27

Oligopoly

Oligopoly

- A monopoly is an industry consisting a single firm.
- A duopoly is an industry consisting of two firms.
- An oligopoly is an industry consisting of a few firms. Particularly, each firm's own price or output decisions affect its competitors' profits.

Oligopoly

- How do we analyze markets in which the supplying industry is oligopolistic?
- Consider the duopolistic case of two firms supplying the same product.

Quantity Competition

- Assume that firms compete by choosing output levels.
- If firm 1 produces y_1 units and firm 2 produces y_2 units then total quantity supplied is $y_1 + y_2$. The market price will be $p(y_1 + y_2)$.
- The firms' total cost functions are $c_1(y_1)$ and $c_2(y_2)$.

Quantity Competition

 Suppose firm 1 takes firm 2's output level choice y₂ as given. Then firm 1 sees its profit function as

$$\Pi_1(y_1;y_2) = p(y_1 + y_2)y_1 - c_1(y_1).$$

Given y₂, what output level y₁ maximizes firm
 1's profit?

Quantity Competition; An Example

Suppose that the market inverse demand function is

$$p(y_T) = 60 - y_T$$

and that the firms' total cost functions are

$$c_1(y_1) = y_1^2$$
 and $c_2(y_2) = 15y_2 + y_2^2$.

Quantity Competition; An Example Then, for given y₂, firm 1's profit function is

$$\Pi(y_1;y_2) = (\overline{60} - y_1 - y_2)y_1 - y_1^2.$$

Quantity Competition; An Example Then, for given y₂, firm 1's profit function is

$$\Pi(y_1;y_2) = (60 - y_1 - y_2)y_1 - y_1^2$$
.

So, given y₂, firm 1's profit-maximizing output level solves

$$\frac{\partial \Pi}{\partial y_1} = 60 - 2y_1 - y_2 - 2y_1 = 0.$$

Quantity Competition; An Example Then, for given y₂, firm 1's profit function is

$$\Pi(y_1;y_2) = (60 - y_1 - y_2)y_1 - y_1^2.$$

So, given y₂, firm 1's profit-maximizing output level solves

$$\frac{\partial \Pi}{\partial \mathbf{y}_1} = 60 - 2\mathbf{y}_1 - \mathbf{y}_2 - 2\mathbf{y}_1 = \mathbf{0}.$$

I.e., firm 1's best response to y_2 is

$$y_1 = R_1(y_2) = 15 - \frac{1}{4}y_2$$
.

Quantity Competition; An Example

Quantity Competition; An Example Similarly, given y_1 , firm 2's profit function is $\Pi(y_2;y_1) = (60 - y_1 - y_2)y_2 - 15y_2 - y_2^2$.

Quantity Competition; An Example Similarly, given y₁, firm 2's profit function is

$$\Pi(y_2;y_1) = (60 - y_1 - y_2)y_2 - 15y_2 - y_2^2$$
.

So, given y₁, firm 2's profit-maximizing output level solves

$$\frac{\partial \Pi}{\partial \mathbf{y}_2} = 60 - \mathbf{y}_1 - 2\mathbf{y}_2 - 15 - 2\mathbf{y}_2 = 0.$$

Quantity Competition; An Example Similarly, given y₁, firm 2's profit function is

$$\Pi(y_2;y_1) = (60 - y_1 - y_2)y_2 - 15y_2 - y_2^2$$
.

So, given y₁, firm 2's profit-maximizing output level solves

$$\frac{\partial \Pi}{\partial \mathbf{y}_2} = 60 - \mathbf{y}_1 - 2\mathbf{y}_2 - 15 - 2\mathbf{y}_2 = 0.$$

I.e., firm 1's best response to y_2 is

$$y_2 = R_2(y_1) = \frac{45 - y_1}{4}$$
.

Quantity Competition; An Example

Quantity Competition; An Example

- An equilibrium is when each firm's output level is a best response to the other firm's output level, for then neither wants to deviate from its output level.
- A pair of output levels (y₁*,y₂*) is a Cournot-Nash equilibrium if

$$y_1^* = R_1(y_2^*)$$
 and $y_2^* = R_2(y_1^*)$.

