Longitudinal Data Analysis

Peter Diggle

(Lancaster University and University of Liverpool)

Belfast, February 2015
Lecture topics

1. Time series and longitudinal data: similarities/differences
2. Linear models: capturing correlation structure
3. Missing values: Rubin’s hierarchy, informative dropout
4. Generalised linear models: binary and count data
5. Joint modelling: repeated measurement and time-to-event outcomes
1. Time series and longitudinal data

Bailrigg temperature records

Daily maximum temperatures, 1.09.1995 to 31.08.1996
Schizophrenia clinical trial (PANSS)

- randomised clinical trial of drug therapies
- three treatments:
 - haloperidol (standard)
 - placebo
 - risperidone (novel)
- dropout due to “inadequate response to treatment”

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of non-dropouts at week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>haloperidol</td>
<td>85</td>
</tr>
<tr>
<td>placebo</td>
<td>88</td>
</tr>
<tr>
<td>risperidone</td>
<td>345</td>
</tr>
<tr>
<td>total</td>
<td>518</td>
</tr>
</tbody>
</table>
Schizophrenia trial data

Diggle, Farewell and Henderson (2007)
Time series decomposition

- trend and residual
- autocorrelation
- prediction
Analysis of Bailrigg temperature data

data<-read.table("../data_and_figures/maxtemp.data",header=F)
temperature<-data[,4]
n<-length(temperature)
day<-1:n
plot(day,temperature,type="l",cex.lab=1.5,cex.axis=1.5)
plot shows strong seasonal variation,
try simple harmonic regression
#
c1<-cos(2*pi*day/n)
s1<-sin(2*pi*day/n)
fit1<-lm(temperature~c1+s1)
lines(day,fit1$fitted.values,col="red")
#
add first harmonic of annual frequency to check for
non-sinusoidal pattern
#
c2<-cos(4*pi*day/n)
s2<-sin(4*pi*day/n)
fit2<-lm(temperature~c1+s1+c2+s2)
lines(day,fit2$fitted.values,col="blue")
#
two fits look similar, but conventional F test says otherwise
#
summary(fit2)
RSS1<-sum(fit1$resid^2); RSS2<-sum(fit2$resid^2)
F<-(RSS1-RSS2)/2/(RSS2/361)
1-pf(F,2,361)
conventional residual plots

residuals vs fitted values

plot(fit2$fitted.values, fit2$resid)

residuals in time-order as scatterplot

plot(1:365, fit2$resid)

and as line-graph

plot(1:365, fit2$resid, type="l")
examine autocorrelation properties of residuals

residuals<-fit2$resid
par(mfrow=c(2,2),pty="s")
for (k in 1:4) {
 plot(residuals[1:(n-k)],residuals[(k+1):n],
 pch=19,cex=0.5,xlab=" ",ylab=" ",main=k)
}
par(mfrow=c(1,1))
acf(residuals)

exponentially decaying correlation looks reasonable

cor(residuals[1:(n-1)],residuals[2:n])
Xmat<-cbind(rep(1,n),c1,s1,c2,s2)
rho<-0.01*(60:80)
profile<-AR1.profile(temperature,Xmat,rho)
examine results

plot(rho, profile$logl, type="l", ylab="L(rho)")
Lmax<-max(profile$logl)
crit.val<-0.5*qchisq(0.95,1)
lines(c(rho[1], rho[length(rho)]), rep(Lmax-crit.val,2), lty=2)
profile

Exercise: how would you now re-assess the significance of
the second harmonic term?
profile log-likelihood function follows

