31

Exchange

Exchange

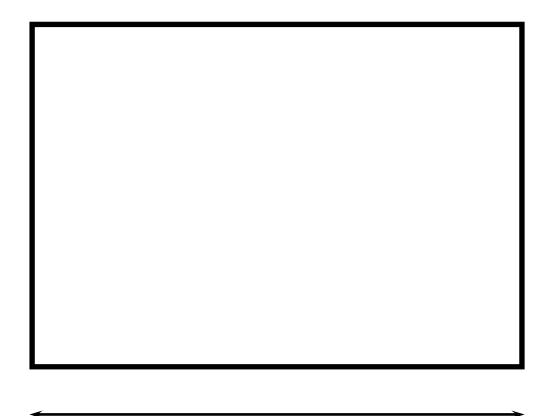
- Two consumers, A and B.
- Their endowments of goods 1 and 2 are

• E.g.
$$\omega^A = (\omega_1^A, \omega_2^A)$$
 and $\omega^B = (\omega_1^B, \omega_2^B)$.
• The total quantities available

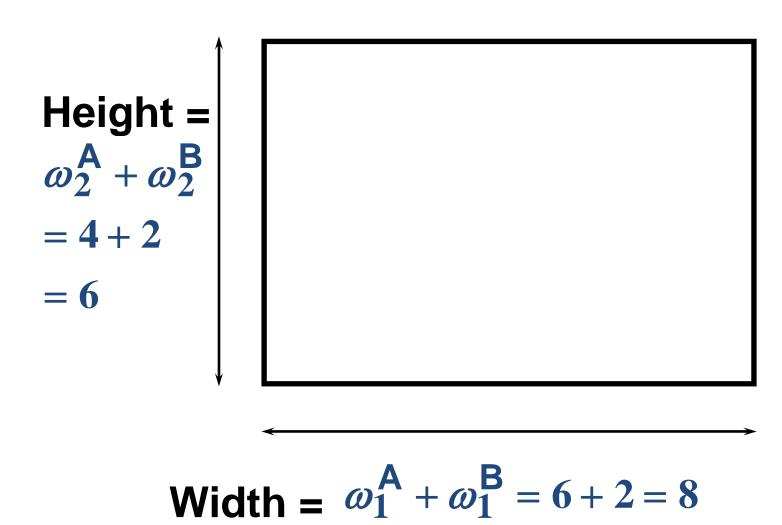
are
$$\omega_1^A + \omega_1^B = 6 + 2 = 8$$
 units of good 1
and $\omega_2^A + \omega_2^B = 4 + 2 = 6$ units of good 2.

Exchange

 Edgeworth and Bowley devised a diagram, called an Edgeworth box, to show all possible allocations of the available quantities of goods 1 and 2 between the two consumers.



Width =
$$\omega_1^A + \omega_1^B = 6 + 2 = 8$$



Height =
$$\omega_2^A + \omega_2^B$$
= 4 + 2
= 6

The dimensions of the box are the quantities available of the goods.

Width =
$$\omega_1^A + \omega_1^B = 6 + 2 = 8$$

Feasible Allocations

- What allocations of the 8 units of good 1 and the 6 units of good 2 are feasible?
- How can all of the feasible allocations be depicted by the Edgeworth box diagram?

Feasible Allocations

- What allocations of the 8 units of good 1 and the 6 units of good 2 are feasible?
- How can all of the feasible allocations be depicted by the Edgeworth box diagram?
- One feasible allocation is the before-trade allocation; i.e. the endowment allocation.

Height =
$$\omega_2^{A} + \omega_2^{B}$$

$$= 4 + 2$$

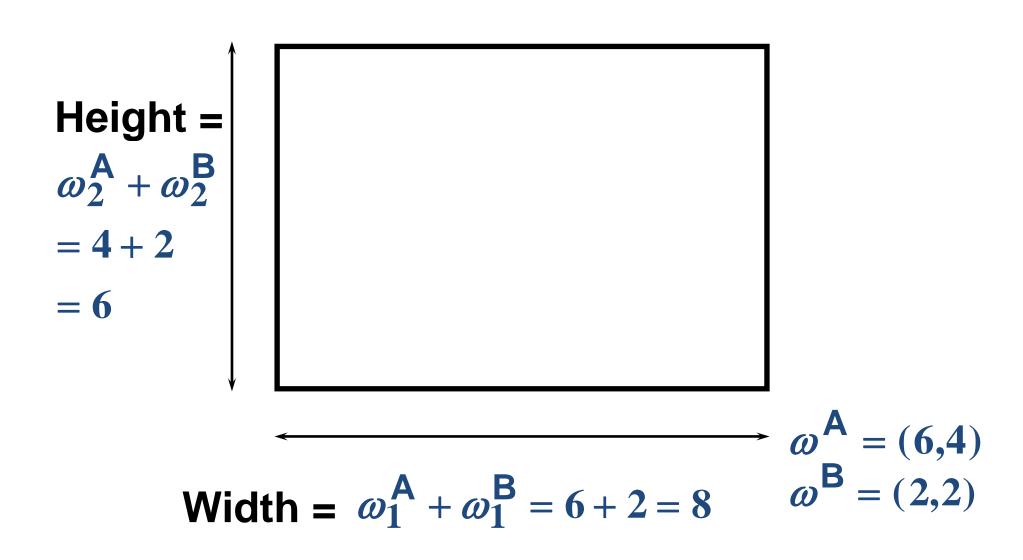
$$= 6$$

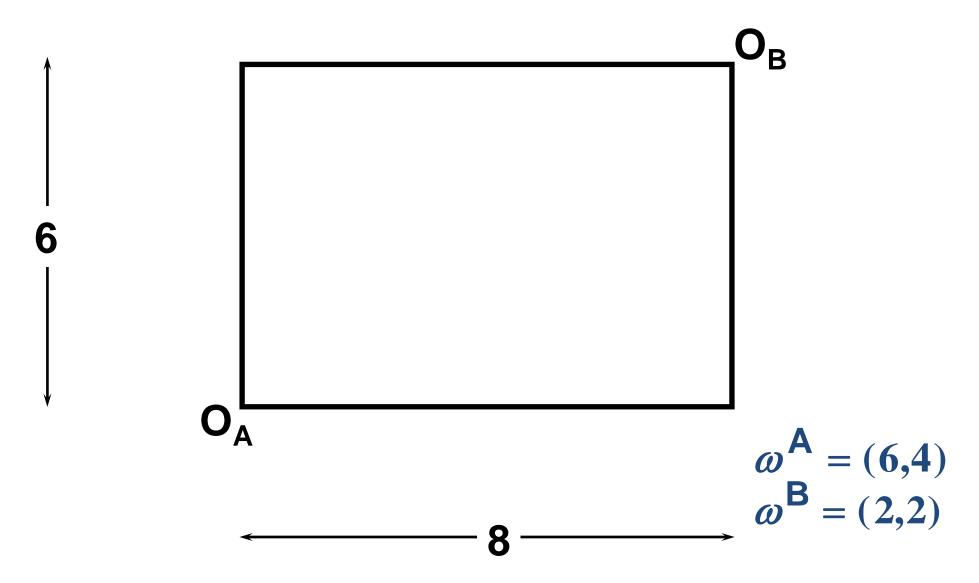
The endowment allocation is

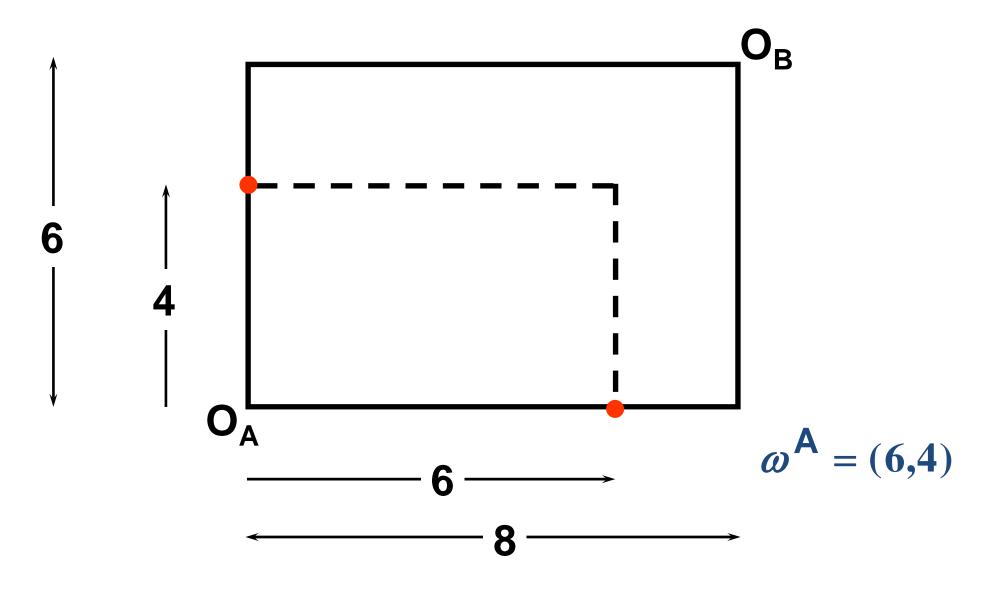
$$\omega^{A} = (6,4)$$
 and

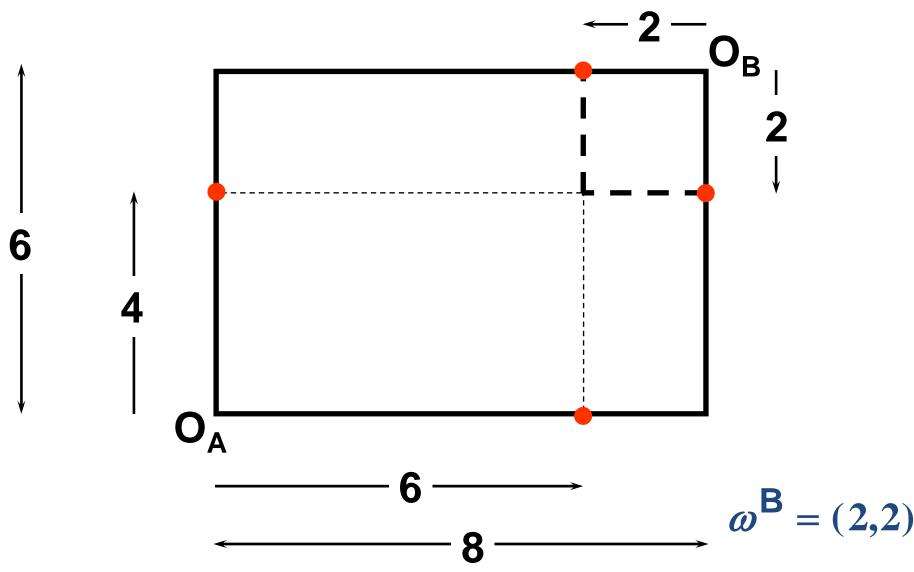
$$\omega^{\mathbf{B}} = (2,2).$$

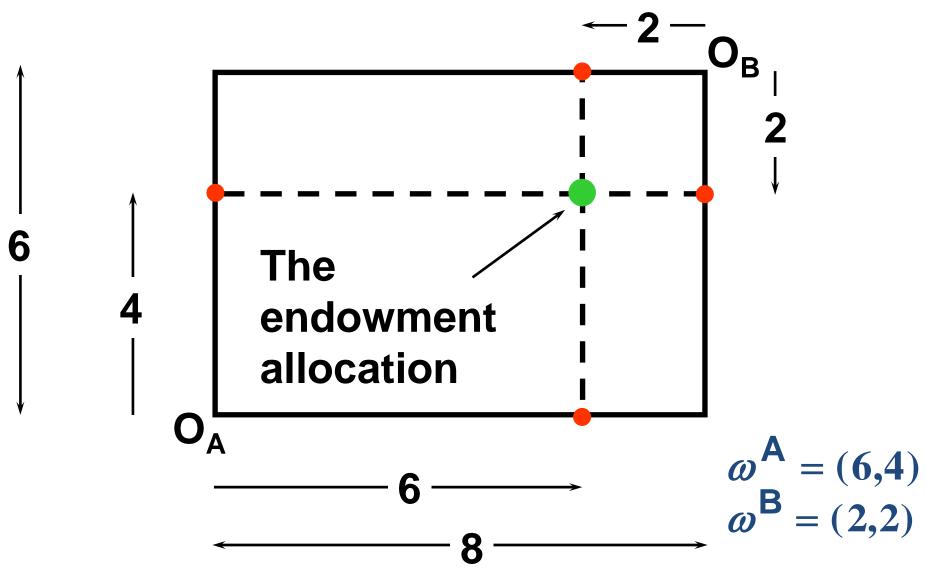
Width =
$$\omega_1^A + \omega_1^B = 6 + 2 = 8$$



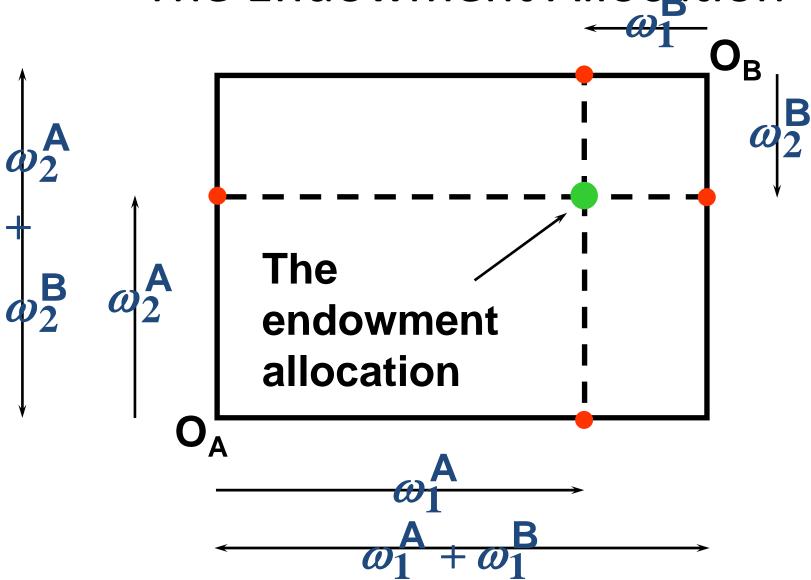








More generally, ...