Quantity Competition; An Example
$$y_1^* = R_1(y_2^*) = 15 - \frac{1}{4}y_2^*$$
 and $y_2^* = R_2(y_1^*) = \frac{45 - y_1^*}{4}$.

Quantity Competition; An Example
$$y_1^* = R_1(y_2^*) = 15 - \frac{1}{4}y_2^*$$
 and $y_2^* = R_2(y_1^*) = \frac{45 - y_1^*}{4}$.

$$y_1^* = 15 - \frac{1}{4} \left(\frac{45 - y_1^*}{4} \right)$$

Quantity Competition; An Example
$$y_1^* = R_1(y_2^*) = 15 - \frac{1}{4}y_2^*$$
 and $y_2^* = R_2(y_1^*) = \frac{45 - y_1^*}{4}$.

$$y_1^* = 15 - \frac{1}{4} \left(\frac{45 - y_1^*}{4} \right) \implies y_1^* = 13$$

Quantity Competition; An Example
$$y_1^* = R_1(y_2^*) = 15 - \frac{1}{4}y_2^*$$
 and $y_2^* = R_2(y_1^*) = \frac{45 - y_1^*}{4}$.

$$y_1^* = 15 - \frac{1}{4} \left(\frac{45 - y_1^*}{4} \right) \implies y_1^* = 13$$
Hence $y_2^* = \frac{45 - 13}{4} = 8$.

Quantity Competition; An Example
$$y_1^* = R_1(y_2^*) = 15 - \frac{1}{4}y_2^*$$
 and $y_2^* = R_2(y_1^*) = \frac{45 - y_1^*}{4}$.

$$y_1^* = 15 - \frac{1}{4} \left(\frac{45 - y_1^*}{4} \right) \implies y_1^* = 13$$
Hence $y_2^* = \frac{45 - 13}{4} = 8$.

So the Cournot-Nash equilibrium is

$$(y_1^*, y_2^*) = (13,8).$$

Quantity Competition; An Example

Quantity Competition; An Example

Quantity Competition Generally, given firm 2's chosen output level y₂, firm 1's profit function is

$$\Pi_1(y_1;y_2) = p(y_1 + y_2)y_1 - c_1(y_1)$$

and the profit-maximizing value of y₁ solves

$$\frac{\partial \Pi_1}{\partial y_1} = p(y_1 + y_2) + y_1 \frac{\partial p(y_1 + y_2)}{\partial y_1} - c_1'(y_1) = 0.$$

The solution, $y_1 = R_1(y_2)$, is firm 1's Cournot-Nash reaction to y_2 .

Quantity Competition Similarly, given firm 1's chosen output level y₁, firm 2's profit function is

$$\Pi_2(y_2;y_1) = p(y_1 + y_2)y_2 - c_2(y_2)$$

and the profit-maximizing value of y₂ solves

$$\frac{\partial \Pi_2}{\partial \mathbf{y}_2} = \mathbf{p}(\mathbf{y}_1 + \mathbf{y}_2) + \mathbf{y}_2 \frac{\partial \mathbf{p}(\mathbf{y}_1 + \mathbf{y}_2)}{\partial \mathbf{y}_2} - \mathbf{c_2}'(\mathbf{y}_2) = \mathbf{0}.$$

The solution, $y_2 = R_2(y_1)$, is firm 2's Cournot-Nash reaction to y_1 .

Quantity Competition

Iso-Profit Curves

- For firm 1, an iso-profit curve contains all the output pairs (y_1,y_2) giving firm 1 the same profit level Π_1 .
- What do iso-profit curves look like?

• Q: Are the Cournot-Nash equilibrium profits the largest that the firms can earn in total?

- So there are profit incentives for both firms to "cooperate" by lowering their output levels.
- This is collusion.
- Firms that collude are said to have formed a cartel.
- If firms form a cartel, how should they do it?

 Suppose the two firms want to maximize their total profit and divide it between them. Their goal is to choose cooperatively output levels y₁ and y₂ that maximize

$$\Pi^{\mathbf{m}}(y_1,y_2) = p(y_1 + y_2)(y_1 + y_2) - c_1(y_1) - c_2(y_2).$$

 The firms cannot do worse by colluding since they can cooperatively choose their Cournot-Nash equilibrium output levels and so earn their Cournot-Nash equilibrium profits. So collusion must provide profits at least as large as their Cournot-Nash equilibrium profits.