\[
\text{AR1.profile}\left(y, X, \rho\right) = \begin{align*}
\text{m} &= \text{length}(\rho) \\
\text{logl} &= \text{rep}(0, m) \\
\text{n} &= \text{length}(y) \\
\text{hold} &= \text{outer}(1:n, 1:n, \"-\") \\
\text{for} \ (i \ \text{in} \ 1:m) \ { \{ \\
\text{Rmat} &= \rho[i]^\text{abs}(\text{hold}) \\
\text{ev} &= \text{eigen}(\text{Rmat}) \\
\text{logdet} &= \text{sum}(\text{log}(\text{ev}$values)) \\
\text{Rinv} &= \text{ev$ vectors}^\%\%\text{diag}(1/\text{ev$ values})^\%\%\text{t}(\text{ev$ vectors}) \\
\text{betahat} &= \text{solve}(\text{t}(X)^\%\%\text{Rinv}^\%\%\text{X})^\%\%\text{t}(X)^\%\%\text{Rinv}^\%\%y \\
\text{residual} &= y - X^\%\%\text{betahat} \\
\text{logl}[i] &= - \text{logdet} - n*\text{log}(\text{c(residual)}^\%\%\text{Rinv}^\%\%\text{c(residual))} \\
\} \\
\text{max.index} &= \text{order} (\text{logl})[m] \\
\text{Rmat} &= \rho[\text{max.index}]^\text{abs}(\text{hold}) \\
\text{ev} &= \text{eigen}(\text{Rmat}) \\
\text{logdet} &= \text{sum}(\text{log}(\text{ev$ values})) \\
\text{Rinv} &= \text{ev$ vectors}^\%\%\text{diag}(1/\text{ev$ values})^\%\%\text{t}(\text{ev$ vectors}) \\
\text{betahat} &= \text{solve}(\text{t}(X)^\%\%\text{Rinv}^\%\%\text{X})^\%\%\text{t}(X)^\%\%\text{Rinv}^\%\%y \\
\text{residual} &= y - X^\%\%\text{betahat} \\
\text{sigmahat} &= \sqrt{\text{c(residual)}^\%\%\text{Rinv}^\%\%\text{c(residual)/n}} \\
\text{list} (\text{logl}=\text{logl}, \text{rhohat}=\rho[\text{max.index}], \text{sigmahat}=\text{sigmahat}, \text{betahat}=\text{betahat})
\end{align*}
\]
Longitudinal data

- replicated time series;
- focus of interest often on mean values;
- modelling and inference can and should exploit replication
2. Linear models

- correlation and why it matters
- exploratory analysis
- linear Gaussian models
Correlation and why it matters

- different measurements on the same subject are typically correlated

- and this must be recognised in the inferential process.
Estimating the mean of a time series

\[Y_1, Y_2, \ldots, Y_t, \ldots, Y_n \quad Y_t \sim N(\mu, \sigma^2) \]

Classical result: \(\bar{Y} \pm 2\sqrt{\frac{\sigma^2}{n}} \)

But if \(Y_t \) is a time series:

- \(\mathbb{E}[\bar{Y}] = \mu \)
- \(\text{Var}\{\bar{Y}\} = (\sigma^2/n) \times \{1 + n^{-1} \sum_{u \neq t} \text{Corr}(Y_t, Y_u)\} \)

Exercise: is the sample variance unbiased for \(\sigma^2 = \text{Var}(Y_t) \)?
Correlation may or may not hurt you

\[Y_{it} = \alpha + \beta (t - \bar{t}) + Z_{it} \quad i = 1, \ldots, m \quad t = 1, \ldots, n \]
Correlation may or may not hurt you

\[Y_{it} = \alpha + \beta(t - \bar{t}) + Z_{it} \quad i = 1, \ldots, m \quad t = 1, \ldots, n \]
Correlation may or may not hurt you

\[Y_{it} = \alpha + \beta (t - \bar{t}) + Z_{it} \quad i = 1, \ldots, m \quad t = 1, \ldots, n \]
Correlation may or may not hurt you

\[Y_{it} = \alpha + \beta (t - \bar{t}) + Z_{it} \quad i = 1, \ldots, m \quad t = 1, \ldots, n \]

Parameter estimates and standard errors:

<table>
<thead>
<tr>
<th></th>
<th>ignoring correlation</th>
<th>recognising correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>estimate</td>
<td>standard error</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>5.234</td>
<td>0.074</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.493</td>
<td>0.026</td>
</tr>
</tbody>
</table>
A spaghetti plot of the PANSS data
Exploring covariance structure: balanced data

\[(Y_{ij}, t_j) : j = 1, ..., n; i = 1, ..., m\]

- fit saturated treatments-by-times model to mean response
- compute sample covariance matrix of residuals

PANSS data:

