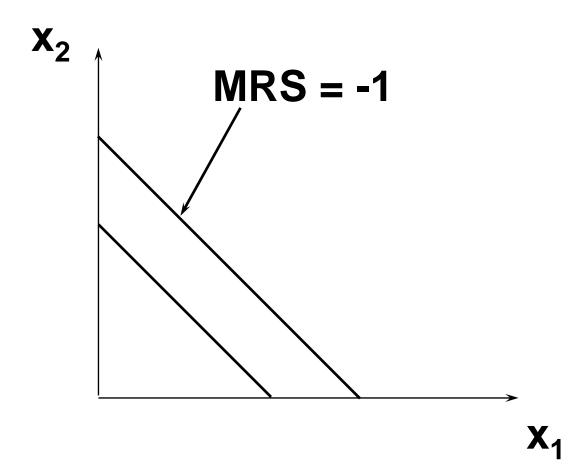


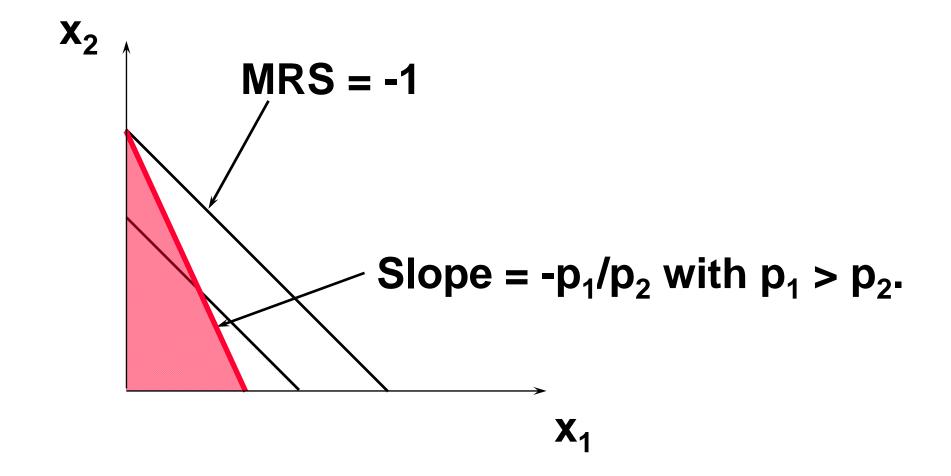
Rational Constrained Choice

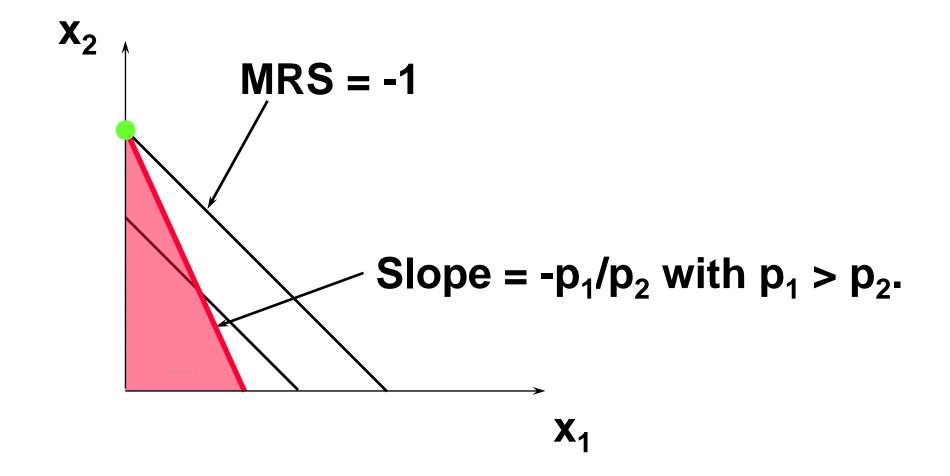
- When $x_1^* > 0$ and $x_2^* > 0$
 - and (x_1^*, x_2^*) exhausts the budget,
 - and indifference curves have no 'kinks', the ordinary demands are obtained by solving:
- (a) $p_1 x_1^* + p_2 x_2^* = y$
- (b) the slopes of the budget constraint,
 -p₁/p₂, and of the indifference curve containing (x₁*,x₂*) are equal at (x₁*,x₂*).

