Estimating a mean

Probably the most widely used formula for a confidence interval is

$$
\bar{x} \pm 2 \sqrt{s^{2} / n}
$$

- $\overline{\mathrm{x}}$ is the sample mean
- s^{2} is the sample variance
- n is the sample size
- 2 is PJD's approximation to 1.96

Strictly, you should use a value $\mathbf{c}_{\mathbf{n}}$ which depends on \mathbf{n}, but is approximately 2 for reasonably large \mathbf{n}, for example:

n	c_{n}
5	2.78
10	2.26
20	2.09
50	2.01
∞	1.96

Where does the formula for the confidence interval come from?

This diagram shows how the distribution of the sample mean changes with the sample size:

Histogram of one

Histogram of four

Histogram of two

Histogram of eight

And this diagram shows how the variance of the sample mean changes with the sample size:

Conclusions

- sample means are approximately Normally distributed (symmetric, bell-shaped histogram)
- larger samples lead to more precise estimates
- the variance of an estimate is inversely proportional to the sample size, n
- the standard error of an estimate is therefore inversely proportional to $\sqrt{ } \mathbf{n}$
- Murphy's law of diminishing returns - doubling the sample size does not double the precision of your estimate