- Is such a cartel stable?
- Does one firm have an incentive to cheat on the other?
- I.e., if firm 1 continues to produce y₁^m units, is it profit-maximizing for firm 2 to continue to produce y₂^m units?

• Firm 2's profit-maximizing response to $y_1 = y_1^m$ is $y_2 = R_2(y_1^m)$.

- Firm 2's profit-maximizing response to $y_1 = y_1^m$ is $y_2 = R_2(y_1^m) > y_2^m$.
- Firm 2's profit increases if it cheats on firm 1 by increasing its output level from y_2^m to $R_2(y_1^m)$.

• Similarly, firm 1's profit increases if it cheats on firm 2 by increasing its output level from y_1^m to $R_1(y_2^m)$.

- So a profit-seeking cartel in which firms cooperatively set their output levels is fundamentally unstable.
- E.g., OPEC's broken agreements.

- So a profit-seeking cartel in which firms cooperatively set their output levels is fundamentally unstable.
- E.g., OPEC's broken agreements.
- But is the cartel unstable if the game is repeated many times, instead of being played only once? Then there is an opportunity to punish a cheater.

- To determine if such a cartel can be stable we need to know 3 things:
 - (i) What is each firm's per period profit in the cartel?
 - (ii) What is the profit a cheat earns in the first period in which it cheats?
 - (iii) What is the profit the cheat earns in each period after it first cheats?

• Suppose two firms face an inverse market demand of $p(y_T) = 24 - y_T$ and have total costs of $c_1(y_1) = y_1^2$ and $c_2(y_2) = y_2^2$.

- (i) What is each firm's per period profit in the cartel?
- $p(y_T) = 24 y_T$, $c_1(y_1) = y_1^2$, $c_2(y_2) = y_2^2$.
- If the firms collude then their joint profit function is

$$\pi^{M}(y_1,y_2) = (24 - y_1 - y_2)(y_1 + y_2) - y_1^2 - y_2^2$$

• What values of y₁ and y₂ maximize the cartel's profit?

- $\pi^{M}(y_1,y_2) = (24 y_1 y_2)(y_1 + y_2) y_1^2 y_2^2$.
- What values of y₁ and y₂ maximize the cartel's profit? Solve

$$\frac{\partial \mathbf{\pi}^{\mathsf{M}}}{\partial \mathbf{y}_{1}} = 24 - 4\mathbf{y}_{1} - 2\mathbf{y}_{2} = 0$$

$$\frac{\partial \mathbf{m}^{\mathsf{M}}}{\partial \mathbf{y}_{2}} = 24 - 2\mathbf{y}_{1} - 4\mathbf{y}_{2} = 0.$$

- $\pi^{M}(y_1,y_2) = (24 y_1 y_2)(y_1 + y_2) y_1^2 y_2^2$.
- What values of y₁ and y₂ maximize the cartel's profit? Solve

$$\frac{\partial \mathbf{m}^{\mathsf{M}}}{\partial \mathbf{y}_{1}} = 24 - 4\mathbf{y}_{1} - 2\mathbf{y}_{2} = 0$$

$$\frac{\partial \mathbf{\Pi}^{\mathsf{M}}}{\partial \mathbf{y}_{2}} = 24 - 2\mathbf{y}_{1} - 4\mathbf{y}_{2} = 0.$$

• Solution is $y_{1}^{M} = y_{2}^{M} = 4$.

- $\pi^{M}(y_1,y_2) = (24 y_1 y_2)(y_1 + y_2) y_1^2 y_2^2$.
- $y_1^M = y_2^M = 4$ maximizes the cartel's profit.
- The maximum profit is therefore $\pi^{M} = \$(24 8)(8) \$16 \$16 = \$112.$
- Suppose the firms share the profit equally, getting \$112/2 = \$56 each per period.

- (iii) What is the profit the cheat earns in each period after it first cheats?
- This depends upon the punishment inflicted upon the cheat by the other firm.

- (iii) What is the profit the cheat earns in each period after it first cheats?
- This depends upon the punishment inflicted upon the cheat by the other firm.
- Suppose the other firm punishes by forever after not cooperating with the cheat.
- What are the firms' profits in the noncooperative
 C-N equilibrium?