Other Feasible Allocations

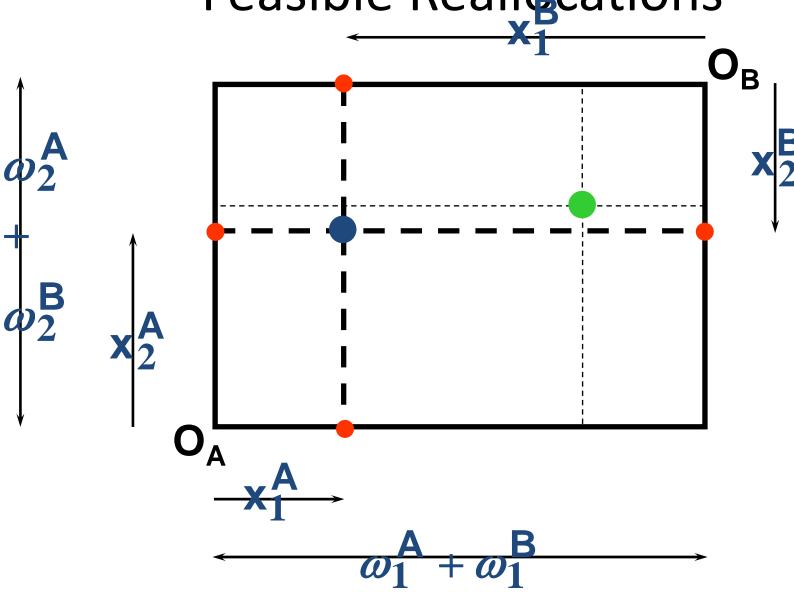
- (x₁^A,x₂^A) denotes an allocation to consumer A.
- (x_1^B, x_2^B) denotes an allocation to consumer B.
- An allocation is feasible if and only if

$$\begin{aligned} \mathbf{x}_1^{\mathsf{A}} + \mathbf{x}_1^{\mathsf{B}} &\leq \omega_1^{\mathsf{A}} + \omega_1^{\mathsf{B}} \\ \text{and} \quad \mathbf{x}_2^{\mathsf{A}} + \mathbf{x}_2^{\mathsf{B}} &\leq \omega_2^{\mathsf{A}} + \omega_2^{\mathsf{B}}. \end{aligned}$$

Feasible Reallocations



Feasible Reallecations

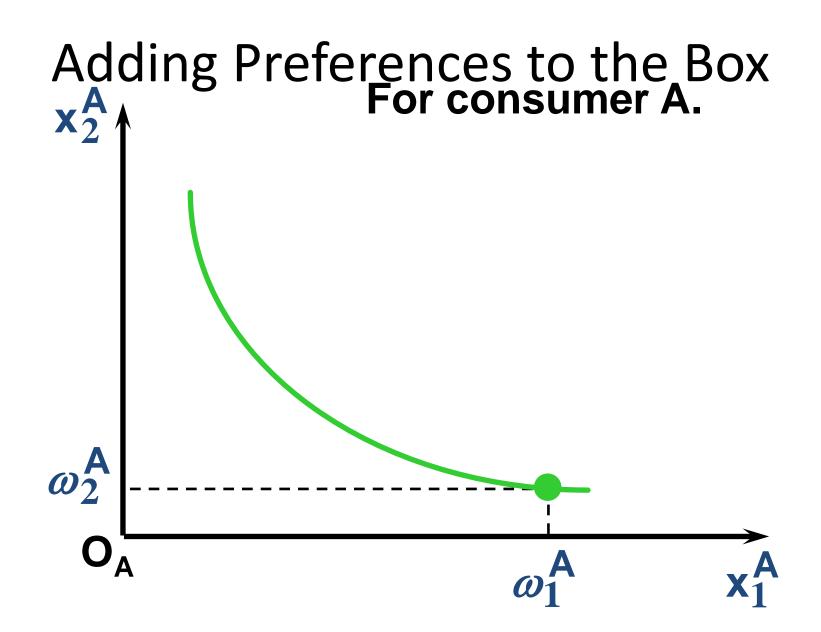


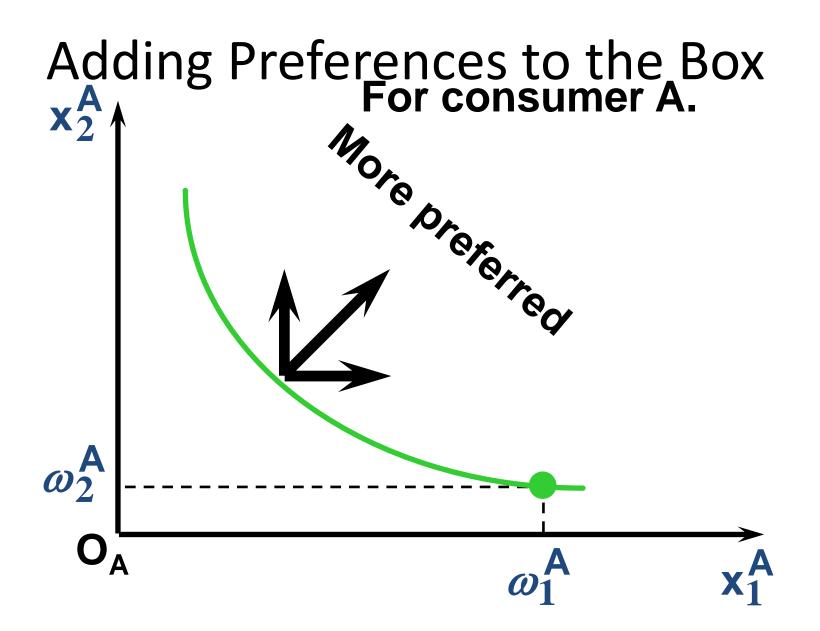
Feasible Reallocations

 All points in the box, including the boundary, represent feasible allocations of the combined endowments.

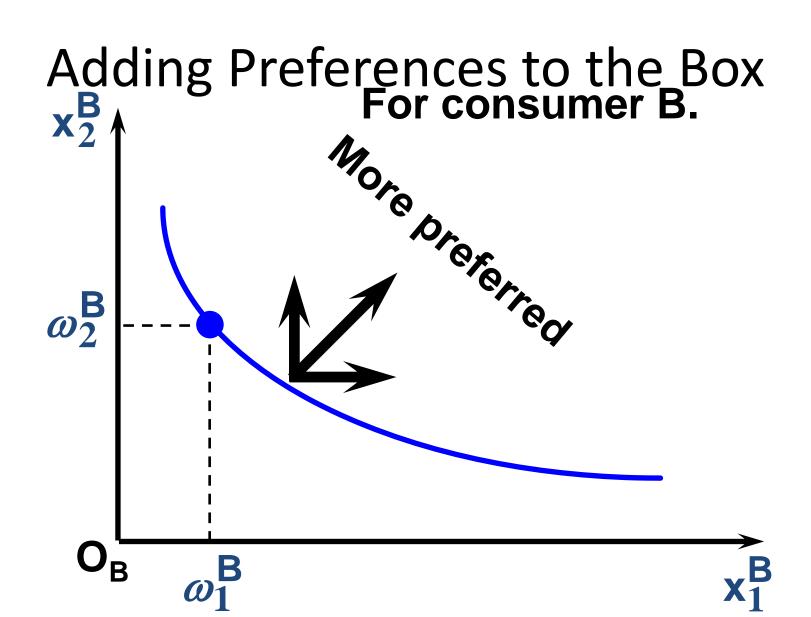
Feasible Reallocations

- All points in the box, including the boundary, represent feasible allocations of the combined endowments.
- Which allocations will be blocked by one or both consumers?
- Which allocations make both consumers better off?

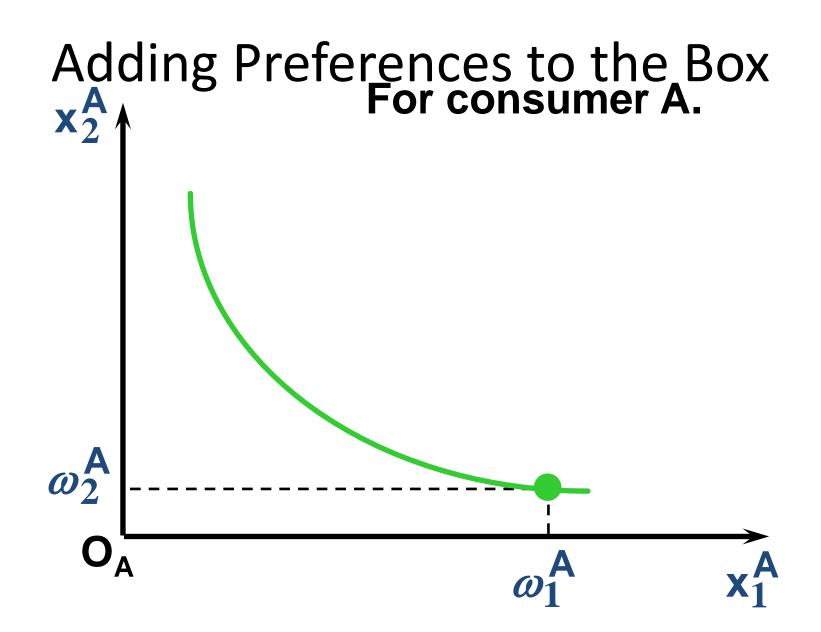


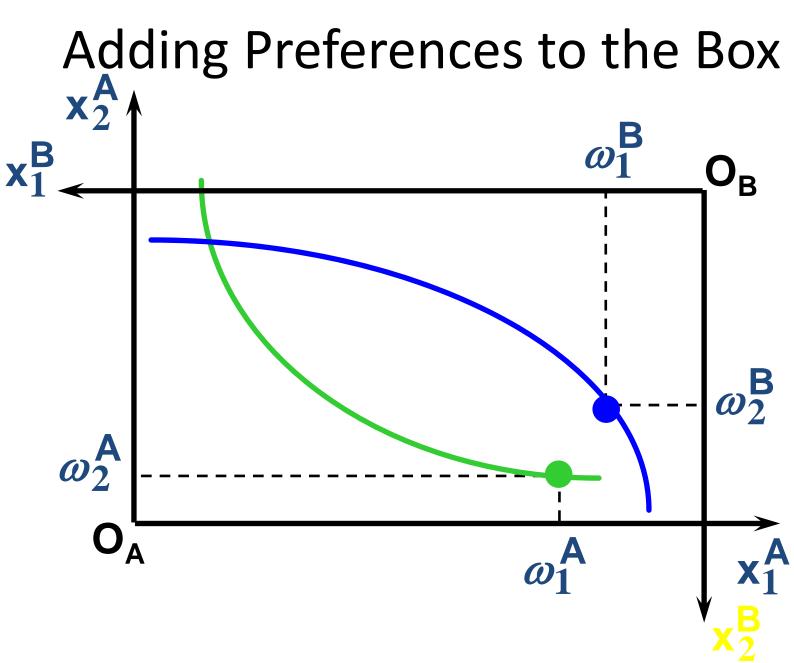


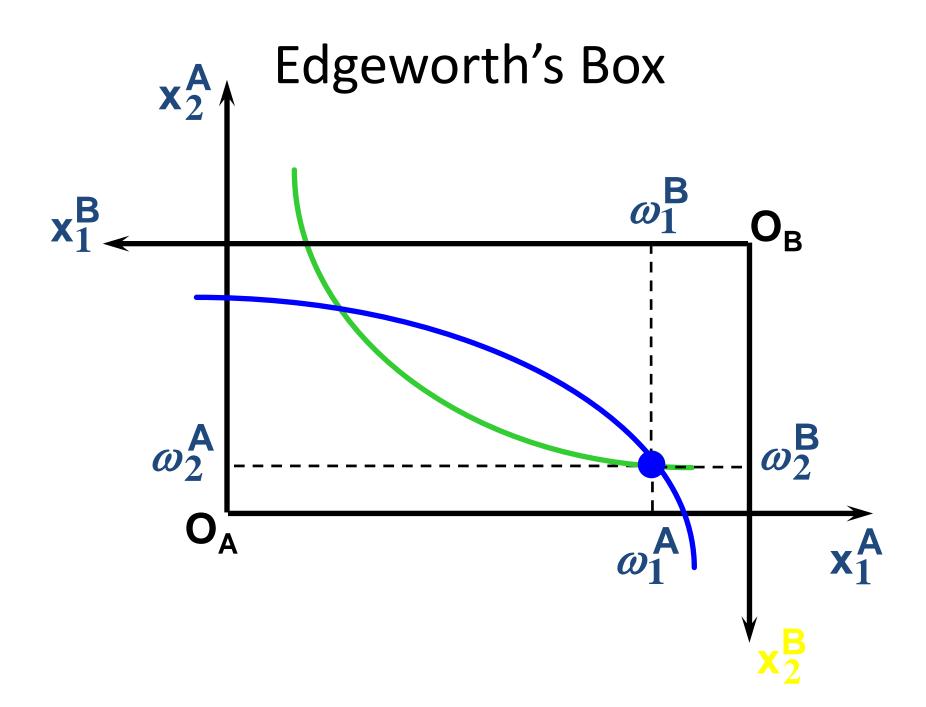
Adding Preferences to the Box For consumer B.



