Residuals: Anscombe's quartet

Residuals: Anscombe's quartet

Defining residuals

DATA $=$ FITTED VALUE + RESIDUAL

Anscombe's quartet

- all four data-sets have:
- the same best-fitting straight line
- the same residual sum of squares
- but the residuals tell four different stories.

res1	res2	res3	res4
$1-0.740$	-1.901	0.389	0.000
20.179	-0.761	0.229	-0.111
31.239	0.129	0.079	-1.751
$4-1.681$	0.759	-0.081	0.909
$5-0.051$	1.139	-0.230	-1.241
61.309	1.269	-0.390	1.839
70.039	1.139	-0.540	-0.421
$8-0.171$	0.759	-0.689	1.469
91.839	0.129	-0.849	-1.441
$10-1.921$	-0.761	3.241	0.709
$11-0.041$	-1.901	-1.159	0.039

Why are the four sets of residuals different?

- obvious if you have only one explanatory variable
- less obvious when you have many

Analysing residuals

- check that their average value is (close to) zero
- plot them against fitted values
- plot them against explanatory variables in the model
- plot them against explanatory variables not in the model (for example, residuals against time-order)