<table>
<thead>
<tr>
<th></th>
<th>SD</th>
<th>Y.t0</th>
<th>Y.t1</th>
<th>Y.t2</th>
<th>Y.t4</th>
<th>Y.t6</th>
<th>Y.t8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y.t0</td>
<td>20.019</td>
<td>1.000</td>
<td>0.533</td>
<td>0.366</td>
<td>0.448</td>
<td>0.285</td>
<td>0.229</td>
</tr>
<tr>
<td>Y.t1</td>
<td>20.184</td>
<td>0.533</td>
<td>1.000</td>
<td>0.693</td>
<td>0.589</td>
<td>0.658</td>
<td>0.535</td>
</tr>
<tr>
<td>Y.t2</td>
<td>22.120</td>
<td>0.366</td>
<td>0.693</td>
<td>1.000</td>
<td>0.670</td>
<td>0.567</td>
<td>0.678</td>
</tr>
<tr>
<td>Y.t4</td>
<td>20.996</td>
<td>0.448</td>
<td>0.589</td>
<td>0.670</td>
<td>1.000</td>
<td>0.718</td>
<td>0.648</td>
</tr>
<tr>
<td>Y.t6</td>
<td>24.746</td>
<td>0.285</td>
<td>0.658</td>
<td>0.567</td>
<td>0.718</td>
<td>1.000</td>
<td>0.792</td>
</tr>
<tr>
<td>Y.t8</td>
<td>23.666</td>
<td>0.229</td>
<td>0.535</td>
<td>0.678</td>
<td>0.648</td>
<td>0.792</td>
<td>1.000</td>
</tr>
</tbody>
</table>

- modest increase in variability over time
- correlation decays with increasing time-separation
Exploring covariance structure: unbalanced data

\[(Y_{ij}, t_{ij}) : j = 1, ..., n_i; i = 1, ..., m\]

The variogram of a stochastic process \(Y(t)\) is

\[V(u) = \frac{1}{2} \text{Var}\{Y(t) - Y(t - u)\}\]

- well-defined for stationary and some non-stationary processes
- for stationary processes,

\[V(u) = \sigma^2\{1 - \rho(u)\}\]

- \(V(u)\) easier to estimate than \(\rho(u)\) when data are unbalanced
Estimating the variogram

Data: \((Y_{ij}, t_{ij}): i = 1, \ldots, m; \ j = 1, \ldots, n_i\)

\(r_{ij} = \) residual from preliminary model for mean response

- Define

\[v_{ij\ell} = \frac{1}{2}(r_{ij} - r_{k\ell})^2 \]

- Estimate

\[\hat{V}(u) = \text{average of all } v_{ij\ell} \text{ such that } |t_{ij} - t_{i\ell}| \sim u \]

\[\hat{\sigma}^2 = \text{average of all } v_{ijk\ell} \text{ such that } i \neq k. \]
Example: sample variogram of the PANSS data

Solid lines are estimates from data, horizontal lines are eye-ball estimates (explanation later)
Where does the correlation come from?

- differences between subjects
- variation over time within subjects
- measurement error
General linear model, correlated residuals

\[i = \text{subjects} \quad j = \text{measurements within subjects} \]

\[E(Y_{ij}) = x_{ij1} \beta_1 + ... + x_{ijp} \beta_p \]

\[Y_i = X_i \beta + \epsilon_i \]

\[Y = X \beta + \epsilon \]

- Measurements from different subjects independent
- Measurements from same subject typically correlated.
Parametric models for covariance structure

Three sources of random variation in a typical set of longitudinal data:

• Random effects (variation between subjects)
 – characteristics of individual subjects
 – for example, intrinsically high or low responders
 – influence extends to all measurements on the subject in question.
Parametric models for covariance structure

Three sources of random variation in a typical set of longitudinal data:

- Random effects
- Serial correlation (variation over time within subjects)
 - measurements taken close together in time typically more strongly correlated than those taken further apart in time
 - on a sufficiently small time-scale, this kind of structure is almost inevitable
Parametric models for covariance structure

Three sources of random variation in a typical set of longitudinal data:

- Random effects
- Serial correlation
- Measurement error
 - when measurements involve delicate determinations, duplicate measurements at same time on same subject may show substantial variation

Diggle, Heagerty, Liang and Zeger (2002, Chapter 5)
Some simple models

- Compound symmetry

\[Y_{ij} - \mu_{ij} = U_i + Z_{ij} \]

\[U_i \sim \text{N}(0, \nu^2) \]

\[Z_{ij} \sim \text{N}(0, \tau^2) \]