- What are the firms' profits in the noncooperative
 C-N equilibrium?
- $p(y_T) = 24 y_T$, $c_1(y_1) = y_1^2$, $c_2(y_2) = y_2^2$.
- Given y_2 , firm 1's profit function is $\pi_1(y_1; y_2) = (24 y_1 y_2)y_1 y_1^2$.

What are the firms' profits in the noncooperative
 C-N equilibrium?

•
$$p(y_T) = 24 - y_T$$
, $c_1(y_1) = y_1^2$, $c_2(y_2) = y_2^2$.

- Given y_2 , firm 1's profit function is $\pi_1(y_1; y_2) = (24 y_1 y_2)y_1 y_1^2$.
- The value of y₁ that is firm 1's best response to y₂ solves

$$\frac{\partial \mathbf{\pi}_1}{\partial \mathbf{y}_1} = 24 - 4\mathbf{y}_1 - \mathbf{y}_2 = 0 \implies \mathbf{y}_1 = \mathbf{R}_1(\mathbf{y}_2) = \frac{24 - \mathbf{y}_2}{4}.$$

 What are the firms' profits in the noncooperative C-N equilibrium?

•
$$\pi_1(y_1;y_2) = (24 - y_1 - y_2)y_1 - y_1^2$$

$$\mathbf{y}_1 = \mathbf{R}_1(\mathbf{y}_2) = \frac{24 - \mathbf{y}_2}{4}$$

•
$$\pi_1(y_1; y_2) = (24 - y_1 - y_2)y_1 - y_1^2$$
.
• $y_1 = R_1(y_2) = \frac{24 - y_2}{4}$.
• Similarly, $y_2 = R_2(y_1) = \frac{24 - y_1}{4}$.

 What are the firms' profits in the noncooperative C-N equilibrium?

•
$$\pi_1(y_1;y_2) = (24 - y_1 - y_2)y_1 - y_1^2$$
.

$$\mathbf{y}_1 = \mathbf{R}_1(\mathbf{y}_2) = \frac{24 - \mathbf{y}_2}{4}$$
.

•
$$\pi_1(y_1; y_2) = (24 - y_1 - y_2)y_1 - y_1^2$$
.
• $y_1 = R_1(y_2) = \frac{24 - y_2}{4}$.
• Similarly, $y_2 = R_2(y_1) = \frac{24 - y_1}{4}$.

• The C-N equilibrium (y^*_1, y^*_2) solves $y_1 = R_1(y_2)$ and $y_2 = R_2(y_1) \Rightarrow y_1^* = y_2^* = 4.8$.

- What are the firms' profits in the noncooperative C-N equilibrium?
- $\pi_1(y_1;y_2) = (24 y_1 y_2)y_1 y_1^2$.
- $y^*_1 = y^*_2 = 4.8$.
- So each firm's profit in the C-N equilibrium is $\pi^*_1 = \pi^*_2 = (14.4)(4.8) 4.8^2 \approx 46 each period.

- (ii) What is the profit a cheat earns in the first period in which it cheats?
- Firm 1 cheats on firm 2 by producing the quantity y^{CH}_1 that maximizes firm 1's profit given that firm 2 continues to produce $y^{M}_2 = 4$. What is the value of y^{CH}_1 ?

- (ii) What is the profit a cheat earns in the first period in which it cheats?
- Firm 1 cheats on firm 2 by producing the quantity y^{CH}_1 that maximizes firm 1's profit given that firm 2 continues to produce $y^{M}_2 = 4$. What is the value of y^{CH}_1 ?
- $y^{CH}_1 = R_1(y^M_2) = (24 y^M_2)/4 = (24 4)/4 = 5.$
- Firm 1's profit in the period in which it cheats is therefore

$$\pi^{CH}_1 = (24 - 5 - 1)(5) - 5^2 = $65.$$

- To determine if such a cartel can be stable we need to know 3 things:
 - (i) What is each firm's per period profit in the cartel? \$56.
 - (ii) What is the profit a cheat earns in the first period in which it cheats? \$65.
 - (iii) What is the profit the cheat earns in each period after it first cheats? \$46.