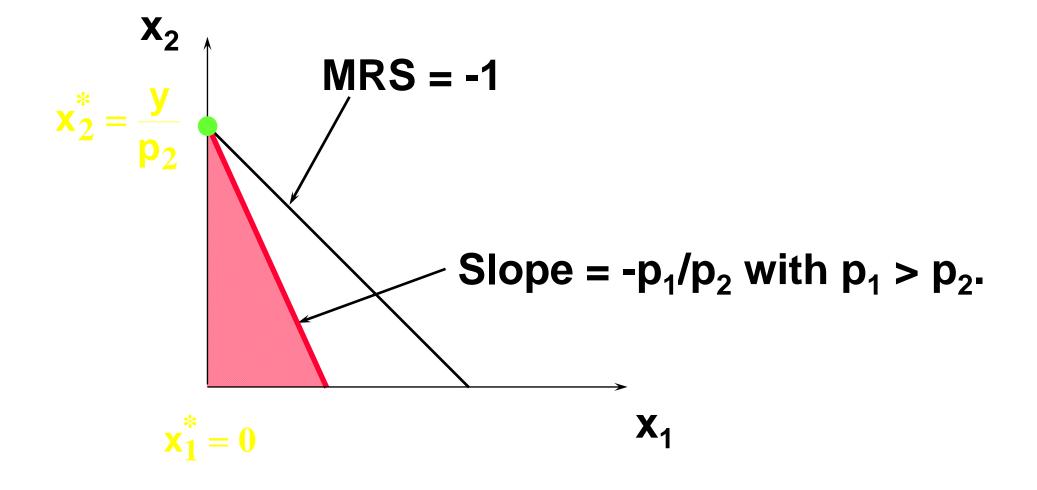
Rational Constrained Choice

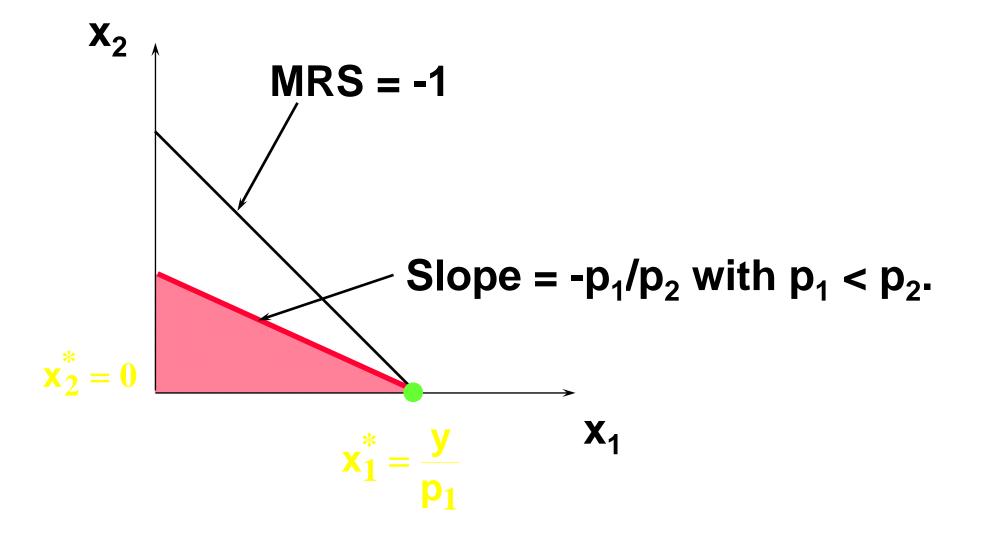
- But what if $x_1^* = 0$?
- Or if $x_2^* = 0?$
- If either x₁* = 0 or x₂* = 0 then the ordinary demand (x₁*,x₂*) is at a corner solution to the problem of maximizing utility subject to a budget constraint.