Implies that \(\text{Corr}(Y_{ij}, Y_{ik}) = \frac{\nu^2}{\nu^2 + \tau^2} \), for all \(j \neq k \)
• Random intercept and slope

\[Y_{ij} - \mu_{ij} = U_i + W_it_{ij} + Z_{ij} \]

\[(U_i, W_i) \sim \text{BVN}(0, \Sigma) \]

\[Z_{ij} \sim \text{N}(0, \tau^2) \]

Often fits short sequences well, but extrapolation dubious, for example \(\text{Var}(Y_{ij}) \) quadratic in \(t_{ij} \)
- Autoregressive

\[Y_{ij} - \mu_{ij} = \alpha(Y_{i,j-1} - \mu_{i,j-1}) + Z_{ij} \]

\[Y_{i1} - \mu_{i1} \sim \mathcal{N}\{0, \tau^2/(1 - \alpha^2)\} \]

\[Z_{ij} \sim \mathcal{N}(0, \tau^2), \quad j = 2, 3, \ldots \]

Not a natural choice for underlying continuous-time processes
Stationary Gaussian process

\[Y_{ij} - \mu_{ij} = W_i(t_{ij}) \]

\(W_i(t)\) a continuous-time Gaussian process

\[\mathbb{E}[W(t)] = 0 \quad \text{Var}\{W(t)\} = \sigma^2 \]

\[\text{Corr}\{W(t), W(t - u)\} = \rho(u) \]

\(\rho(u) = \exp(-u/\phi)\) gives continuous-time version
of the autoregressive model
Time-varying random effects

intercept and slope

![Graph showing time-varying random effects with varying intercepts and slopes over time.](image-url)
Time-varying random effects: continued

stationary process
- A general model

\[Y_{ij} - \mu_{ij} = d'_{ij} U_i + W_i(t_{ij}) + Z_{ij} \]

\[U_i \sim \text{MVN}(0, \Sigma) \]
(random effects)

\[d_{ij} = \text{vector of explanatory variables for random effects} \]

\[W_i(t) = \text{continuous-time Gaussian process} \]
(serial correlation)

\[Z_{ij} \sim \text{N}(0, \tau^2) \]
(measurement errors)

Even when all three components of variation are needed in principle, one or two may dominate in practice.
The variogram of the general model (stationary case)

\[Y_{ij} - \mu_{ij} = U_i + W_i(t_{ij}) + Z_{ij} \]

\[V(u) = \tau^2 + \sigma^2 \{1 - \rho(u)\} \quad \text{Var}(Y_{ij}) = \nu^2 + \sigma^2 + \tau^2 \]
Fitting the model: non-technical summary

- Ad hoc methods won’t do
- Likelihood-based inference is the statistical gold standard
- But be sure you know what you are estimating when there are missing values
Maximum likelihood estimation (V_0 known)

Log-likelihood for observed data y is

\[
L(\beta, \sigma^2, V_0) = -0.5 \left\{ nm \log \sigma^2 + m \log |V_0| \\
+ \sigma^{-2} (y - X\beta)'(I \otimes V_0)^{-1} (y - X\beta) \right\},
\]

$I \otimes V_0$ denotes block-diagonal matrix with non-zero blocks V_0

Given V_0, estimator for β is

\[
\hat{\beta}(V_0) = (X'(I \otimes V_0)^{-1} X)^{-1} X'(I \otimes V_0)^{-1} y,
\]

Explicit estimator for σ^2 also available as

\[
\hat{\sigma}^2(V_0) = RSS(V_0)/(nm)
\]

\[
RSS(V_0) = \{ y - X\hat{\beta}(V_0) \}'(I \otimes V_0)^{-1} \{ y - X\hat{\beta}(V_0) \}.
\]
Maximum likelihood estimation, V_0 unknown

Substitute (2) and (3) into (1) to give reduced log-likelihood

$$\mathcal{L}(V_0) = -0.5m[n \log\{RSS(V_0)\} + \log |V_0|]. \quad (4)$$

Numerical maximization of (4) then gives \hat{V}_0, hence $\hat{\beta} = \hat{\beta}(\hat{V}_0)$ and $\hat{\sigma}^2 = \hat{\sigma}^2(\hat{V}_0)$.

