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Economic RationalityEconomic Rationality

 The principal behavioral postulate is 
that a decisionmaker chooses itsthat a decisionmaker chooses its 
most preferred alternative from those 
available to itavailable to it.

 The available choices constitute the 
choice set.

 How is the most preferred bundle in How is the most preferred bundle in 
the choice set located?
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Rational Constrained ChoiceRational Constrained Choice

 The most preferred affordable bundle 
is called the consumer’s ORDINARYis called the consumer s ORDINARY 
DEMAND at the given prices and 
budgetbudget.

 Ordinary demands will be denoted byy y
x1*(p1,p2,m) and x2*(p1,p2,m).
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 When x1* > 0 and x2* > 0 the 
demanded bundle is INTERIORdemanded bundle is INTERIOR.

 If buying (x1*,x2*) costs $m then the 
b d i h dbudget is exhausted. 
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(a) (x1*,x2*) exhausts the
budget; p x * + p x * = mbudget; p1x1* + p2x2* = m.
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x2 (x1* x2*) is interior(x1 ,x2 ) is interior .

(b) The slope of the indiff.
curve at (x * x *) equalscurve at (x1*,x2*) equals

the slope of the budget

x2*
constraint.

xx * x1x1*
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 (x1*,x2*) satisfies two conditions:( 1 , 2 )
 (a) the budget is exhausted;

p x * + p x * = mp1x1* + p2x2* = m
 (b) the slope of the budget constraint, 

-p1/p2, and the slope of the 
indifference curve containing (x1*,x2*)indifference curve containing (x1 ,x2 ) 
are equal at (x1*,x2*).
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 How can this information be used to 
locate (x1* x2*) for given p1 p2 andlocate (x1 ,x2 ) for given p1, p2 and 
m?
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 Suppose that the consumer has 
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a Cobb-Douglas Example.

 So the MRS is

MRS dx U x ax x axa b
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 So now we know that
bp1* *x bp
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Computing Ordinary Demands -
a Cobb-Douglas Example.

So we have discovered that the most
preferred affordable bundle for a consumerpreferred affordable bundle for a consumer
with Cobb-Douglas preferences
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Computing Ordinary Demands -
C bb D l E la Cobb-Douglas Example.
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Rational Constrained ChoiceRational Constrained Choice
 When x1* > 0 and x2* > 0 1 2

and    (x1*,x2*) exhausts the budget,
and indifference curves have noand    indifference curves have no

‘kinks’, the ordinary demands 
are obtained by solving:are obtained by solving:

 (a)        p1x1* + p2x2* = y
 (b) the slopes of the budget constraint, 

-p /p and of the indifference curve-p1/p2, and of the indifference curve 
containing (x1*,x2*) are equal at (x1*,x2*).
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 But what if x1* = 0?
 Or if x * = 0? Or if x2* = 0?
 If either x1* = 0 or x2* = 0 then the 

ordinary demand (x1*,x2*) is at a 
corner solution to the problem ofcorner solution to the problem of 
maximizing utility subject to a budget 
constraintconstraint.
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Examples of Corner Solutions --
the Perfect Substitutes Case

So when U(x x ) = x + x the mostSo when U(x1,x2) = x1 + x2, the most
preferred affordable bundle is (x1*,x2*)
where
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