Adding Preferences to the Box For consumer B. ω_1 O_B More preferred

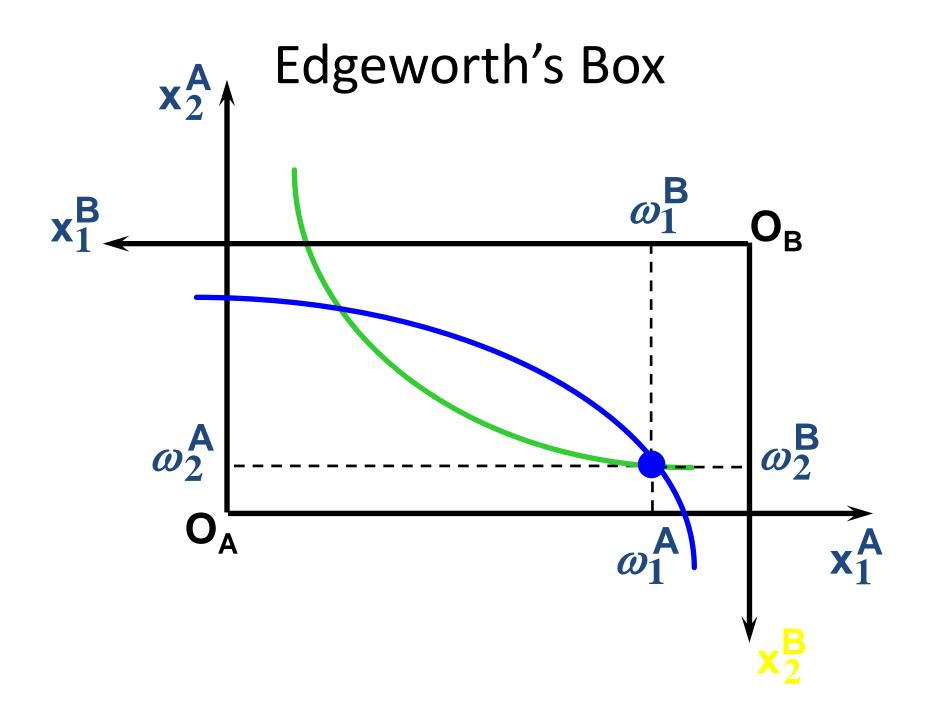


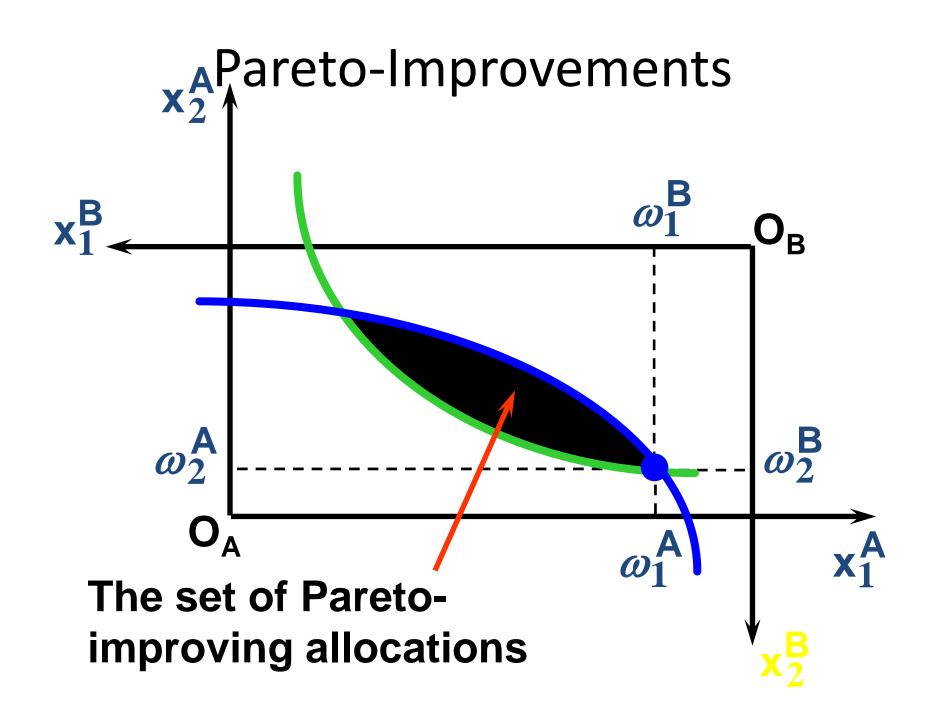




Pareto-Improvement

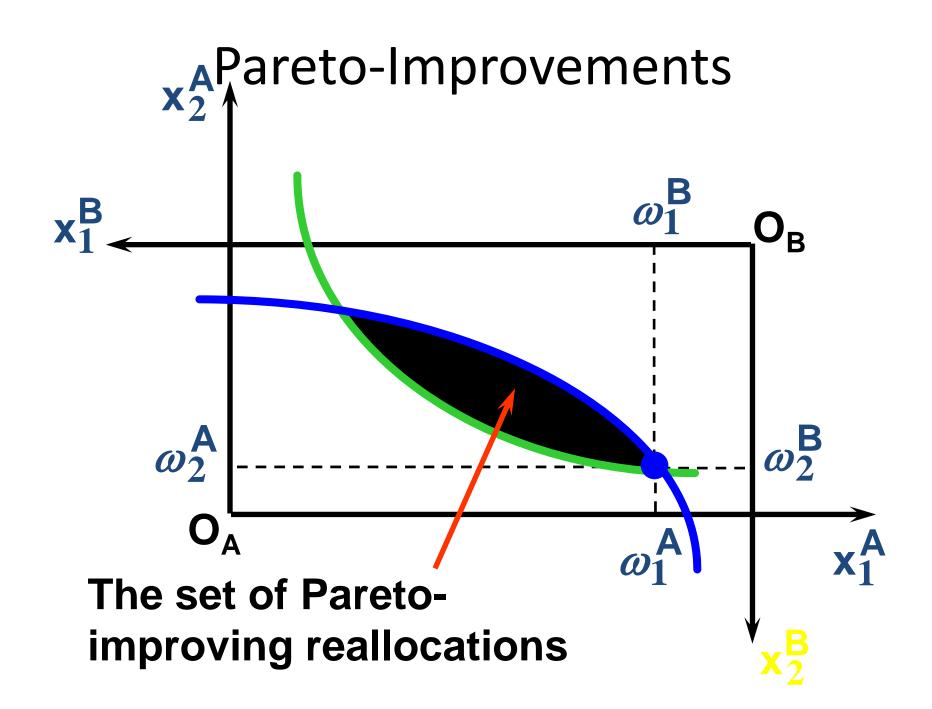
- An allocation of the endowment that improves the welfare of a consumer without reducing the welfare of another is a Paretoimproving allocation.
- Where are the Pareto-improving allocations?



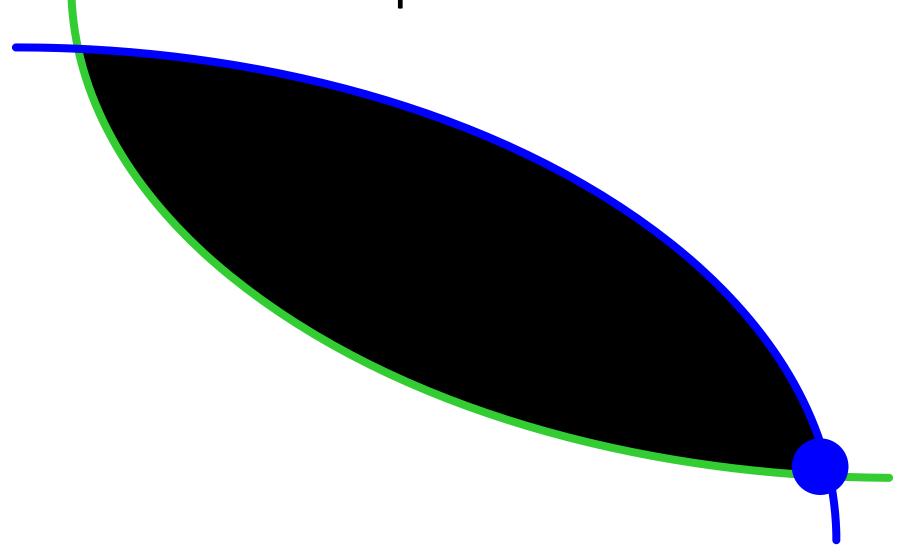


Pareto-Improvements

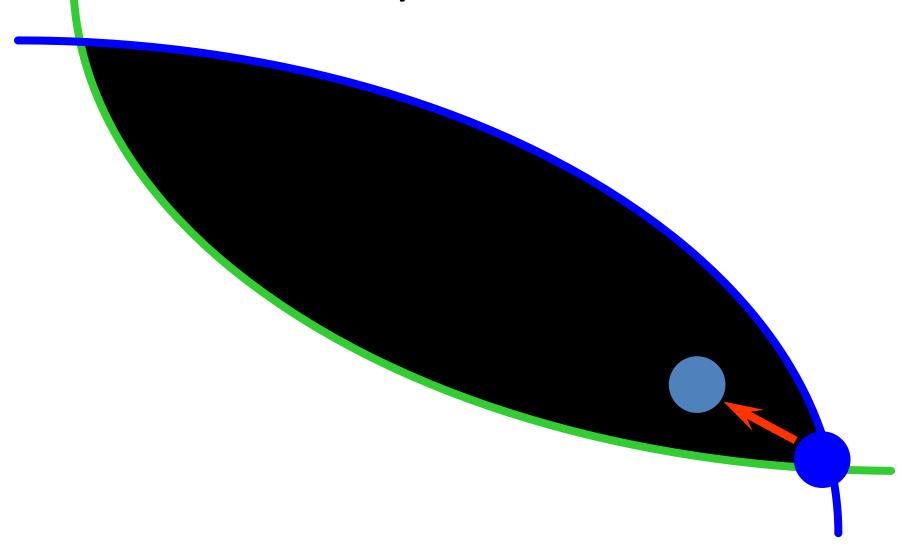
- Since each consumer can refuse to trade, the only possible outcomes from exchange are Pareto-improving allocations.
- But which particular Pareto-improving allocation will be the outcome of trade?