- Dimensionality of optimisation is $\frac{1}{2}n(n + 1) - 1$
- Each evaluation of $\mathcal{L}(V_0)$ requires inverse and determinant of an n by n matrix.
A random effects model for CD4 cell counts

data<-read.table("../data_and_figures/CD4.data",header=T)
data[1:3,]
time<-data$time
CD4<-data$CD4
plot(time,CD4,pch=19,cex=0.25)
id<-data$id
uid<-unique(id)
for (i in 1:10) {
 take<-(id==uid[i])
 lines(time[take],CD4[take],col=i,lwd=2)
}
Simple linear model assuming uncorrelated residuals
#
fit1<-lm(CD4~time)
summary(fit1)
#
random intercept and slope model
#
library(nlme)
?lme
fit2<-lme(CD4~time,random=~1|id)
summary(fit2)
make fitted value constant before sero-conversion
#
timeplus<-time*(time>0)
fit3<-lme(CD4~timeplus,random=~1|id)
summary(fit3)
tfit<-0.1*(0:50)
Xfit<-cbind(rep(1,51),tfit)
fit<-c(Xfit%*%fit3$coef$fixed)
Vmat<-fit3$varFix
Vfit<-diag(Xfit%*%Vmat%*%t(Xfit))
upper<-fit+2*sqrt(Vfit)
lower<-fit-2*sqrt(Vfit)
#
plot fit with 95% point-wise confidence intervals
#
plot(time,CD4,pch=19,cex=0.25)
lines(c(-3,tfit),c(upper[1],upper),col="red")
lines(c(-3,tfit),c(lower[1],lower),col="red")
3. Missing values and dropouts

Issues concerning missing values in longitudinal data can be addressed at two different levels:

- **technical:** can the statistical method I am using cope with missing values?
- **conceptual:** *why* are the data missing? Does the fact that an observation is missing convey partial information about the value that would have been observed?

These same questions also arise with cross-sectional data, but the correlation structure of longitudinal data can sometimes be exploited to good effect, by modelling how the probability of dropout for each person depends on their previously observed measurements.
Rubin’s classification

- **MCAR (completely at random):** $P(\text{missing})$ depends neither on observed nor unobserved measurements

- **MAR (at random):** $P(\text{missing})$ depends on observed measurements, but not on unobserved measurements

- **MNAR (not at random):** conditional on observed measurements, $P(\text{missing})$ depends on unobserved measurements.

Rubin (1976)
Dropout

Once a subject goes missing, they never return

Example: Longitudinal clinical trial

- completely at random: patient leaves the study because they move house
- at random: patient leaves the study on their doctor’s advice, based on observed measurement history
- not at random: patient misses their appointment because they are feeling unwell.

Little (1995)
Modelling the missing value process

- $Y = (Y_1, ..., Y_n)$, intended measurements on a single subject
- $t = (t_1, ..., t_n)$, intended measurement times
- $M = (M_1, ..., M_n)$, missingness indicators
 - for dropout, M reduces to a single dropout time D, in which case:
 - $(Y_1, ..., Y_{D-1})$ observed
 - $(Y_D, ..., Y_n)$ missing

A model for data subject to missingness is just a specification of the joint distribution

$[Y, M]$
Modelling the missing value process: three approaches

- **Selection factorisation**

 \[[Y, M] = [Y][M|Y] \]

- **Pattern mixture factorisation**

 \[[Y, M] = [M][Y|M] \]

- **Random effects**

 \[[Y, M] = \int [Y|U][M|U][U]dU \]
Comparing the three approaches

- **Pattern mixture factorisation** has a natural data-analytic interpretation (sub-divide data into different dropout-cohorts)

- **Selection factorisation** may have a more natural mechanistic interpretation in the dropout setting (avoids conditioning on the future)

- **Random effects** conceptually appealing, especially for noisy measurements, but make stronger assumptions and usually need computationally intensive methods for likelihood inference
Fitting a model to data with dropouts

- **MCAR**

 1. almost any method will give sensible point estimates of mean response profiles

 2. almost any method which takes account of correlation amongst repeated measurements will give sensible point estimates and standard errors
MAR

1. likelihood-based inference implicitly assumes MAR

2. for inferences about a hypothetical dropout-free population, there is no need to model the dropout process explicitly

3. but be sure that a hypothetical dropout-free population is the required target for inference
- MNAR

1. joint modelling of repeated measurements and dropout times is (more or less) essential