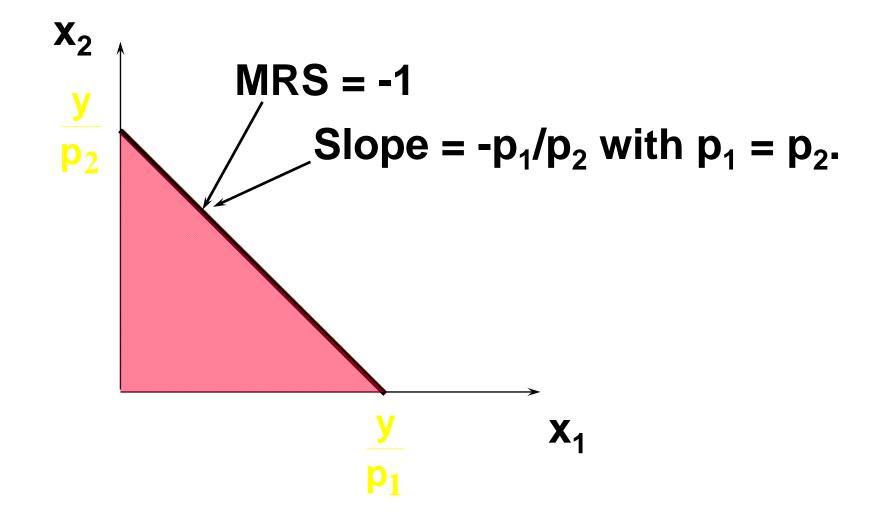


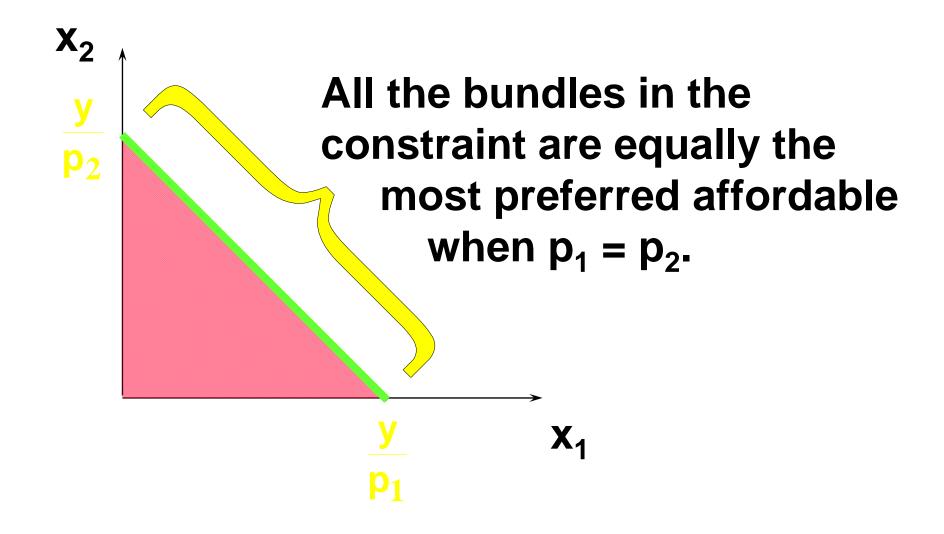
Examples of Corner Solutions -the Perfect Substitutes Case So when $U(x_1,x_2) = x_1 + x_2$, the most preferred affordable bundle is (x_1^*,x_2^*) where

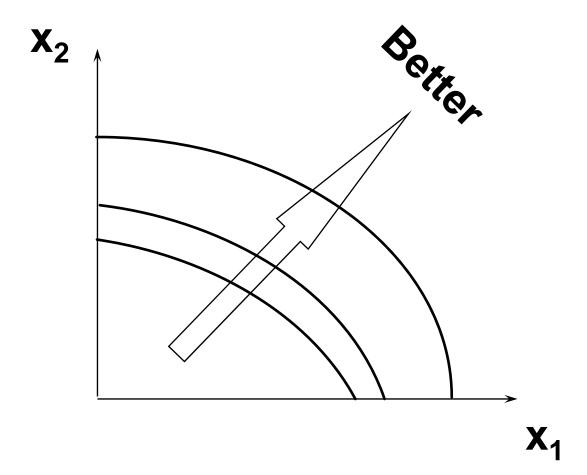
$$(x_1^*, x_2^*) = \left(\frac{y}{p_1}, 0\right)$$
 if $p_1 < p_2$

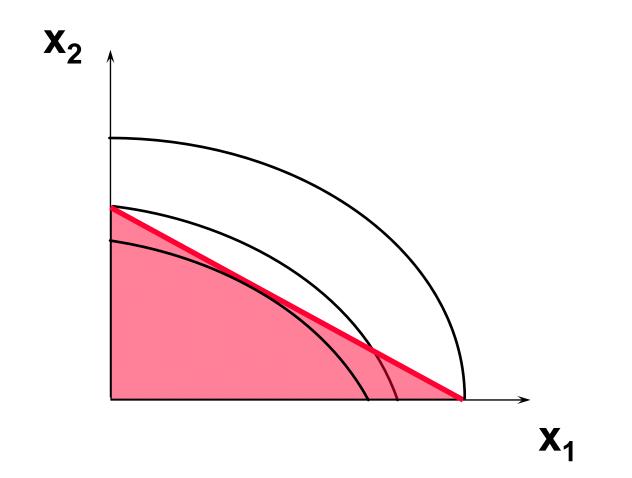
and

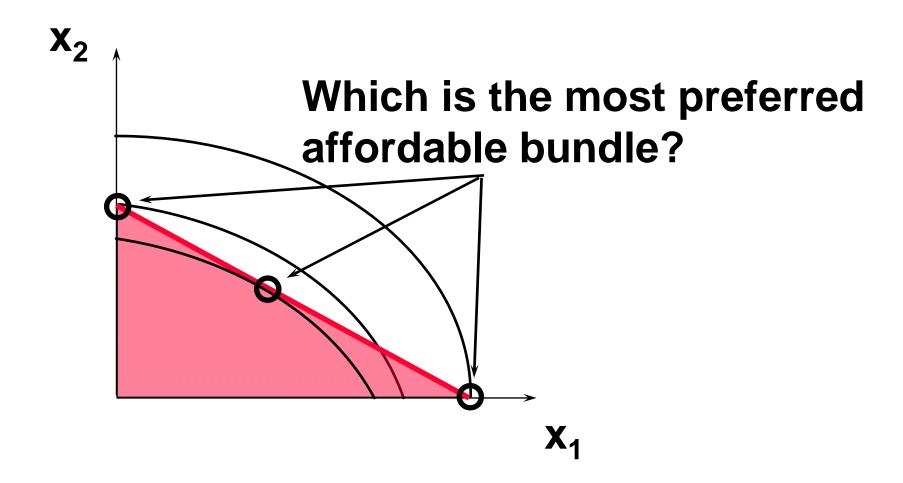
$$(x_1^*, x_2^*) = \begin{pmatrix} 0, \frac{y}{p_2} \end{pmatrix}$$
 if $p_1 > p_2$.