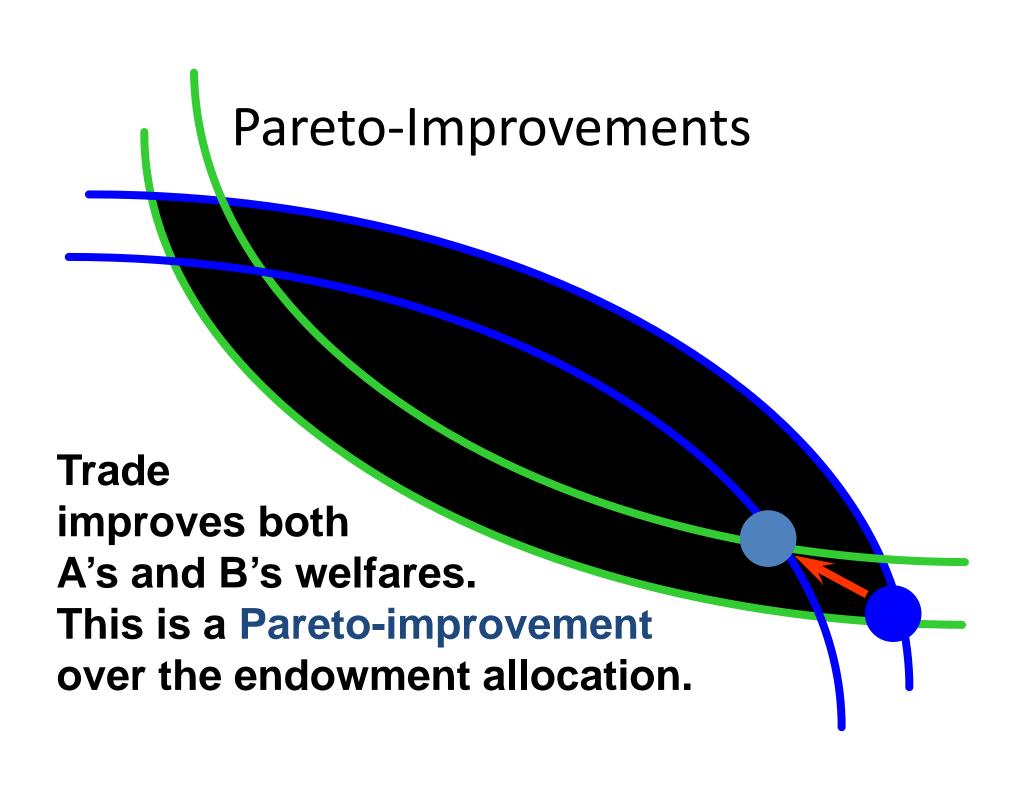


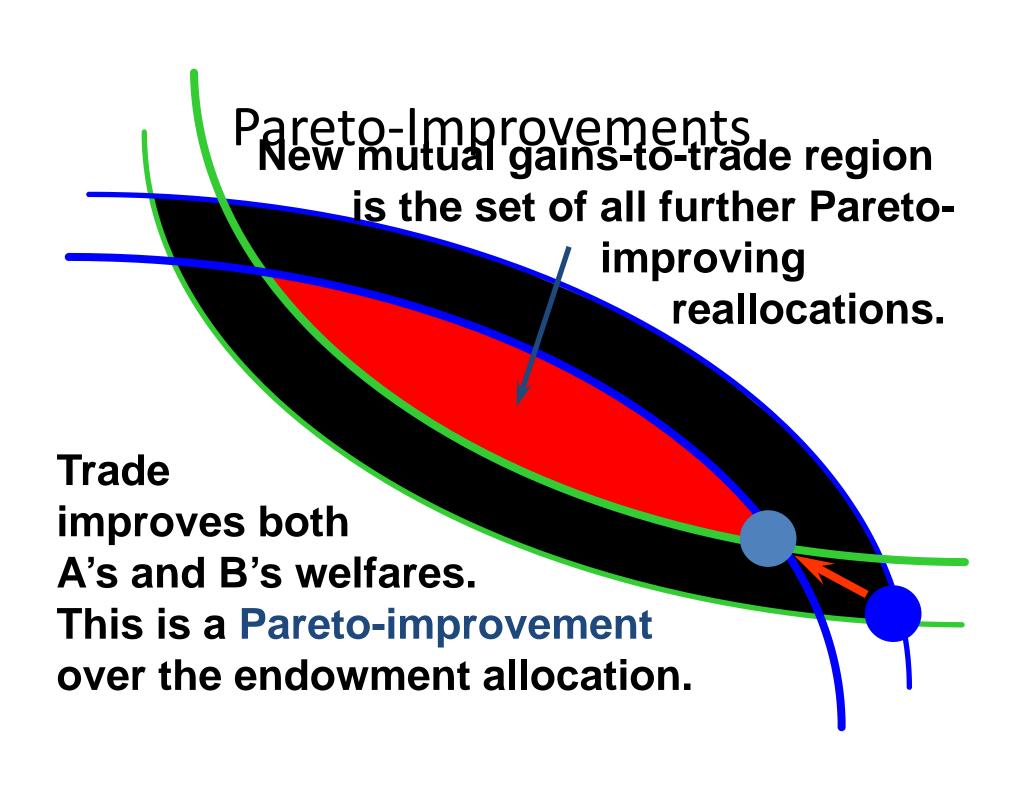
Pareto-Improvements

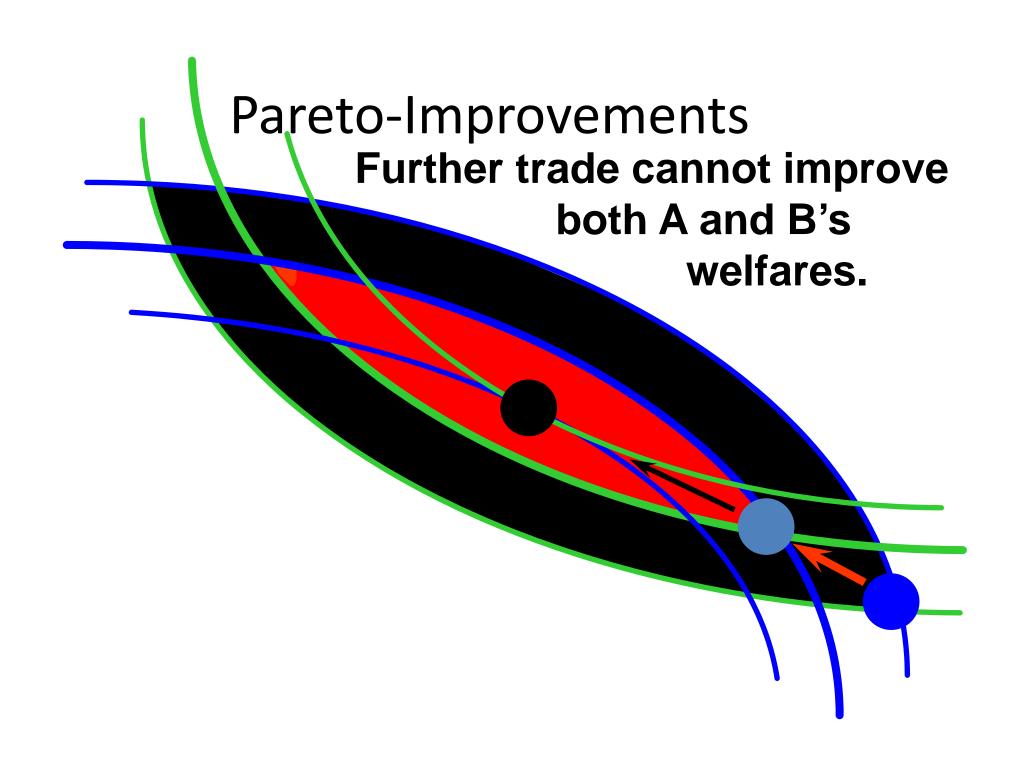


Pareto-Improvements

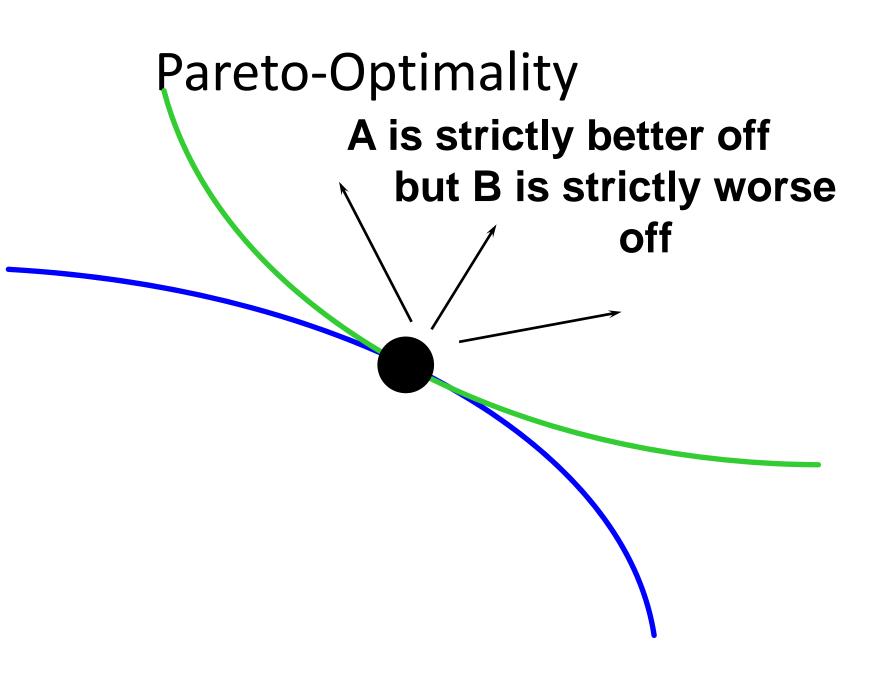


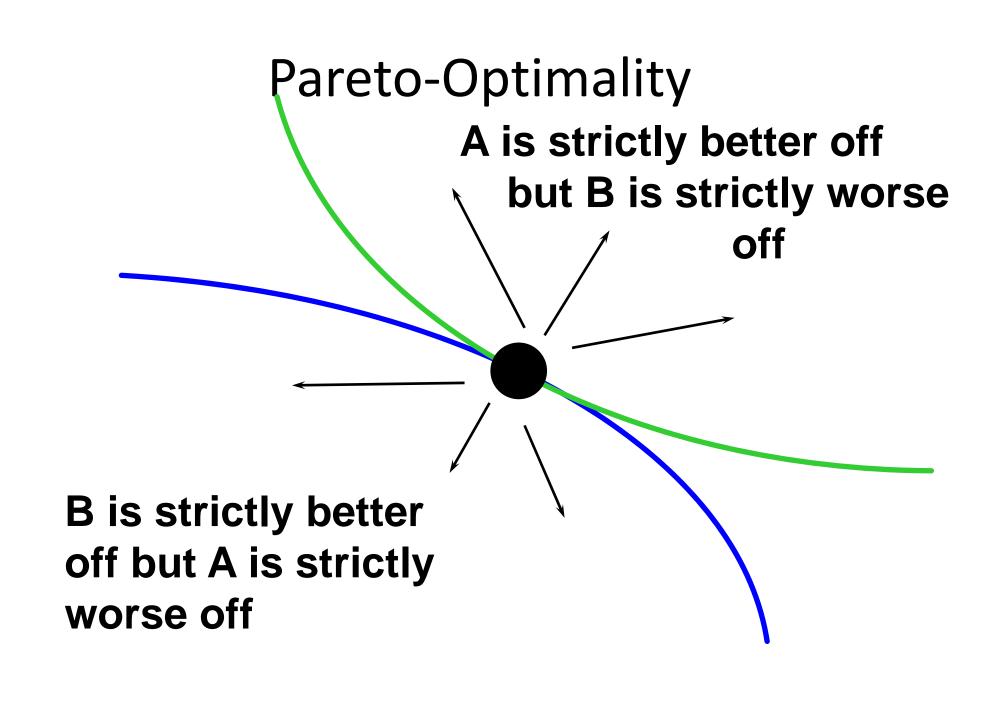




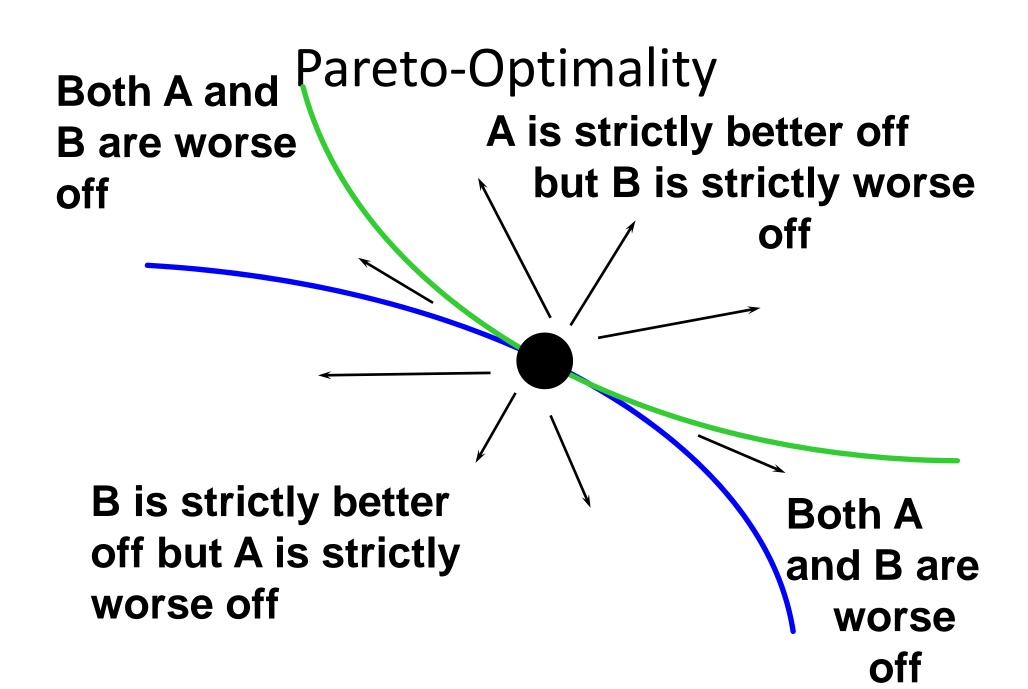


Pareto-Optimality Better for consumer A **Better for** consumer B





Pareto-Optimality Both A and A is strictly better off B are worse but B is strictly worse off off B is strictly better off but A is strictly worse off



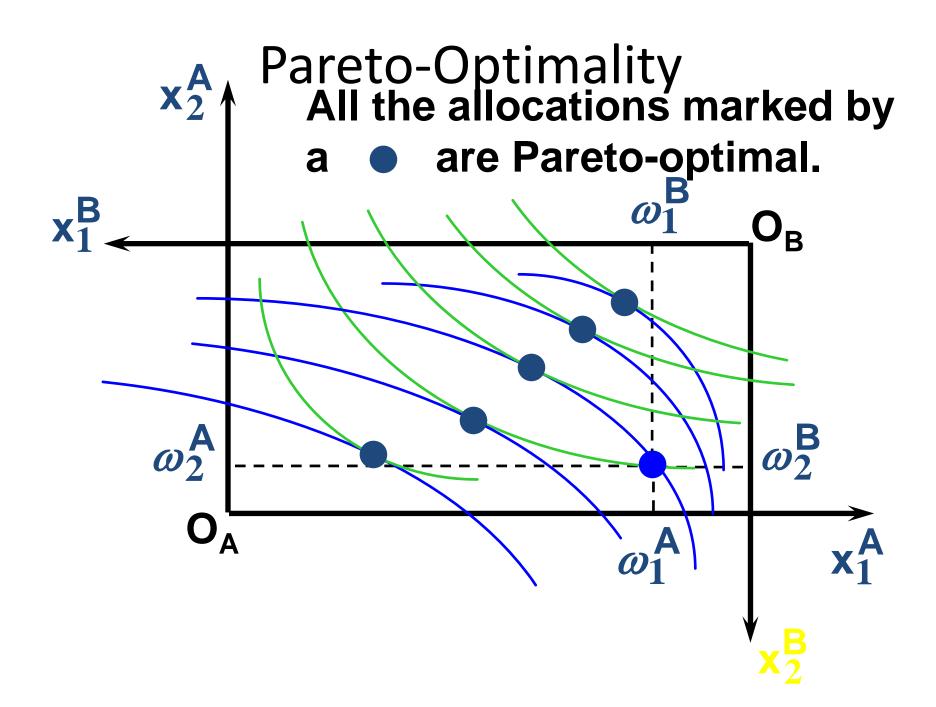
Pareto-optimal since the only way one consumer's welfare can be increased is to decrease the welfare of the other consumer.

Pareto-Optimality
An allocation where convex indifference curves are "only just back-to-back" is Pareto-optimal.

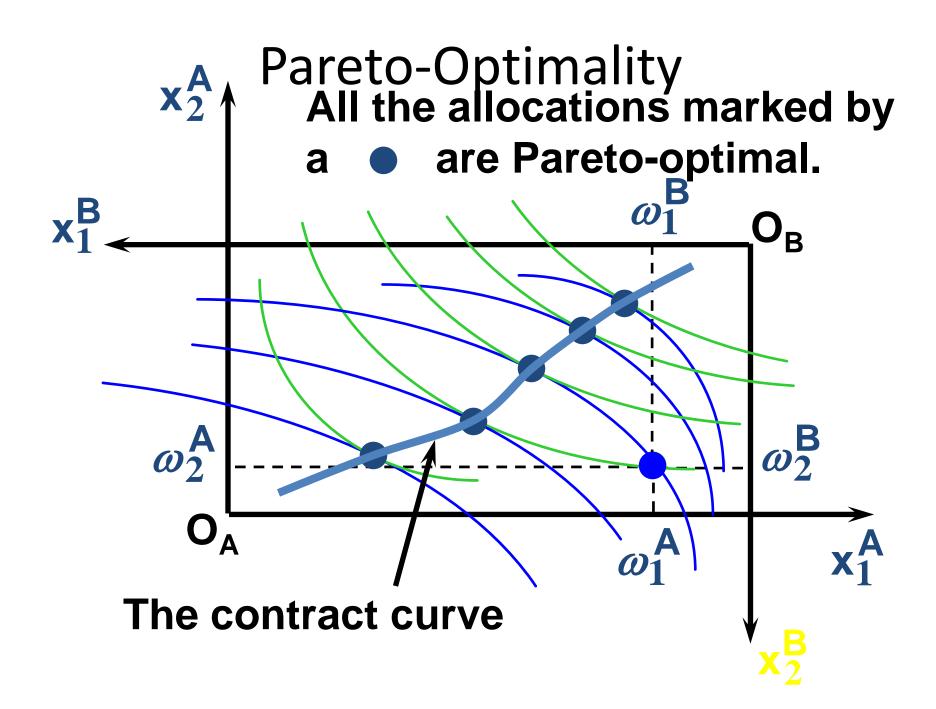
The allocation is
Pareto-optimal since the
only way one consumer's
welfare can be increased is to
decrease the welfare of the other
consumer.

 Where are all of the Pareto-optimal allocations of the endowment?

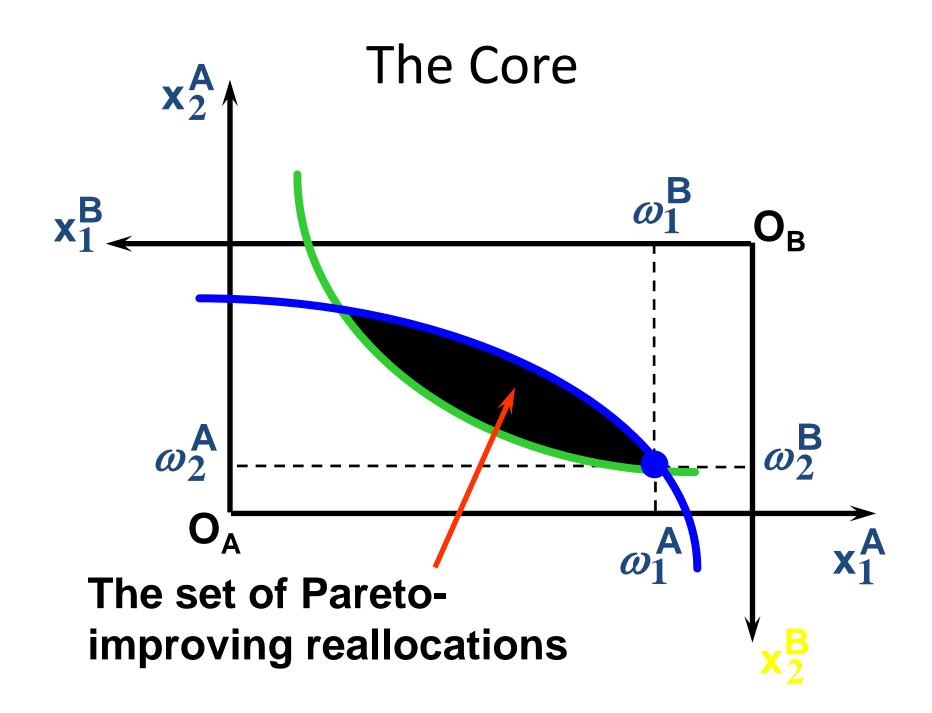


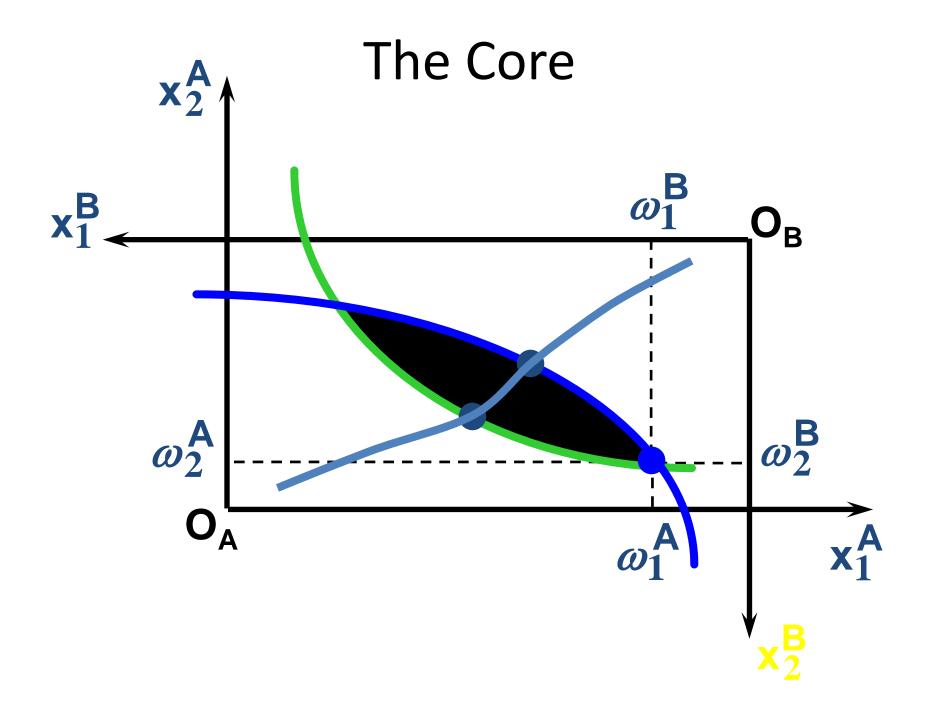


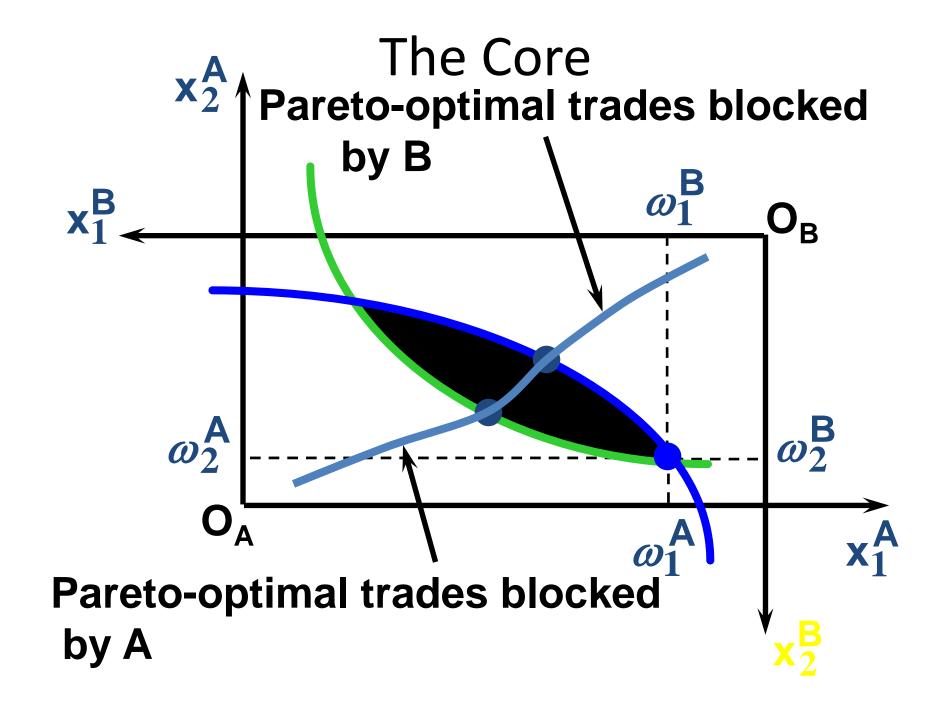
• The contract curve is the set of all Paretooptimal allocations.