2. but inferences are likely to be sensitive to modelling assumptions that are difficult (or impossible) to verify empirically
Proof: Partition Y for each subject into observed and missing components, $Y = (Y_o, Y_m)$ and let M denote binary vector of missingness indicators. Likelihood for observed data is

$$L = g(y_o, m) = \int f(y_o, y_m, m)dy_m$$

$$= \int f(y_o)f(y_m|y_o)p(m|y_o, y_m)dy_m$$

If $p(m|y_o, y_m) = p(m|y_o)$, take outside integral to give

$$L = p(m|y_o)f(y_o)$$

and log-likelihood contribution

$$\log L = \log p(m|y_o; \theta) + \log f(y_o|\theta)$$

- OK to ignore first term for likelihood inference about θ
- and no loss of efficiency if $\theta = (\theta_1, \theta_2)$ such that θ_1 and θ_2 parameterise $p(\cdot)$ and $f(\cdot)$, respectively.

But is inference about $f(\cdot)$ what you want?
Example

- Model is $Y_{ij} = \mu + U_i + Z_{ij}$ (random intercept)

- Dropout is MAR: $\logit(p_{ij}) = -1 - 2 \times Y_{i,j-1}$

- Observed means increase over time, but population mean μ is constant
PJD’s take on ignorability

For correlated data, dropout mechanism can be ignored only if dropouts are completely random.

In all other cases, need to:

- think carefully what are the relevant practical questions,
- fit an appropriate model for both measurement process and dropout process
- use the model to answer the relevant questions.

Diggle, Farewell and Henderson (2007)
Schizophrenia trial data

- Data from placebo-controlled RCT of drug treatments for schizophrenia:
 - Placebo; Haloperidol (standard); Risperidone (novel)

- \(Y = \) sequence of weekly PANSS measurements

- \(F = \) dropout time

- Total \(m = 516 \) subjects, but high dropout rates:

<table>
<thead>
<tr>
<th>week</th>
<th>missing</th>
<th>proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0.01</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>0.14</td>
</tr>
<tr>
<td>4</td>
<td>122</td>
<td>0.24</td>
</tr>
<tr>
<td>6</td>
<td>205</td>
<td>0.40</td>
</tr>
<tr>
<td>8</td>
<td>251</td>
<td>0.49</td>
</tr>
</tbody>
</table>

- Dropout rate also treatment-dependent (\(P > H > R \))
Schizophrenia data
PANSS responses from haloperidol arm
Dropout is not completely at random.
Schizophrenia trial data
Mean response (random effects model)
Schizophrenia trial data
Empirical and fitted variograms
Schizophrenia trial data: summary

- dropout is not MCAR
- MAR model apparently fits well, but:
 - hard to distinguish empirically between different MAR models;
 - and we haven’t formally investigated evidence for informative dropout
- Fitted means relate to hypothetical, dropout-free population
Embedding MAR within an MNAR model

1. Diggle and Kenward

 Measurement model

 General linear model for $Y_i = \{Y_{it} : t = 1, ..., n\}$
 (balanced data)

 Dropout model

 Logistic regression:

 $$\text{logit } P(D_i = t|Y_i) = \alpha + \beta Y_{i,t-1} + \gamma Y_{it}$$

 Diggle and Kenward, 1994
2. Barrett, Diggle, Henderson and Taylor-Robinson

Hybrid time-scales

Continuous-time measurement model

\[Y_{ij} = \mu_{ij} + S_i(t_{ij}) + Z_{ij} \]

Discrete-time survival model

\[U_{ik} = \{ S_i(u_k) : k = 1, \ldots, N \} \]

Linkage

\[P(D_i = d | D_i > d - 1, U) = 1 - \Phi \left(\tilde{\mu}_{id} + \sum_{k=1}^{d} \gamma_k U_{ik} \right) \]

Barrett, Diggle, Henderson and Taylor-Robinson, 2015
4. Generalized linear models

- random effects models
- transition models
- marginal models

Diggle, Heagerty, Liang and Zeger (2002, Chapter 7)
Random effects GLM

Responses Y_1, \ldots, Y_n on an individual subject conditionally independent, given unobserved vector of random effects U

$U \sim g(u)$ represents properties of individual subjects that vary randomly between subjects

- $E(Y_j|U) = \mu_j : h(\mu_i) = x_j'\beta + U'\alpha$
- $\text{Var}(Y_j|U) = \phi v(\mu_j)$
- (Y_1, \ldots, Y_n) are mutually independent conditional on U.