- Each firm's periodic discount factor is 1/(1+r).
- The present-value of firm 1's profits if it does not cheat is ??

- Each firm's periodic discount factor is 1/(1+r).
- The present-value of firm 1's profits if it does not cheat is

$$PV^{CH} = \$56 + \frac{\$56}{1+r} + \frac{\$56}{(1+r)^2} + \dots = \$\frac{(1+r)56}{r}.$$

- Each firm's periodic discount factor is 1/(1+r).
- The present-value of firm 1's profits if it does not cheat is

$$PV^{CH} = \$56 + \frac{\$56}{1+r} + \frac{\$56}{(1+r)^2} + \dots = \$\frac{(1+r)56}{r}.$$

• The present-value of firm 1's profit if it cheats this period is ??

- Each firm's periodic discount factor is 1/(1+r).
- The present-value of firm 1's profits if it does not cheat is

$$PV^{CH} = \$56 + \frac{\$56}{1+r} + \frac{\$56}{(1+r)^2} + \dots = \$\frac{(1+r)56}{r}.$$

 The present-value of firm 1's profit if it cheats this period is

$$PV^{M} = \$65 + \frac{\$46}{1+r} + \frac{\$46}{(1+r)^{2}} + \dots = \$65 + \frac{\$46}{r}.$$

$$PV^{CH} = \$56 + \frac{\$56}{1+r} + \frac{\$56}{(1+r)^2} + \dots = \$ \frac{(1+r)56}{r}.$$

$$PV^{M} = \$65 + \frac{\$46}{1+r} + \frac{\$46}{(1+r)^2} + \dots = \$65 + \frac{\$46}{r}.$$

So the cartel will be stable if

$$\frac{(1+r)56}{r} + 56 < 65 + \frac{46}{r} \implies r > \frac{10}{9} \implies \frac{1}{1+r} < \frac{9}{19}.$$

The Order of Play

- So far it has been assumed that firms choose their output levels simultaneously.
- The competition between the firms is then a simultaneous play game in which the output levels are the strategic variables.

The Order of Play

- What if firm 1 chooses its output level first and then firm 2 responds to this choice?
- Firm 1 is then a leader. Firm 2 is a follower.
- The competition is a sequential game in which the output levels are the strategic variables.

The Order of Play

- Such games are von Stackelberg games.
- Is it better to be the leader?
- Or is it better to be the follower?

 Q: What is the best response that follower firm 2 can make to the choice y₁ already made by the leader, firm 1?

- Q: What is the best response that follower firm 2 can make to the choice y₁ already made by the leader, firm 1?
- A: Choose $y_2 = R_2(y_1)$.

- Q: What is the best response that follower firm 2 can make to the choice y₁ already made by the leader, firm 1?
- A: Choose $y_2 = R_2(y_1)$.
- Firm 1 knows this and so perfectly anticipates firm 2's reaction to any y₁ chosen by firm 1.

This makes the leader's profit function

$$\Pi_1^s(y_1) = p(y_1 + R_2(y_1))y_1 - c_1(y_1).$$

This makes the leader's profit function

$$\Pi_1^s(y_1) = p(y_1 + R_2(y_1))y_1 - c_1(y_1).$$

• The leader chooses y₁ to maximize its profit.

This makes the leader's profit function

$$\Pi_1^s(y_1) = p(y_1 + R_2(y_1))y_1 - c_1(y_1).$$

- The leader chooses y₁ to maximize its profit.
- Q: Will the leader make a profit at least as large as its Cournot-Nash equilibrium profit?

 A: Yes. The leader could choose its Cournot-Nash output level, knowing that the follower would then also choose its C-N output level. The leader's profit would then be its C-N profit. But the leader does not have to do this, so its profit must be at least as large as its C-N profit.

Stackelberg Games; An Example

- The market inverse demand function is $p = 60 y_T$. The firms' cost functions are $c_1(y_1) = y_1^2$ and $c_2(y_2) = 15y_2 + y_2^2$.
- Firm 2 is the follower. Its reaction function is

$$y_2 = R_2(y_1) = \frac{45 - y_1}{4}$$
.