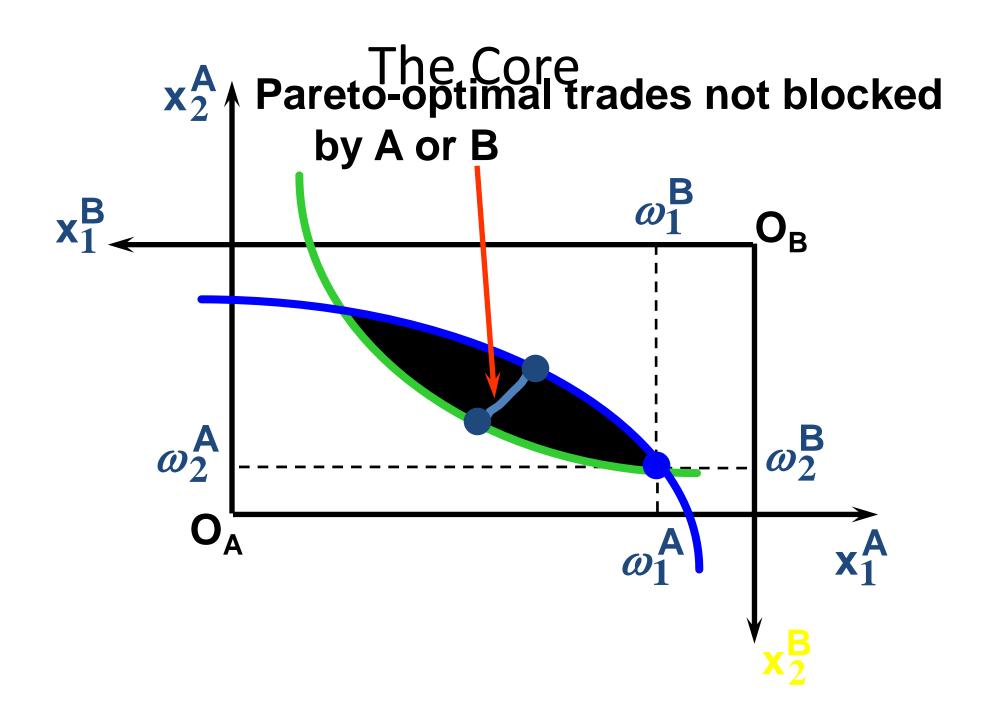


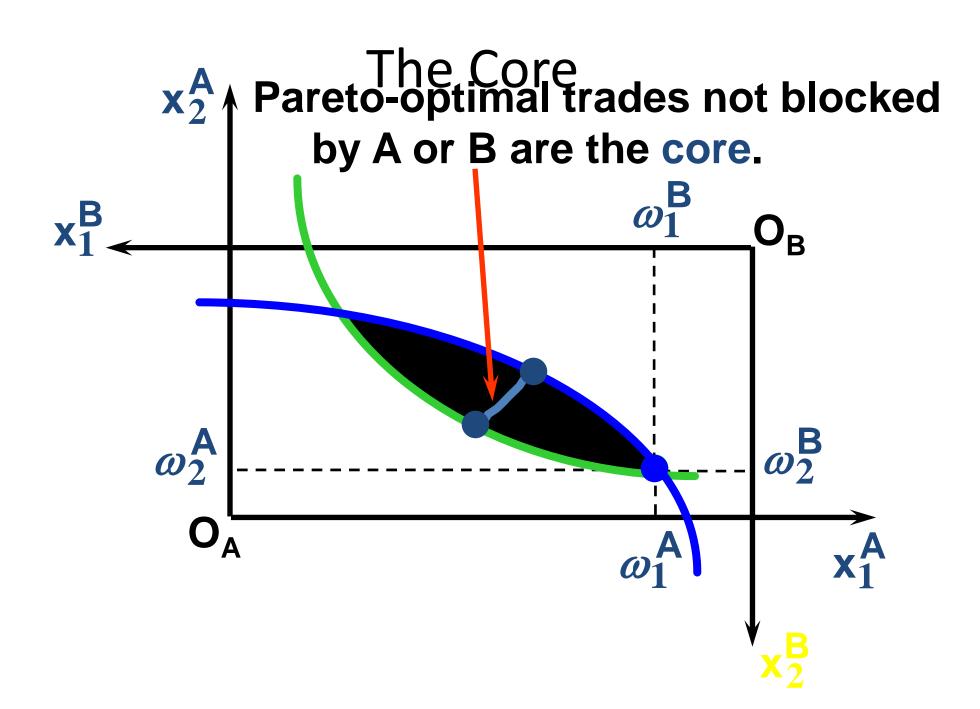
- But to which of the many allocations on the contract curve will consumers trade?
- That depends upon how trade is conducted.
- In perfectly competitive markets? By one-onone bargaining?











The Core

- The core is the set of all Pareto-optimal allocations that are welfare-improving for both consumers relative to their own endowments.
- Rational trade should achieve a core allocation.

The Core

- But which core allocation?
- Again, that depends upon the manner in which trade is conducted.

- Consider trade in perfectly competitive markets.
- Each consumer is a price-taker trying to maximize her own utility given p₁, p₂ and her own endowment. That is, ...

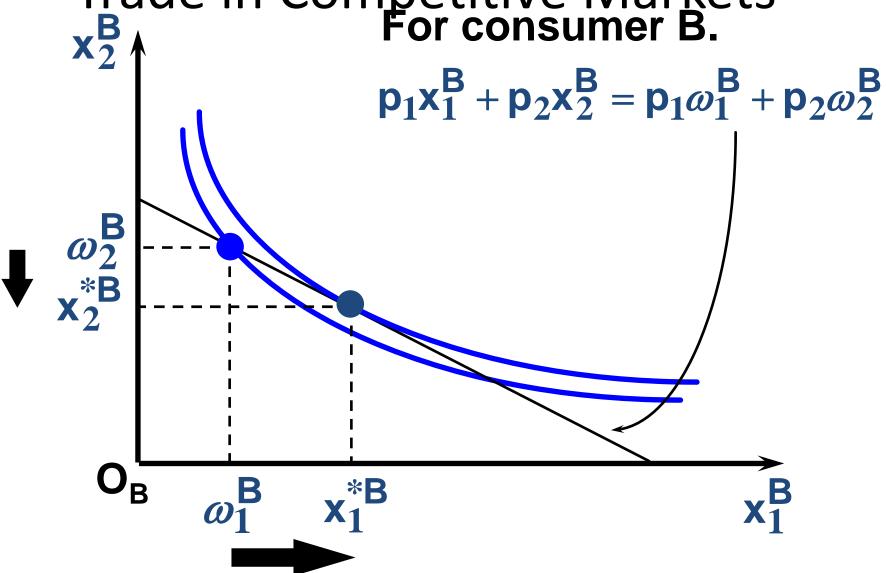
Trade in Competitive Markets For consumer A. $p_1x_1^A + p_2x_2^A = p_1\omega_1^A + p_2\omega_2^A$

 So given p₁ and p₂, consumer A's net demands for commodities 1 and 2 are

$$\mathbf{x}_1^{*A} - \omega_1^{A}$$
 and $\mathbf{x}_2^{*A} - \omega_2^{A}$.

And, similarly, for consumer B ...

Trade in Competitive Markets For consumer B.

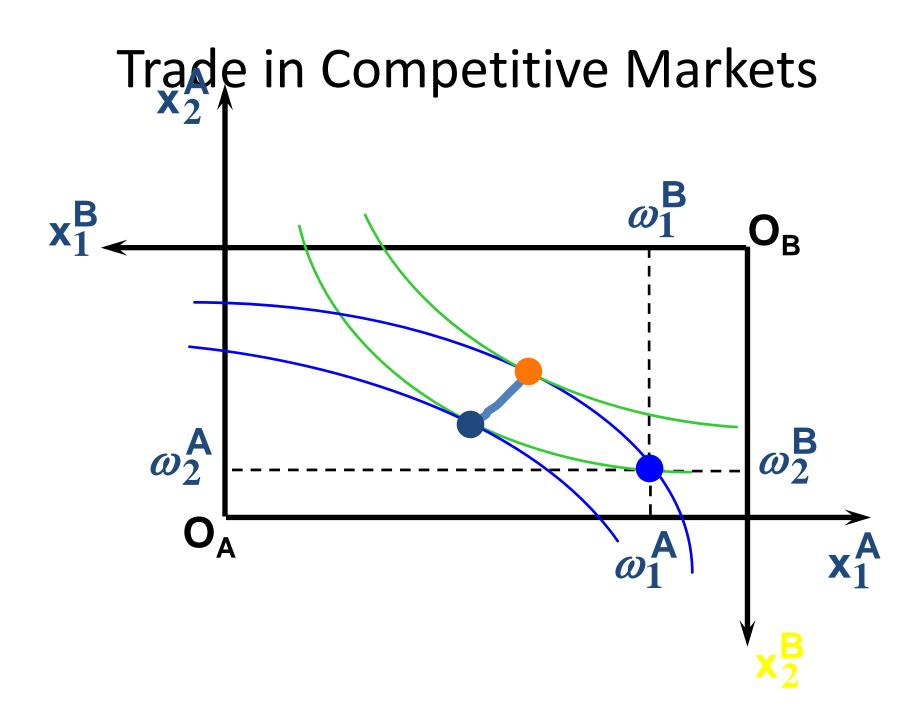


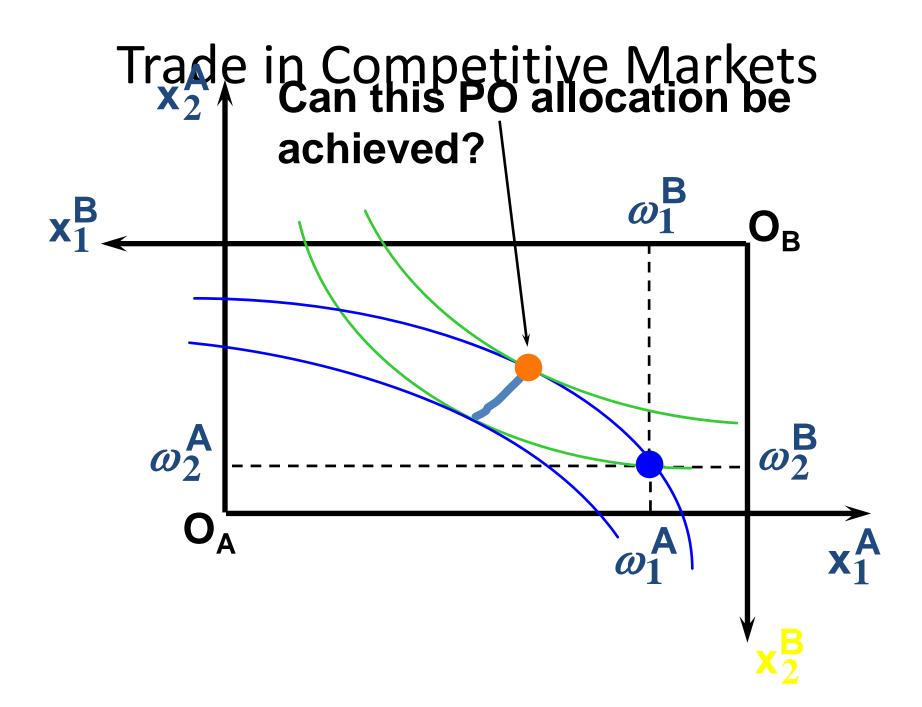
 So given p₁ and p₂, consumer B's net demands for commodities 1 and 2 are

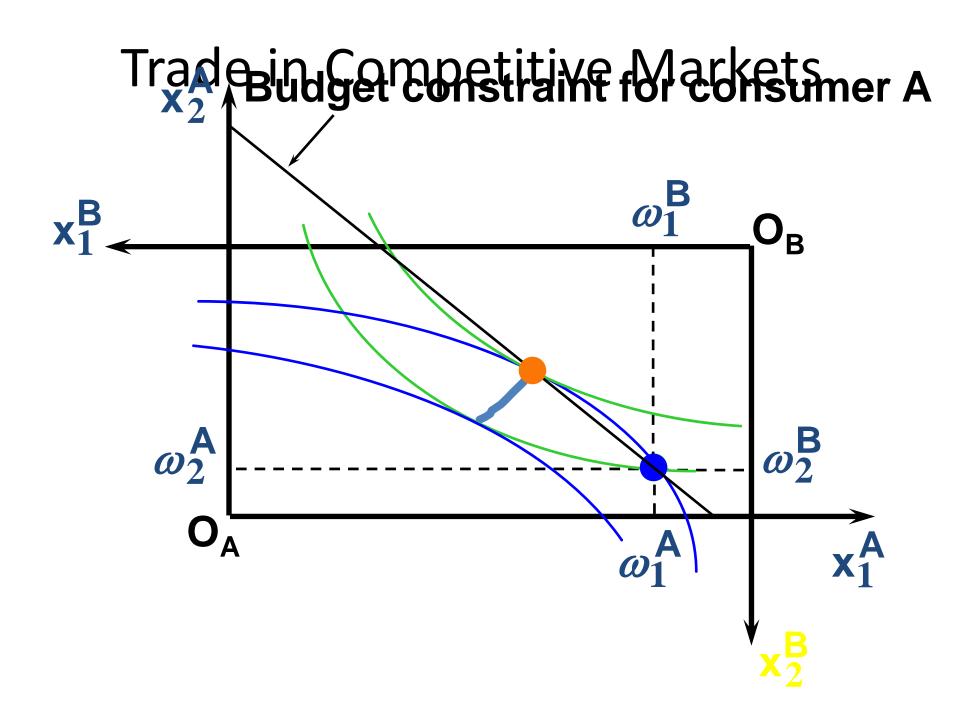
$$\mathbf{x}_1^{*B} - \omega_1^{B}$$
 and $\mathbf{x}_2^{*B} - \omega_2^{B}$.