Likelihood inference requires evaluation of

$$f(y) = \int \prod_{j=1}^n f(y_j|U)g(U)dU$$
Transition GLM

Each Y_j modelled conditionally on preceding $Y_1, Y_2, \ldots, Y_{j-1}$.

- $E(Y_j|\text{history}) = \mu_j$
- $h(\mu_j) = x_j'\beta + \sum_{k=1}^{j-1} Y_{j-k}' \alpha_k$
- $\text{Var}(Y_j|\text{history}) = \phi v(\mu_j)$

Construct likelihood as product of conditional distributions, usually assuming restricted form of dependence.

Example: $f_k(y_j|y_1, \ldots, y_{j-1}) = f_k(y_j|y_{j-1})$

Need to condition on y_1 as model does not directly specify marginal distribution $f_1(y_1)$.
Marginal GLM

Let $h(\cdot)$ be a link function which operates component-wise,

- $E(y) = \mu : h(\mu) = X\beta$
- $\text{Var}(y_i) = \phi v(\mu_i)$
- $\text{Corr}(y) = R(\alpha)$.

Not a fully specified probability model

May require constraints on variance function $v(\cdot)$ and correlation matrix $R(\cdot)$ for valid specification

Inference for β uses generalized estimating equations

Liang and Zeger (1986)
What are we estimating?

- in marginal modelling, β measures population-averaged effects of explanatory variables on mean response.

- in transition or random effects modelling, β measures effects of explanatory variables on mean response of an individual subject, conditional on

 - subject’s measurement history (transition model)
 - subject’s own random characteristics U_i (random effects model)
Example: Simulation of a logistic regression model, probability of positive response from subject i at time t is $p_i(t)$,

$$\text{logit}\{p_i(t)\} : \alpha + \beta x(t) + \gamma U_i,$$

$x(t)$ is a continuous covariate and U_i is a random effect.
Example: Effect of mother’s smoking on probability of intra-uterine growth retardation (IUGR).

Consider a binary response $Y = 1/0$ to indicate whether a baby experiences IUGR, and a covariate x to measure the mother’s amount of smoking.

Two relevant questions:

1. **public health:** by how much might population incidence of IUGR be reduced by a reduction in smoking?

2. **clinical/biomedical:** by how much is a baby’s risk of IUGR reduced by a reduction in their mother’s smoking?

Question 1 is addressed by a marginal model, question 2 by a random effects model.
R software

The following is almost certainly an incomplete list.

- **Marginal models**

 Function `gee` within package of same name

- **Random effects models**

 Function `glmmPQL` within MASS package or `lmer` within `lme4` (but note evaluation of likelihood uses approximate methods that may perform badly if random effects are high-dimensional). Package `glmmBUGS` is a Bayesian alternative.

- **Transition models**

 Standard `glm` function, after computing values of required functions of lagged responses to be used as explanatory variables.
Illustration of marginal modelling

```r
set.seed(2346)
x = rep(1:10, 50)
logit = 0.1 * (x - mean(x))
subject = rep(1:50, each = 10)
re = 2 * rnorm(50)
re = rep(re, each = 10)
prob = exp(re + logit) / (1 + exp(re + logit))
y = (runif(500) < prob)
fit1 = glm(y ~ x, family = binomial)
summary(fit1)
library(gee)
fit2 <- gee(y ~ x, id = subject, family = binomial)
summary(fit2)
```
5. Joint modelling: repeated measurements and time-to-event outcomes

- what is it?
- why do it?
- random effects models
Joint modelling: what is it?

- Subjects $i = 1, ..., m$.
- Longitudinal measurements Y_{ij} at times t_{ij}, $j = 1, ..., n_i$.
- Times-to-event F_i (possibly censored).
- Baseline covariates x_i.
- Parameters θ.

$[Y, F|x, \theta]$
Joint modelling: what is it?
Joint modelling: why do it?