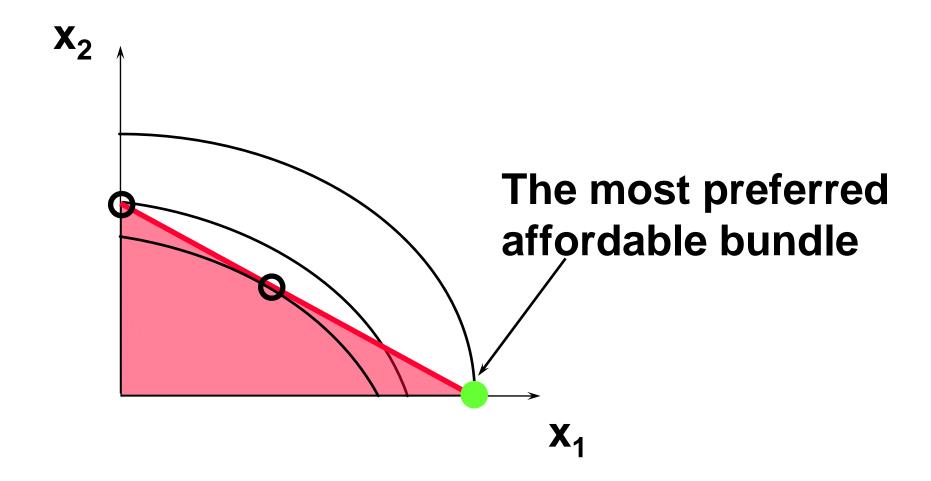


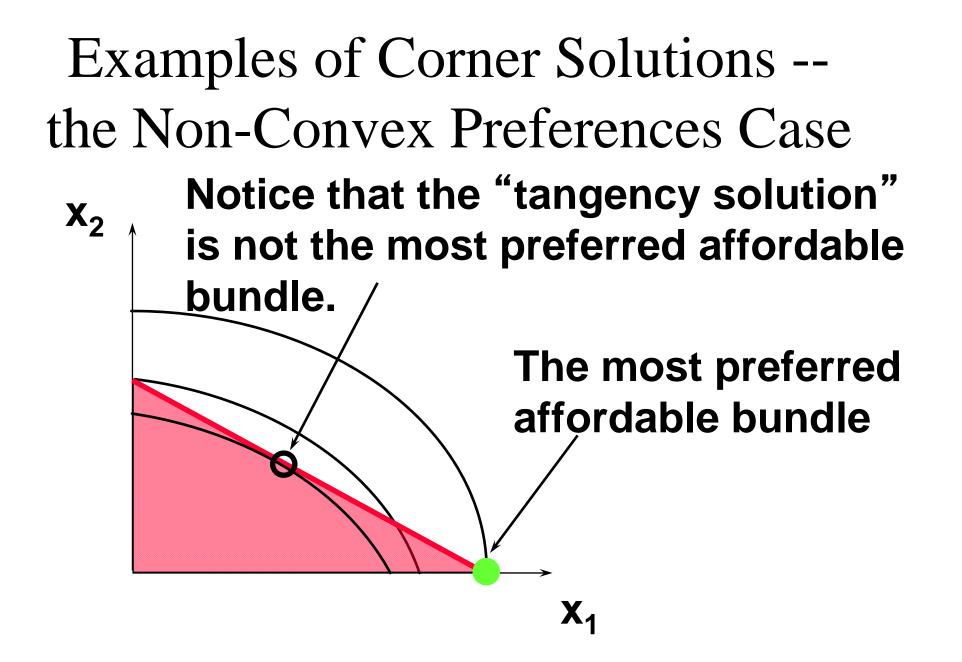


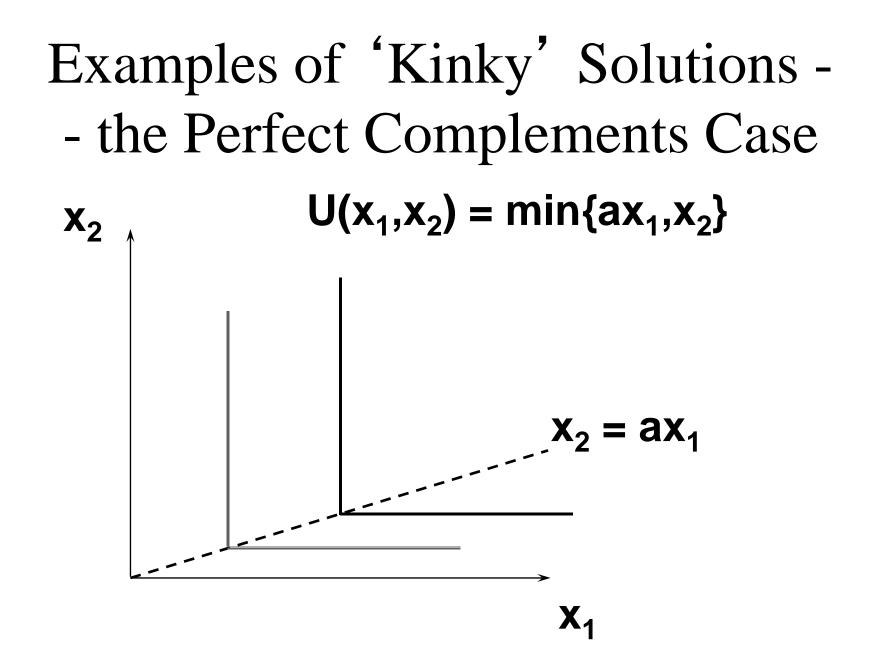


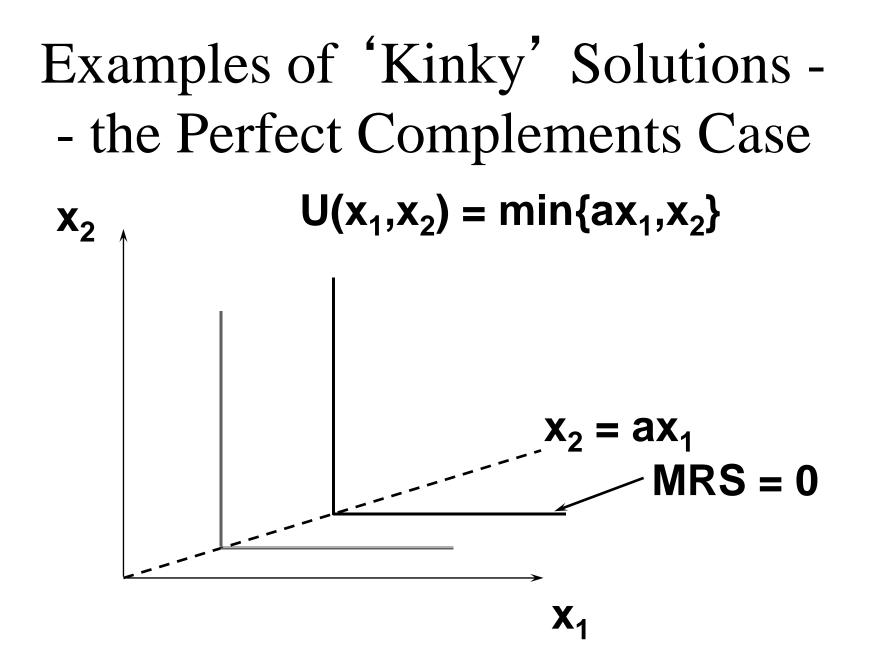


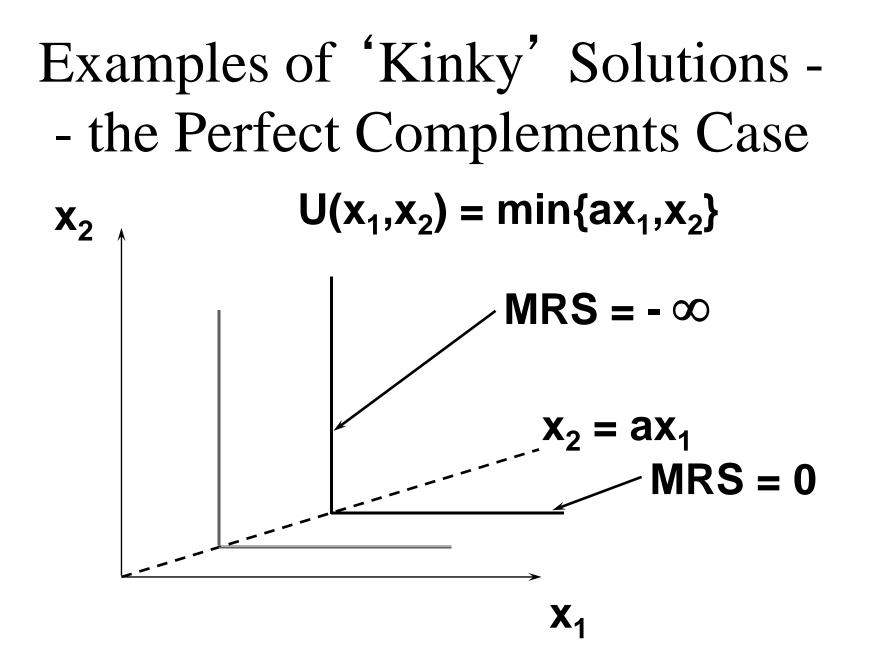


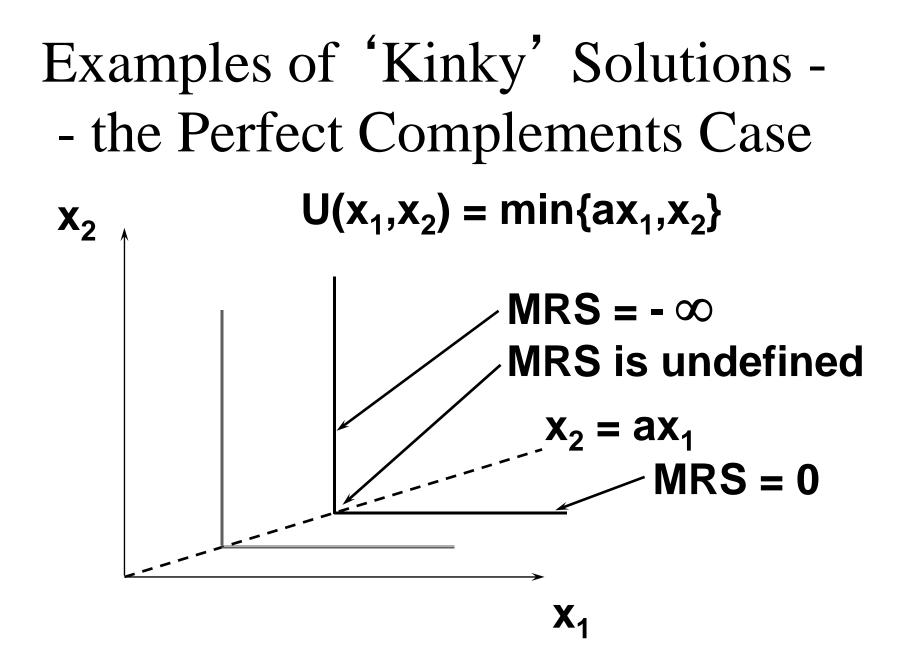


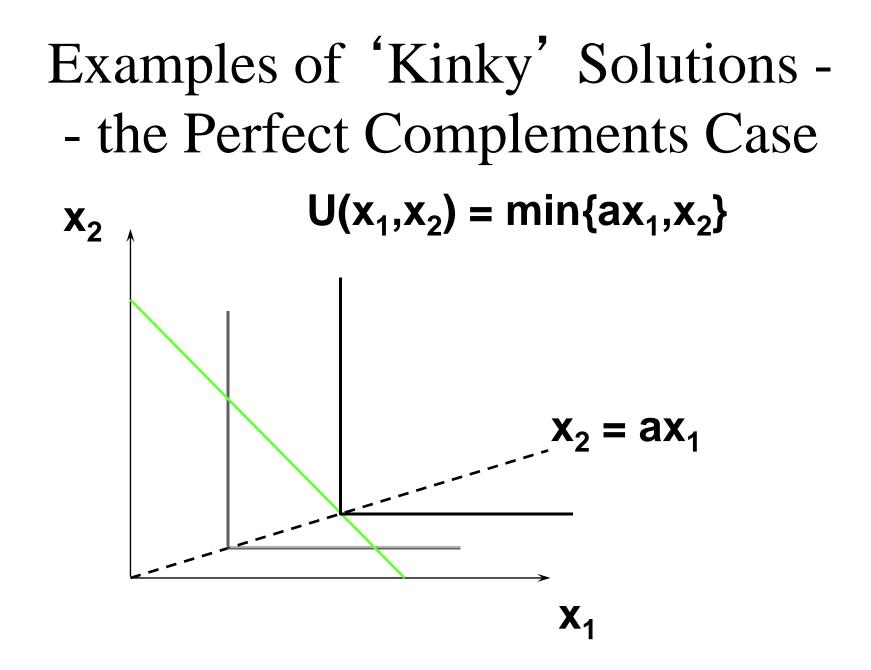