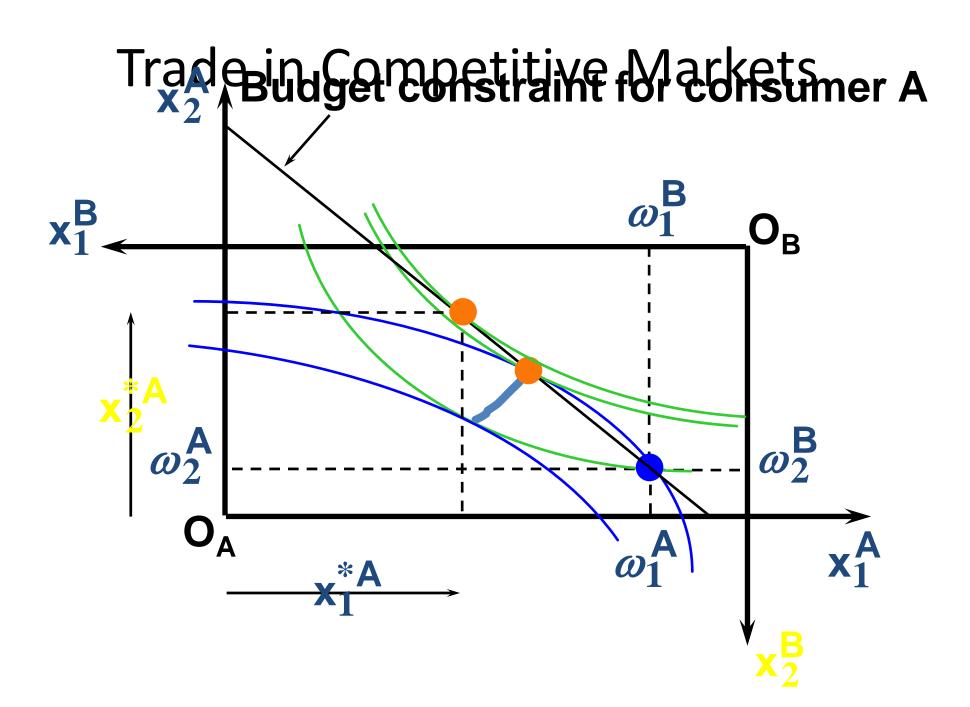
A general equilibrium occurs when prices p₁ and p₂ cause both the markets for commodities 1 and 2 to clear; i.e.

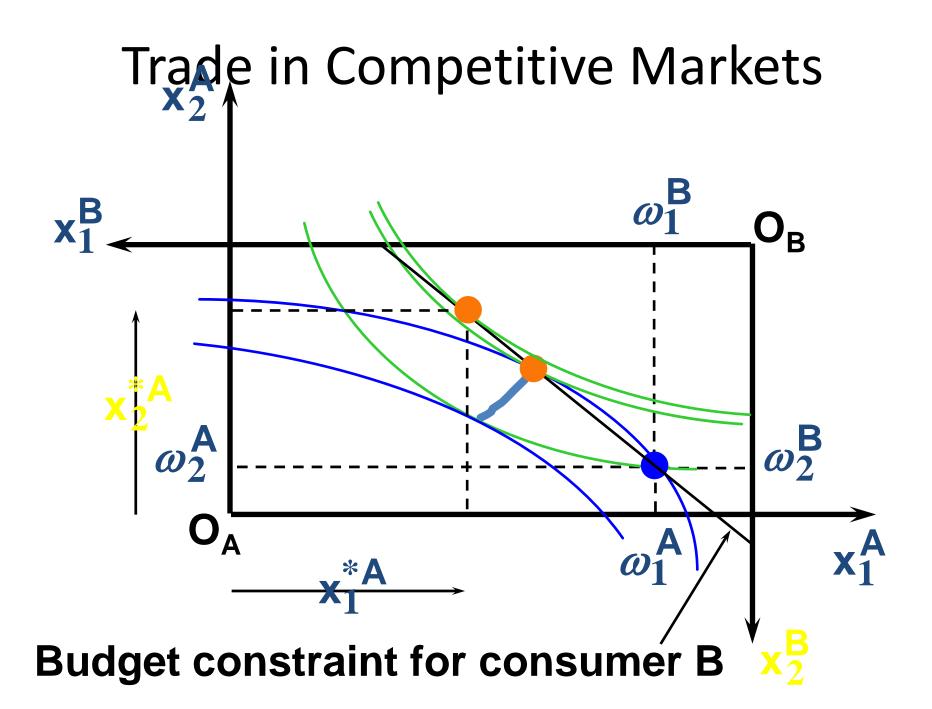
$$x_1^{*A} + x_1^{*B} = \omega_1^A + \omega_1^B$$
 and $x_2^{*A} + x_2^{*B} = \omega_2^A + \omega_2^B$.