- To analyse failure time F, whilst exploiting correlation with an imperfectly measured, time-varying risk-factor Y

- To analyse a longitudinal outcome measure Y with potentially informative dropout at time F

- Because relationship between Y and F is of direct interest
Random effects models

- linear Gaussian sub-model for repeated measurements
- proportional hazards sub-model with time-dependent frailty for time-to-event
- sub-models linked through shared random effects
Example: Wulfsohn and Tsiatis, 1997

latent random effect; measurement model; hazard model

Latent random effect

Random intercept and slope: \(U_i = (U_{0i}, U_{1i}) \)

Laird and Ware, 1982

Measurement model

\[Y_{ij} = \mu_i(t_{ij}) + U_{0i} + U_{1i}t_{ij} + Z_{ij} \]

- \(Z_{ij} \sim N(0, \tau^2) \)
- \(\mu_i(t_{ij}) = X_{1i}(t_{ij})\beta_1 \)
- \((U_{0i}, U_{1i}) \sim BVN(0, \Sigma) \)
Hazard model

\[h_i(t) = h_0(t) \exp\{\theta(U_{0i} + U_{1i}t_{ij})\} \]

- \(h_0(t) \) = non-parametric baseline hazard
- \(\theta(U_{0i} + U_{1i}t_{ij}) \) = linear predictor for hazard, proportional to random effect
Example: Henderson, Diggle and Dobson, 2000

latent stochastic process; measurement model; hazard model

Latent stochastic process

Bivariate Gaussian process $R(t) = \{R_1(t), R_2(t)\}$

- $R_k(t) = D_k(t)U_k + W_k(t)$
- $\{W_1(t), W_2(t)\}$: bivariate stationary Gaussian process
- (U_1, U_2): multivariate Gaussian random effects

Bivariate process $R(t)$ realised independently between subjects
Measurement model

\[Y_{ij} = \mu_i(t_{ij}) + R_{1i}(t_{ij}) + Z_{ij} \]

- \(Z_{ij} \sim N(0, \tau^2) \)
- \(\mu_i(t_{ij}) = X_{1i}(t_{ij})\beta_1 \)

Hazard model

\[h_i(t) = h_0(t) \exp\{X_2(t)\beta_2 + R_{2i}(t)\} \]

- \(h_0(t) = \text{non-parametric baseline hazard} \)
- \(\eta_2(t) = X_{2i}(t) + R_{2i}(t) = \text{linear predictor for hazard} \)
Two (relatively) open questions

- Repeated measurements and recurrent events
- Informative follow-up

Note: what constitutes a missing value if follow-up schedule is not pre-specified?
The joineR package

Exploring the mental data-set

library(joineR)
data(mental)
mental[1:5,]
y<-as.matrix(mental[,2:7]) # convert data to matrix format
means<-matrix(0,3,6)
for (trt in 1:3) {
 ysub<-y[mental$treat==trt,]
 means[trt,]<-apply(ysub,2,mean,na.rm=TRUE)
}
residuals<-matrix(0,150,6)
for (i in 1:150) {
 residuals[i,]<-y[i,]-means[mental$treat[i],]
}
V<-cov(residuals,use="pairwise"); R<-cor(residuals,use="pairwise")
round(cbind(diag(V),R),3)
The joineR package

Setting up a jointdata object

```r
is.data.frame(mental)
mental.unbalanced <- to.unbalanced(mental, id.col = 1,
   times = c(0,1,2,4,6,8), Y.col = 2:7, other.col = 8:11)
names(mental.unbalanced)
names(mental.unbalanced)[3] <- "Y"
mental.long <- mental.unbalanced[, 1:3]
mental.surv <- UniqueVariables(mental.unbalanced,
   var.col = 6:7, id.col = 1)
mental.baseline <- UniqueVariables(mental.unbalanced,
   var.col = 4, id.col = 1)
mental.baseline$treat <- as.factor(mental.baseline$treat)  # !!!
mental.joint <- jointdata(longitudinal = mental.long,
   survival = mental.surv, baseline = mental.baseline,
   id.col = "id", time.col = "time")
summary(mental.joint)
```
The joineR package

Fitting a joint model

```r
fit<-joint(mental.joint,long.formula=Y~-1+treat+time, 
    surv.formula=Surv(surv.time,cens.ind)~treat, 
    model="intslope")
summary(fit)
set.seed(389712)
fit.se <- jointSE(fit, n.boot = 5)
# use much larger number of bootstrap samples in practice
set.seed(54912)
fit.se100 <- jointSE(fit, n.boot = 100,max.it=2000,tol=0.01, 
    print.detail=TRUE)
fit.se100
```
Take-home messages

• Correlation matters

• Longitudinal designs address a richer set of questions than cross-sectional designs

• But also raise challenges in formulating a valid, efficient analysis:

 – what, precisely, is the question?

 – what explicit and implicit assumptions does the proposed method of analysis make?