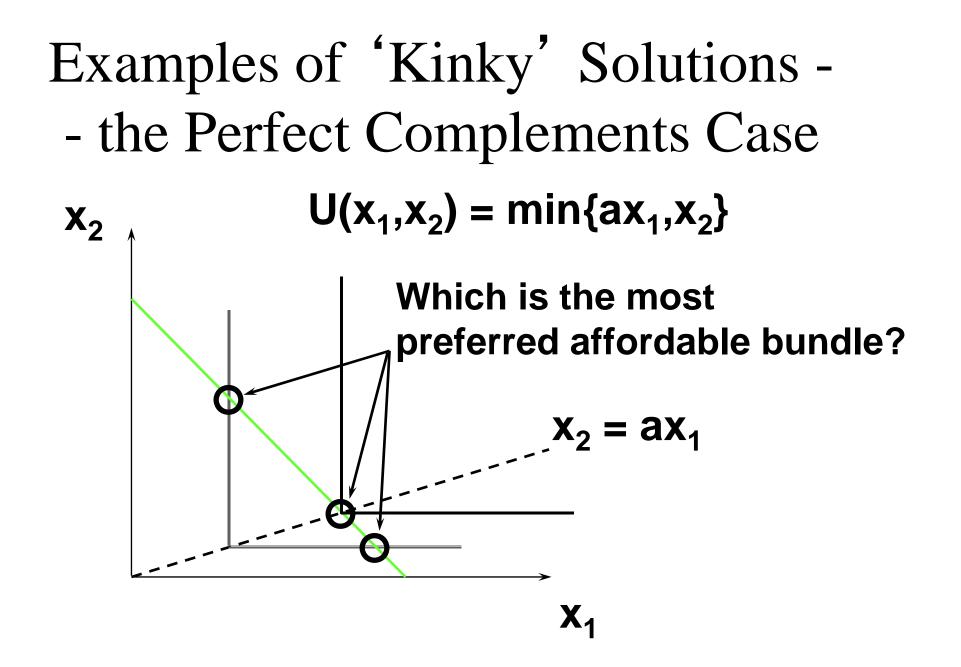


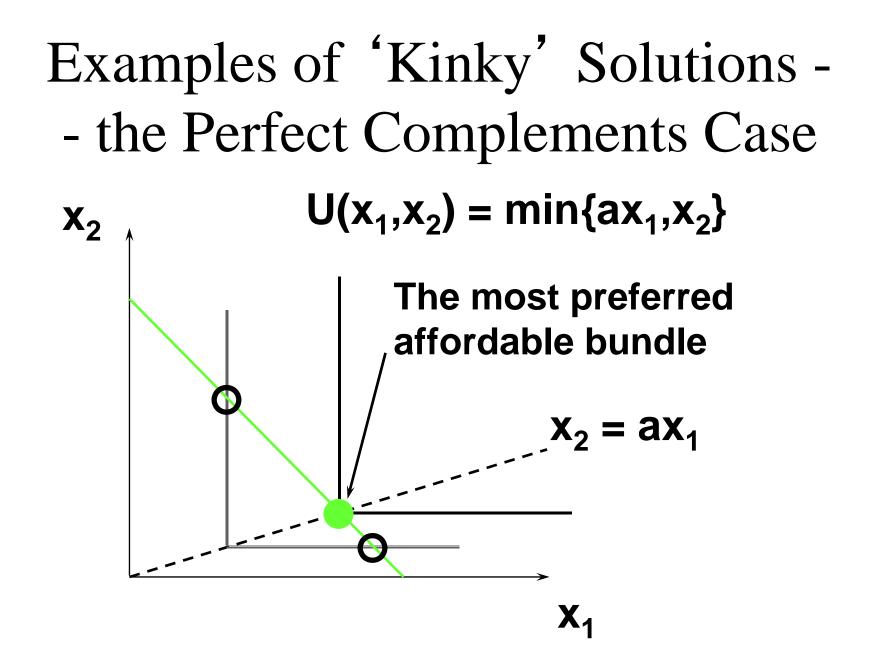


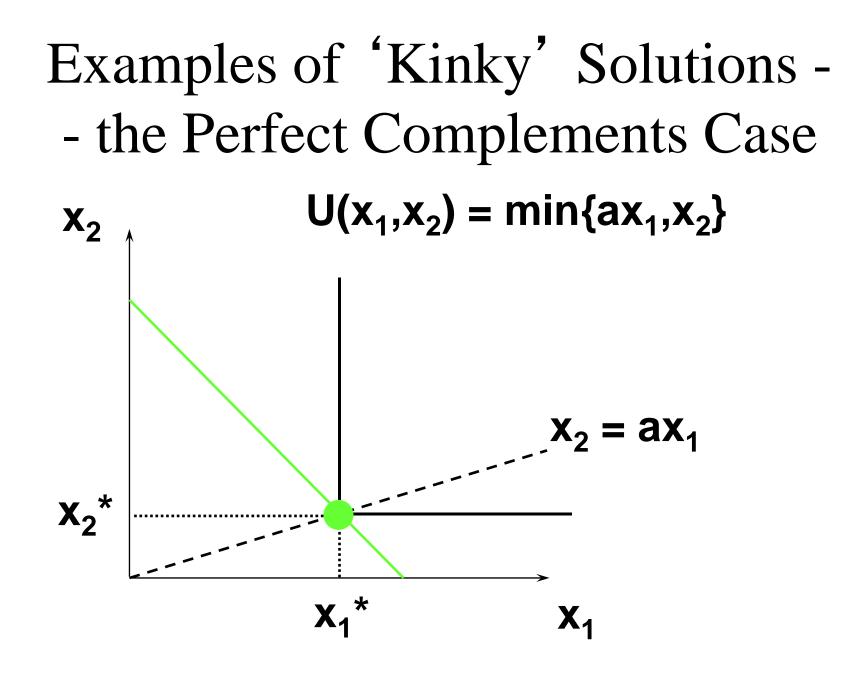


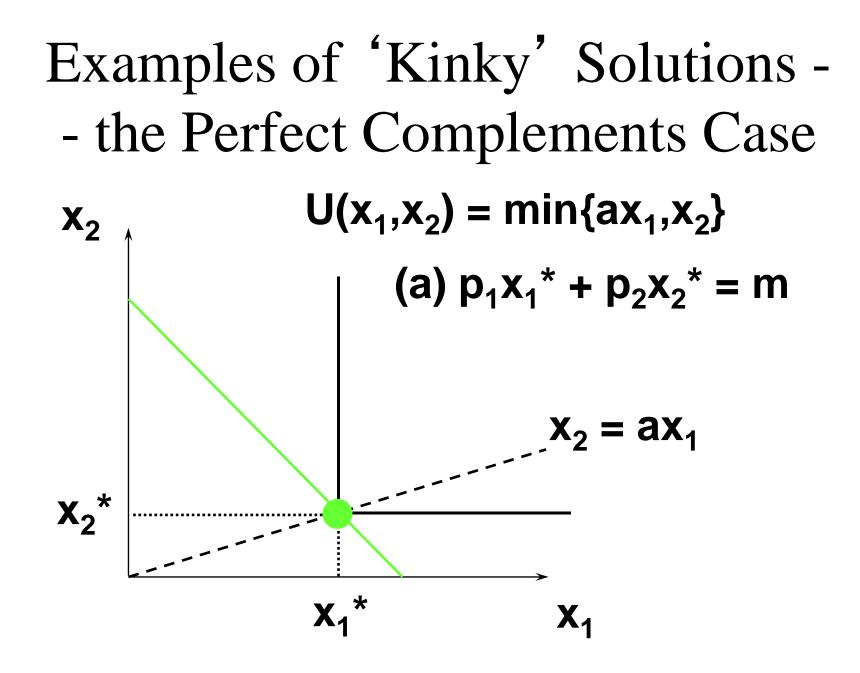


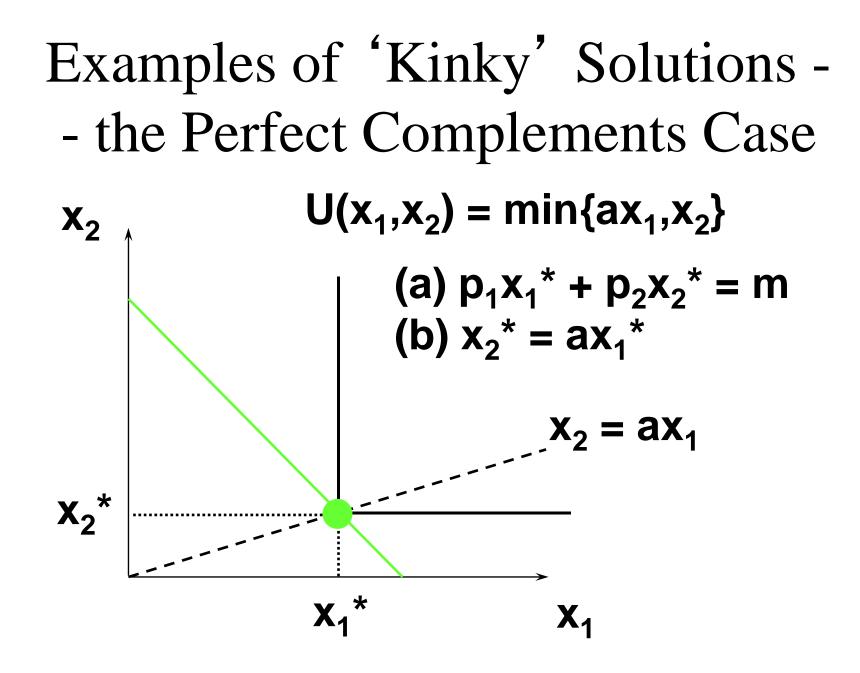












(a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$.

(a) $p_1 x_1^* + p_2 x_2^* = m$; (b) $x_2^* = a x_1^*$.

Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$

(a) $p_1x_1^* + p_2x_2^* = m$; (b) $x_2^* = ax_1^*$.

Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives $x_1^* = \frac{m}{p_1 + ap_2}$

Examples of 'Kinky' Solutions -- the Perfect Complements Case (a) $p_1 x_1^* + p_2 x_2^* = m$; (b) $x_2^* = a x_1^*$. Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives $x_1^* = \frac{m}{p_1 + ap_2}$; $x_2^* = \frac{am}{p_1 + ap_2}$.

(a) $p_1 x_1^* + p_2 x_2^* = m$; (b) $x_2^* = a x_1^*$.

Substitution from (b) for x_2^* in (a) gives $p_1x_1^* + p_2ax_1^* = m$ which gives $x_1^* = \frac{m}{p_1 + ap_2}$; $x_2^* = \frac{am}{p_1 + ap_2}$.

A bundle of 1 commodity 1 unit and a commodity 2 units costs $p_1 + ap_2$; m/($p_1 + ap_2$) such bundles are affordable.