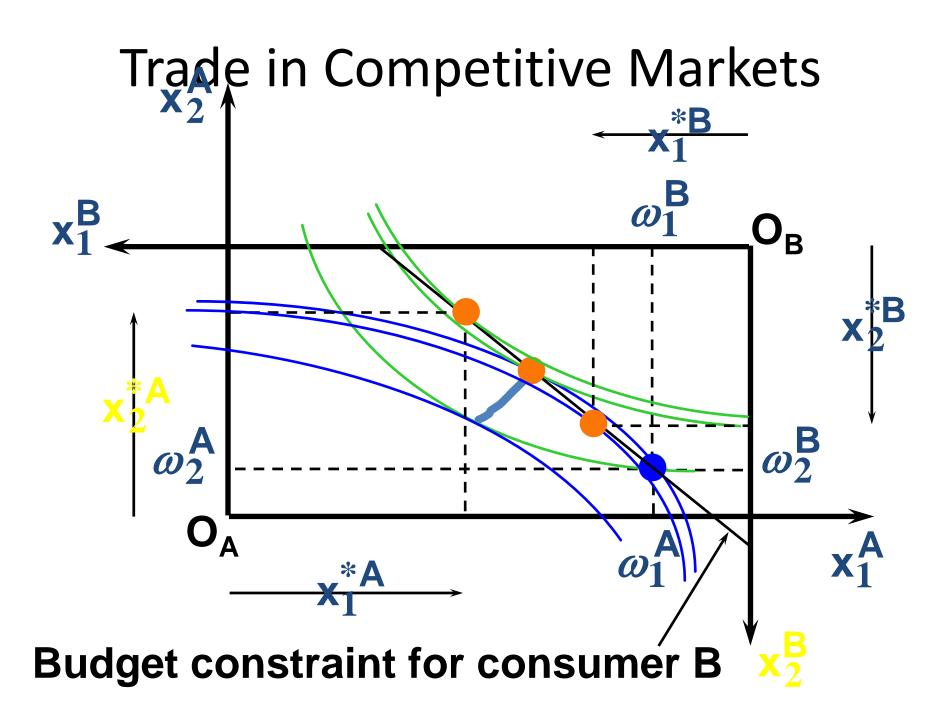


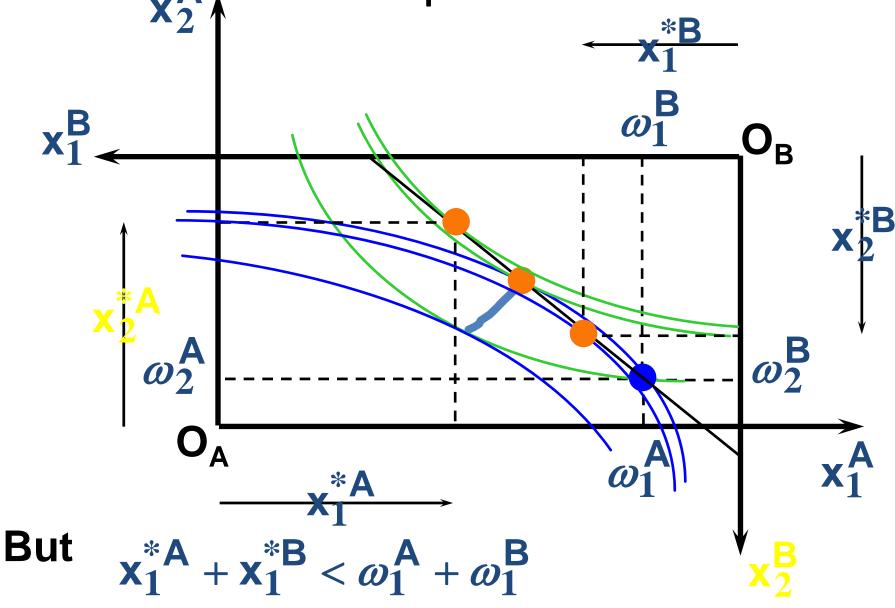


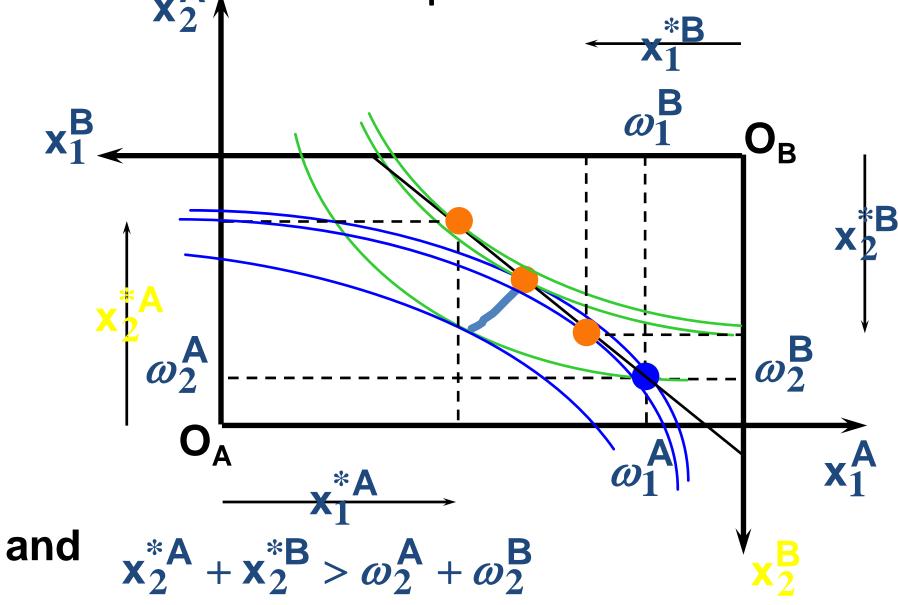




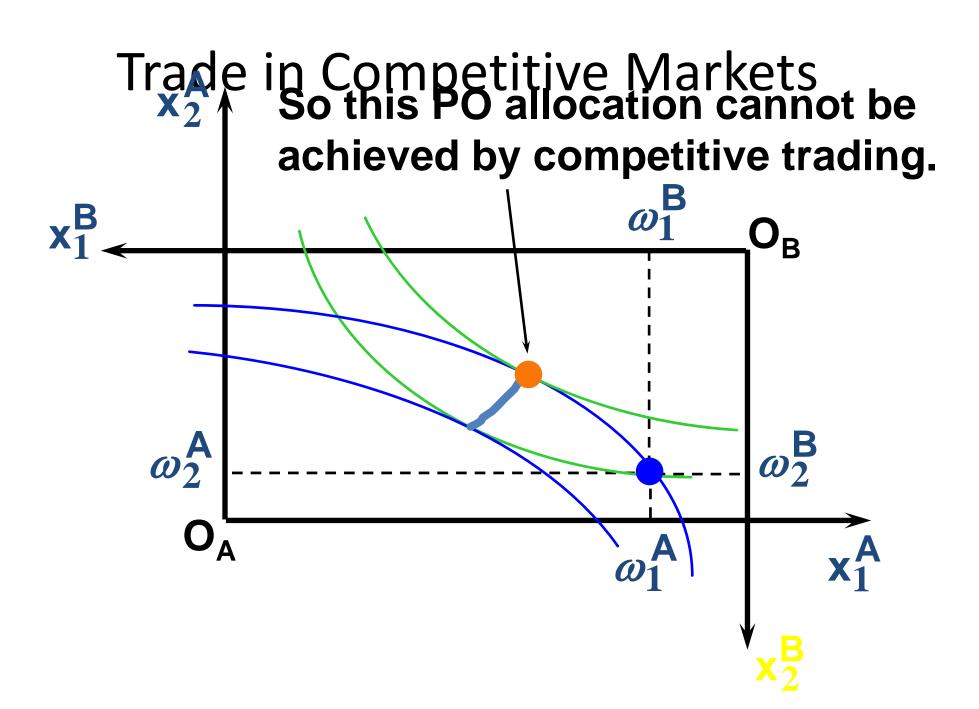


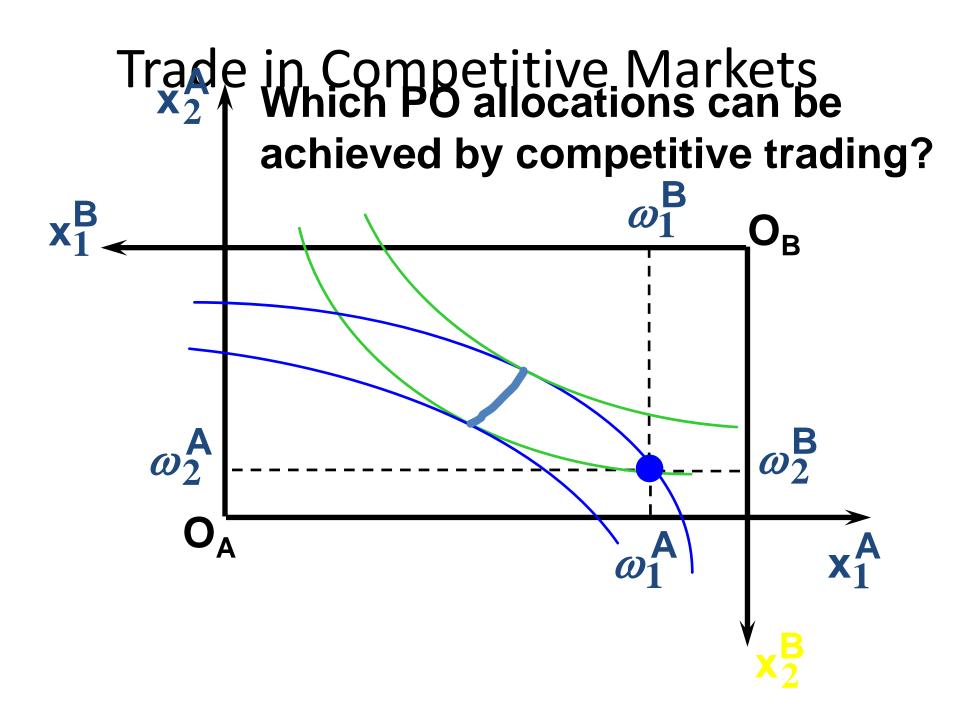




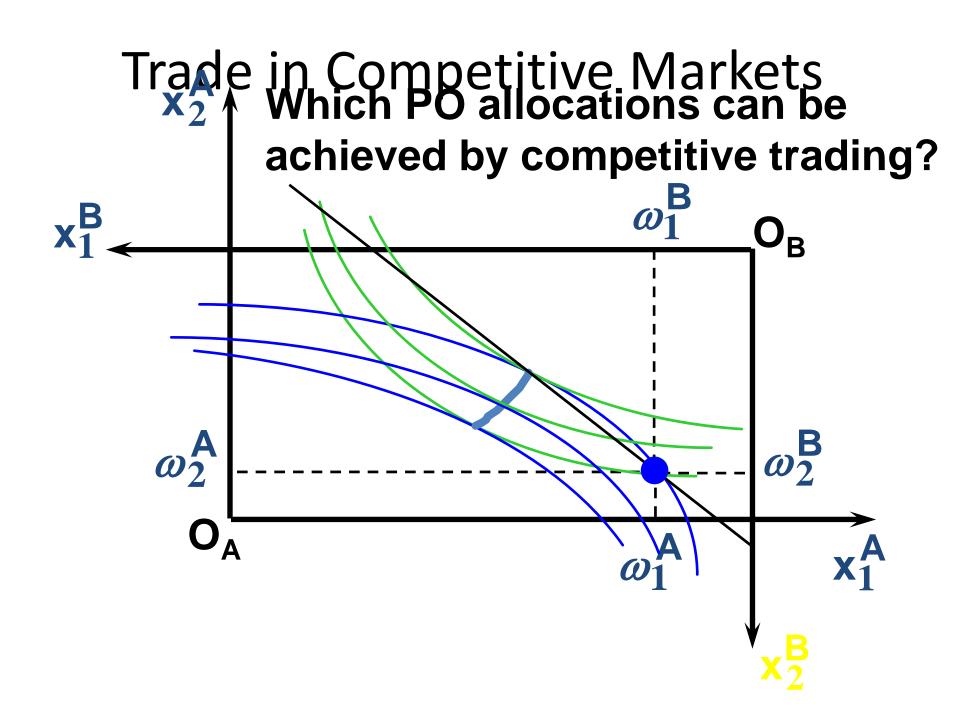


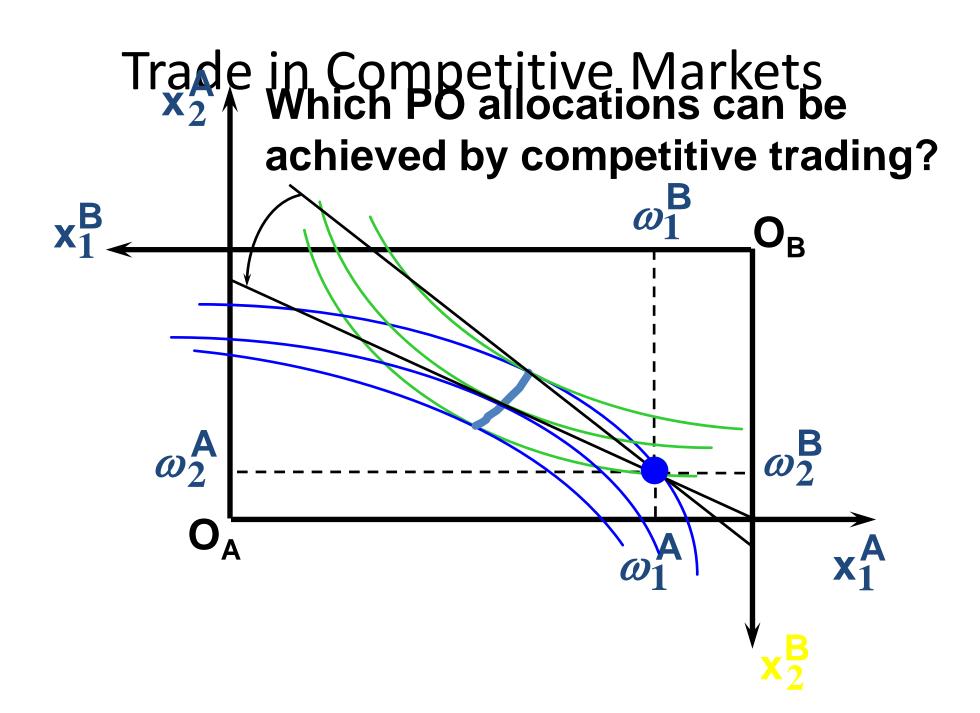
- So at the given prices p₁ and p₂ there is an
 - excess supply of commodity 1
 - excess demand for commodity 2.
- Neither market clears so the prices p₁ and p₂ do not cause a general equilibrium.

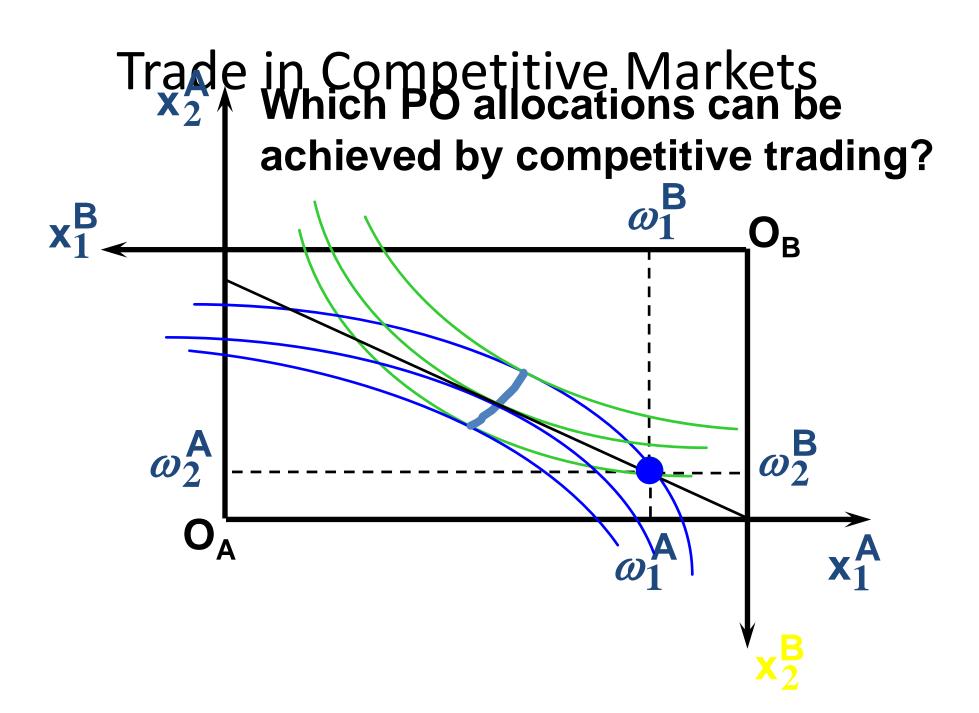


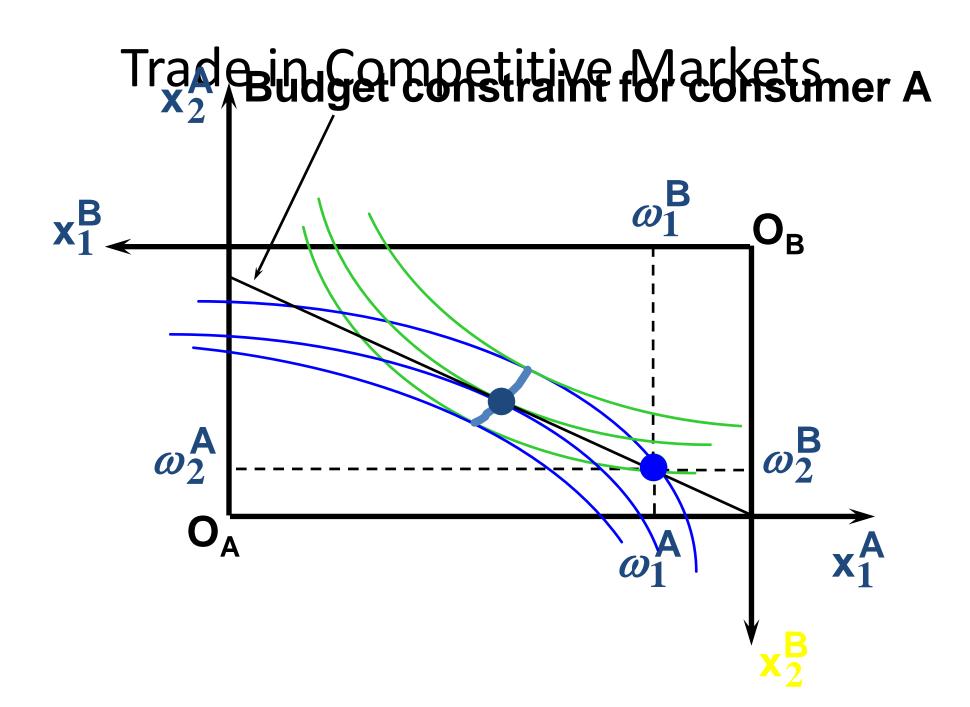


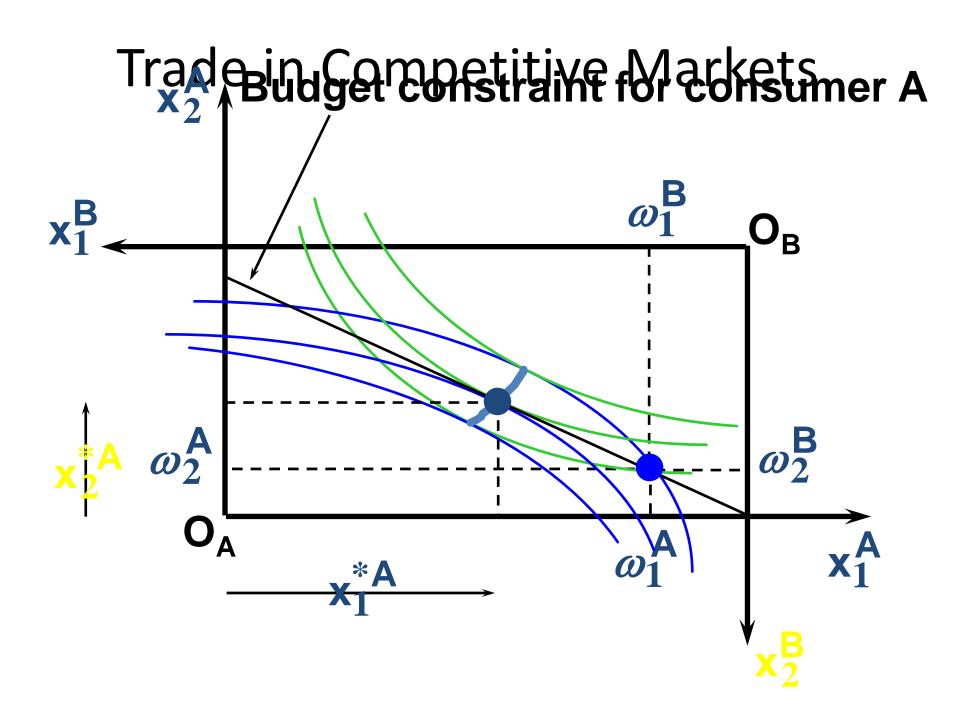
- Since there is an excess demand for commodity 2, p₂ will rise.
- Since there is an excess supply of commodity
 1, p₁ will fall.
- The slope of the budget constraints is p_1/p_2 so the budget constraints will pivot about the endowment point and become less steep.

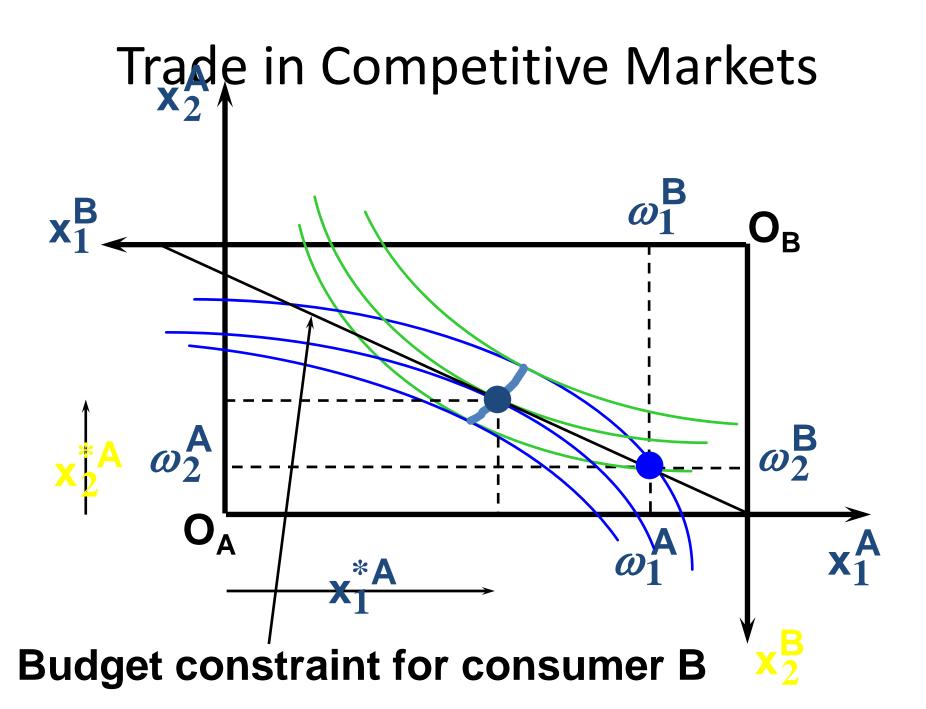


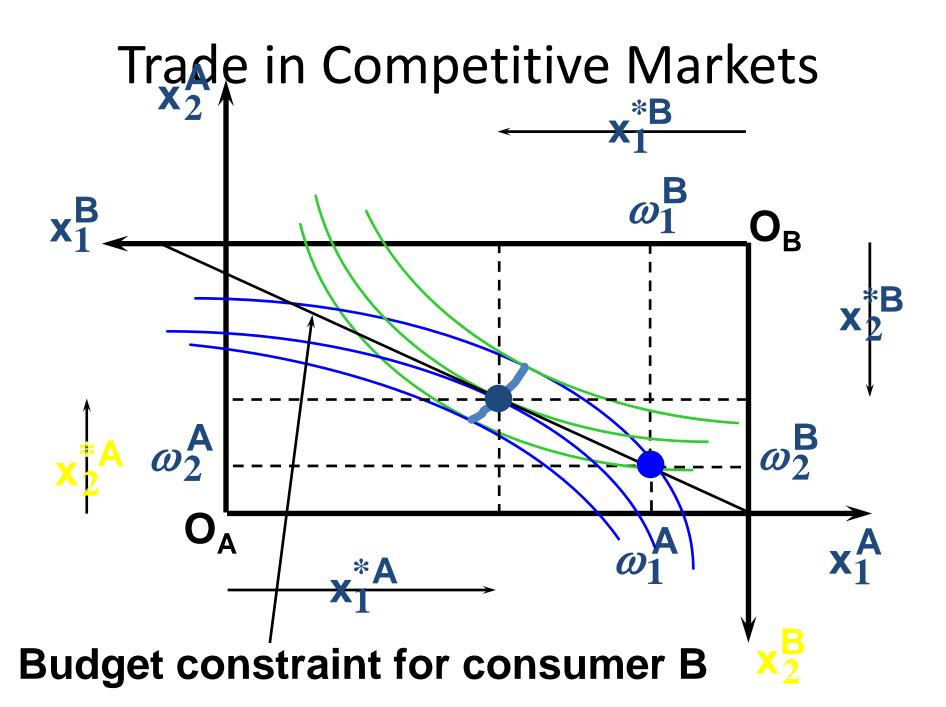




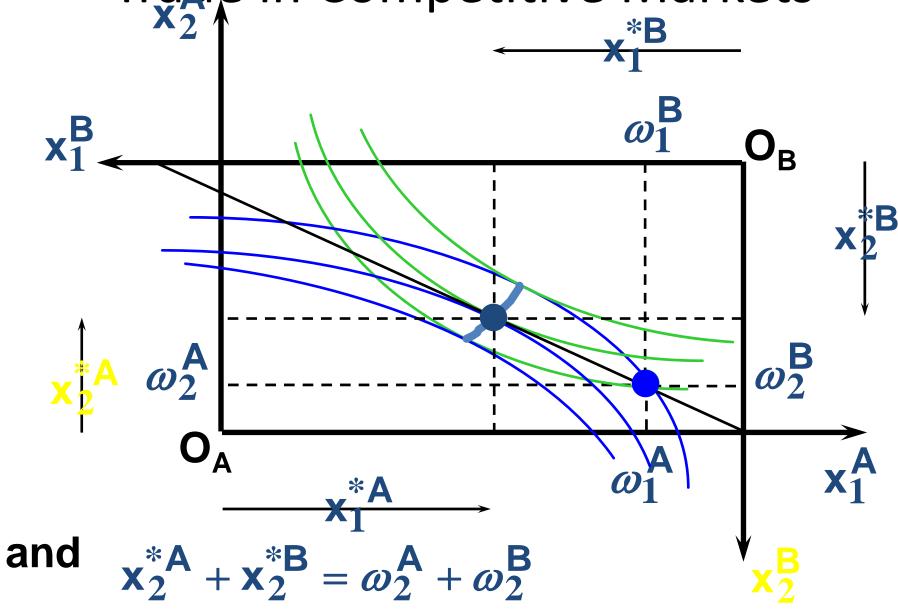








Trade in Competitive Markets So $x_1^{*A} + x_1^{*B} = \omega_1^{A} + \omega_1^{B}$



- At the new prices p₁ and p₂ both markets clear; there is a general equilibrium.
- Trading in competitive markets achieves a particular Pareto-optimal allocation of the endowments.
- This is an example of the First Fundamental Theorem of Welfare Economics.