Stackelberg Games; An Example The leader's profit function is therefore

$$\Pi_{1}^{S}(y_{1}) = (60 - y_{1} - R_{2}(y_{1}))y_{1} - y_{1}^{2}$$

$$= (60 - y_{1} - \frac{45 - y_{1}}{4})y_{1} - y_{1}^{2}$$

$$= \frac{195}{4}y_{1} - \frac{7}{4}y_{1}^{2}.$$

Stackelberg Games; An Example The leader's profit function is therefore

$$\Pi_{1}^{s}(y_{1}) = (60 - y_{1} - R_{2}(y_{1}))y_{1} - y_{1}^{2}$$

$$= (60 - y_{1} - \frac{45 - y_{1}}{4})y_{1} - y_{1}^{2}$$

$$= \frac{195}{4}y_{1} - \frac{7}{4}y_{1}^{2}.$$

For a profit-maximum for firm 1,

$$\frac{195}{4} = \frac{7}{2}y_1 \implies y_1^S = 13 \cdot 9.$$

Stackelberg Games; An Example Q: What is firm 2's response to the leader's choice $y_1^s = 13.9$?

Stackelberg Games; An Example Q: What is firm 2's response to the leader's choice $y_1^S = 13.9$?

A:
$$y_2^S = R_2(y_1^S) = \frac{45 - 13 \cdot 9}{4} = 7 \cdot 8.$$

Stackelberg Games; An Example Q: What is firm 2's response to the leader's choice $y_1^S = 13.9$?

A:
$$y_2^S = R_2(y_1^S) = \frac{45 - 13 \cdot 9}{4} = 7 \cdot 8.$$

The C-N output levels are $(y_1^*, y_2^*) = (13,8)$ so the leader produces more than its C-N output and the follower produces less than its C-N output. This is true generally.

Price Competition

- What if firms compete using only price-setting strategies, instead of using only quantitysetting strategies?
- Games in which firms use only price strategies and play simultaneously are Bertrand games.

- Each firm's marginal production cost is constant at c.
- All firms set their prices simultaneously.
- Q: Is there a Nash equilibrium?

- Each firm's marginal production cost is constant at c.
- All firms set their prices simultaneously.
- Q: Is there a Nash equilibrium?
- A: Yes. Exactly one.

- Each firm's marginal production cost is constant at c.
- All firms set their prices simultaneously.
- Q: Is there a Nash equilibrium?
- A: Yes. Exactly one. All firms set their prices equal to the marginal cost c. Why?

 Suppose one firm sets its price higher than another firm's price.

- Suppose one firm sets its price higher than another firm's price.
- Then the higher-priced firm would have no customers.

- Suppose one firm sets its price higher than another firm's price.
- Then the higher-priced firm would have no customers.
- Hence, at an equilibrium, all firms must set the same price.

 Suppose the common price set by all firm is higher than marginal cost c.

- Suppose the common price set by all firm is higher than marginal cost c.
- Then one firm can just slightly lower its price and sell to all the buyers, thereby increasing its profit.

- Suppose the common price set by all firm is higher than marginal cost c.
- Then one firm can just slightly lower its price and sell to all the buyers, thereby increasing its profit.
- The only common price which prevents undercutting is c. Hence this is the only Nash equilibrium.

- What if, instead of simultaneous play in pricing strategies, one firm decides its price ahead of the others.
- This is a sequential game in pricing strategies called a price-leadership game.
- The firm which sets its price ahead of the other firms is the price-leader.

- Think of one large firm (the leader) and many competitive small firms (the followers).
- The small firms are price-takers and so their collective supply reaction to a market price p is their aggregate supply function $Y_f(p)$.

- The market demand function is D(p).
- So the leader knows that if it sets a price p the quantity demanded from it will be the residual demand

$$L(p) = D(p) - Y_f(p).$$

Hence the leader's profit function is

$$\Pi_{L}(p) = p(D(p) - Y_f(p)) - c_L(D(p) - Y_f(p)).$$

The leader's profit function is

$$\Pi_L(p) = p(D(p) - Y_f(p)) - c_L(D(p) - Y_F(p))$$
 so the leader chooses the price level p* for which profit is maximized.

• The followers collectively supply $Y_f(p^*)$ units and the leader supplies the residual quantity $D(p^*) - Y_f(p^*)$.