
Estimating a mean

Probably the most widely used formula for a confidence interval is

x̄± 2
√

s2/n

x̄ is the sample mean

s2 is the sample variance

n is the sample size

2 is PJD’s approximation to 1.96



Strictly, you should use a value cn which depends on n, but is
approximately 2 for reasonably large n, for example:

n cn

5 2.78
10 2.26
20 2.09
50 2.01
∞ 1.96

Where does the formula for the confidence interval come from?



This diagram shows how the distribution of the sample mean
changes with the sample size:
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And this diagram shows how the variance of the sample mean
changes with the sample size:
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Conclusions

sample means are approximately Normally distributed
(symmetric, bell-shaped histogram)

larger samples lead to more precise estimates

the variance of an estimate is inversely proportional to the
sample size, n

the standard error of an estimate is therefore inversely
proportional to

√
n

Murphy’s law of diminishing returns – doubling the sample
size does not double the precision of your estimate