First Fundamental Theorem of Welfare Economics

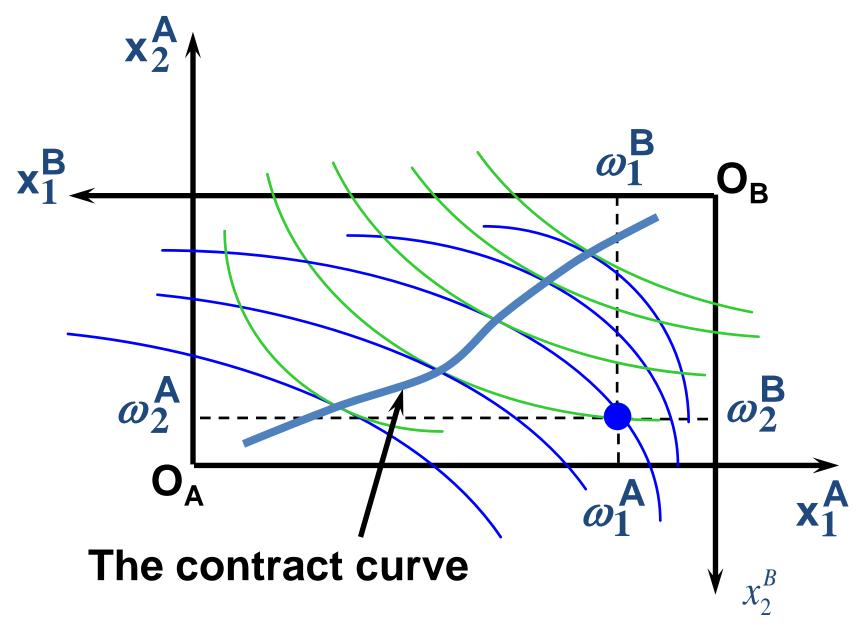
 Given that consumers' preferences are wellbehaved, trading in perfectly competitive markets implements a Pareto-optimal allocation of the economy's endowment.

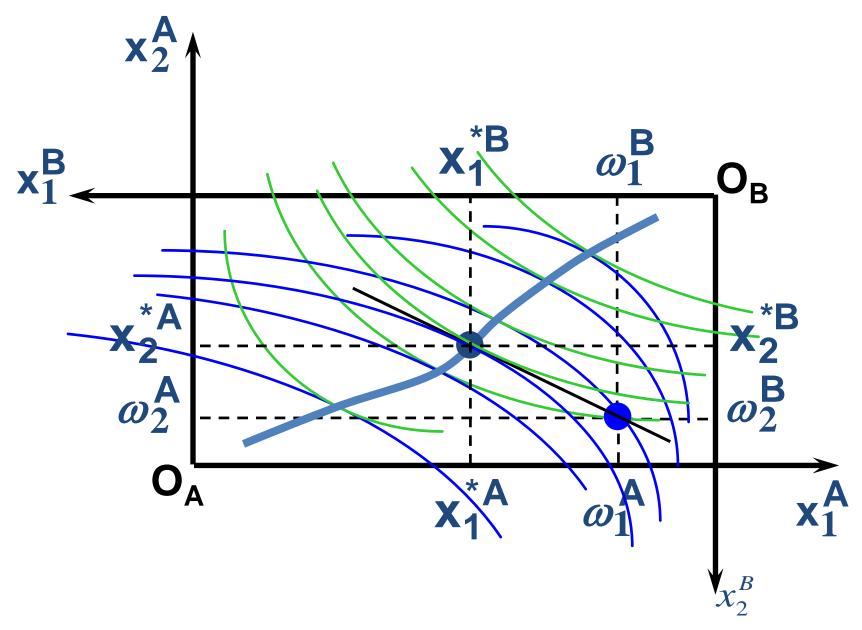
Second Fundamental Theorem of Welfare Economics

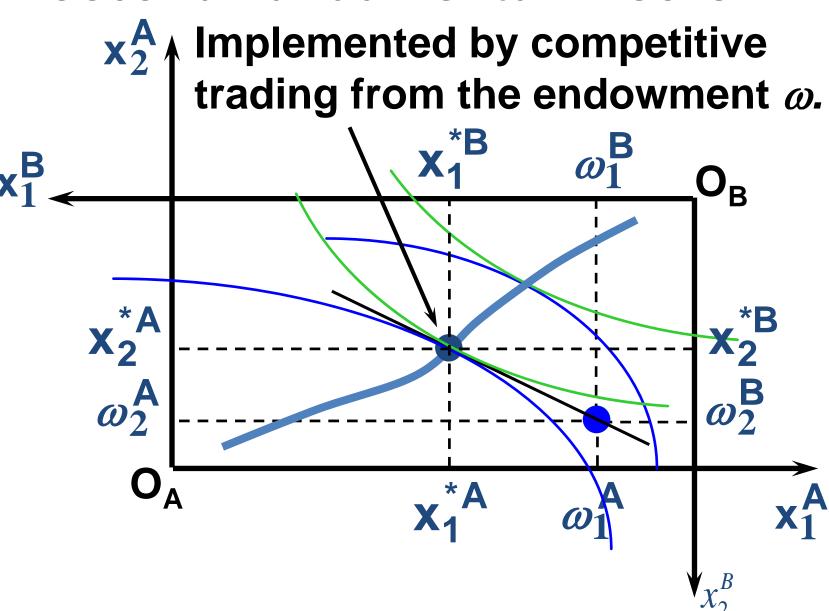
 The First Theorem is followed by a second that states that any Pareto-optimal allocation (i.e. any point on the contract curve) can be achieved by trading in competitive markets provided that endowments are first appropriately rearranged amongst the consumers.

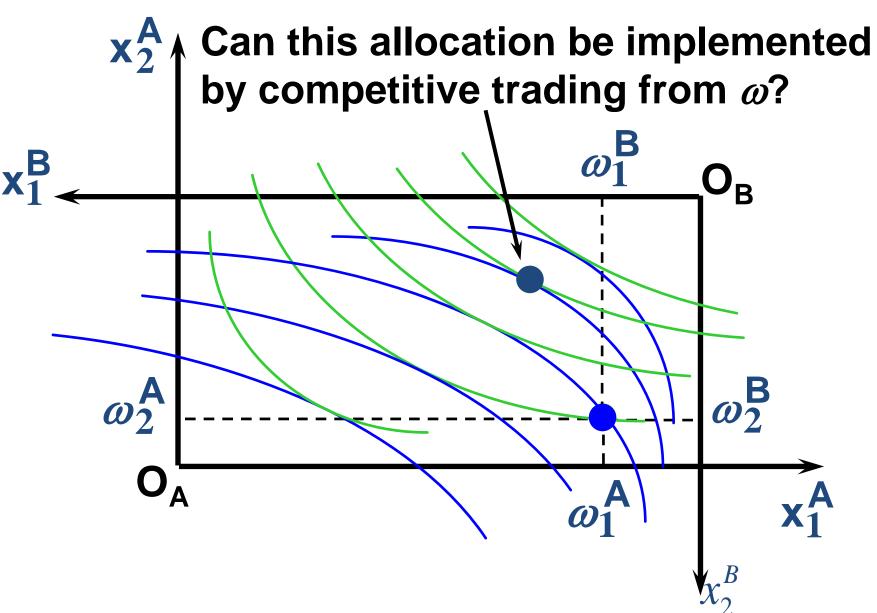
Second Fundamental Theorem of Welfare Economics

 Given that consumers' preferences are wellbehaved, for any Pareto-optimal allocation there are prices and an allocation of the total endowment that makes the Pareto-optimal allocation implementable by trading in competitive markets.

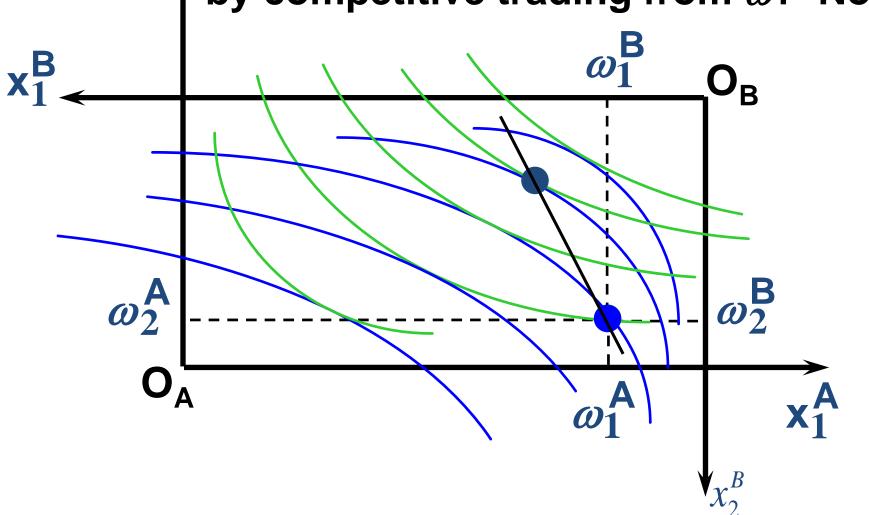








 $\mathbf{x_2^A}$ Can this allocation be implemented by competitive trading from ω ? No.



But this allocation is implemented by competitive trading from θ .

• Walras' Law is an identity; i.e. a statement that is true for any positive prices (p₁,p₂), whether these are equilibrium prices or not.

- Every consumer's preferences are wellbehaved so, for any positive prices (p₁,p₂), each consumer spends all of his budget.
- For consumer A:

For consumpex
$*$
 $+ p_2 x_2^* = p_1 \omega_1^A + p_2 \omega_2^A$

$$p_1x_1^{*B} + p_2x_2^{*B} = p_1\omega_1^B + p_2\omega_2^B$$

$$p_{1}x_{1}^{*A} + p_{2}x_{2}^{*A} = p_{1}\omega_{1}^{A} + p_{2}\omega_{2}^{A}$$

$$p_{1}x_{1}^{*B} + p_{2}x_{2}^{*B} = p_{1}\omega_{1}^{B} + p_{2}\omega_{2}^{B}$$

Summing gives

$$p_{1}(x_{1}^{*A} + x_{1}^{*B}) + p_{2}(x_{2}^{*A} + x_{2}^{*B})$$

$$= p_{1}(\omega_{1}^{A} + \omega_{1}^{B}) + p_{2}(\omega_{2}^{B} + \omega_{2}^{B}).$$

$$p_{1}(x_{1}^{*A} + x_{1}^{*B}) + p_{2}(x_{2}^{*A} + x_{2}^{*B})$$

$$= p_{1}(\omega_{1}^{A} + \omega_{1}^{B}) + p_{2}(\omega_{2}^{B} + \omega_{2}^{B}).$$

Rearranged,

$$\begin{aligned} & \mathbf{p}_{1}(\mathbf{x}_{1}^{*A} + \mathbf{x}_{1}^{*B} - \omega_{1}^{A} - \omega_{1}^{B}) + \\ & \mathbf{p}_{2}(\mathbf{x}_{2}^{*A} + \mathbf{x}_{2}^{*B} - \omega_{2}^{A} - \omega_{2}^{B}) = \mathbf{0}. \end{aligned}$$

That is, ...

$$p_{1}(x_{1}^{*A} + x_{1}^{*B} - \omega_{1}^{A} - \omega_{1}^{B}) +$$

$$p_{2}(x_{2}^{*A} + x_{2}^{*B} - \omega_{2}^{A} - \omega_{2}^{B})$$

$$= 0.$$

This says that the summed market value of excess demands is zero for any positive prices p_1 and p_2 —this is Walras' Law.

Suppose the market for commodity A is in equilibrium; that is,

$$\mathbf{x_1^{*A}} + \mathbf{x_1^{*B}} - \omega_1^{A} - \omega_1^{B} = \mathbf{0}.$$

Then
$$p_1(x_1^{*A} + x_1^{*B} - \omega_1^A - \omega_1^B) +$$

$$\mathbf{p_2}(\mathbf{x_2^{*A}} + \mathbf{x_2^{*B}} - \mathbf{\omega_2^{A}} - \mathbf{\omega_2^{B}}) = \mathbf{0}$$

implies

$$\mathbf{x}_{2}^{*A} + \mathbf{x}_{2}^{*B} - \mathbf{\omega}_{2}^{A} - \mathbf{\omega}_{2}^{B} = \mathbf{0}.$$

So one implication of Walras' Law for a two-commodity exchange economy is that if one market is in equilibrium then the other market must also be in equilibrium.

What if, for some positive prices p₁ and p₂, there is an excess quantity supplied of commodity 1? That is,

$$x_1^{*A} + x_1^{*B} - \omega_1^A - \omega_1^B < 0.$$

Then
$$p_1(x_1^{*A} + x_1^{*B} - \omega_1^A - \omega_1^B) +$$

$$\mathbf{p_2}(\mathbf{x_2^{*A}} + \mathbf{x_2^{*B}} - \mathbf{\omega_2^{A}} - \mathbf{\omega_2^{B}}) = \mathbf{0}$$

implies

$$\mathbf{x}_{2}^{*A} + \mathbf{x}_{2}^{*B} - \mathbf{\omega}_{2}^{A} - \mathbf{\omega}_{2}^{B} > 0.$$

So a second implication of Walras' Law for a two-commodity exchange economy is that an excess supply in one market implies an excess demand in the other market.