On the Performance of Non-Orthogonal Multiple Access Systems with Partial Channel Information

Zheng Yang, Zhiguo Ding, Senior Member, IEEE, Pingzhi Fan, Fellow, IEEE, and George K. Karagiannidis, Fellow, IEEE

Abstract—In this paper, a downlink single-cell non-orthogonal multiple access (NOMA) network with uniformly deployed users is considered and an analytical framework to evaluate its performance is developed. Particularly, the performance of NOMA is studied by assuming two types of partial channel state information (CSI). For the first one, which is based on imperfect CSI, we present a simple closed-form approximation for the outage probability and the average sum rate, as well as their high signal-to-noise ratio (SNR) expressions. For the second type of CSI, which is based on second order statistics (SOS), we derive a closed-form expression for the outage probability and an approximate expression for the average sum rate for the special case two users. For the addressed scenario with the two types of partial CSI, the results demonstrate that NOMA can achieve superior performance compared to the traditional orthogonal multiple access (OMA). Moreover, SOS-based NOMA always achieves better performance than that with imperfect CSI, while it can achieve similar performance to the NOMA with perfect CSI at the low SNR region. The provided numerical results confirm that the derived expressions for the outage probability and the average sum rate match well with the Monte Carlo simulations.

Index Terms—Non-orthogonal multiple access, imperfect channel state information, second order statistics, uniform distribution.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been recognized as a promising candidate for the fifth generation (5G) networks, since NOMA can be easily combined with multi-user multiple-input multiple-output (MU-MIMO) techniques, heterogeneous networks, small cells and networks with high mobility for significantly enhancing the system performance [1], [2]. On the other hand, the downlink NOMA has been recently proposed to third generation partnership project (3GPP)–the long term evolution–advanced (LTE-A) systems [3], which can improve the spectral efficiency of LTE in the lower frequency bands. The key concept behind NOMA is that users’ signals are superimposed at the base station (BS) with different power allocation coefficients, and successive interference cancellation (SIC) is applied at the user with better channel condition, in order to remove the other users’ signals before detecting its own signal [4]. Note that the concept of NOMA is a special case of the information theoretic concept, superposition coding. It is worth pointing out that the key feature of NOMA is to take user fairness into consideration. For example, compared to conventional water-filling power allocation, NOMA allocates more power to users with worse channel conditions than those with better channel conditions, in order to realize a better trade-off between system throughput and user fairness. As a result, all users share the same time slot, frequency and spreading code, which leads to a better spectral efficiency.

A. Literature and Motivation

In [5], a coordinated superposition coding scheme was presented, which can improve the cell-edge users’ rates, without sacrificing the rates of the users who are close to the BS. Recently, the cooperative NOMA has been proposed in [6], where users with better channel conditions need to decode the signals for the others, and these users can be used as relays to help the BS to communicate with users with poor channel conditions. In [7], the uplink communications of NOMA systems has been considered, while the impact of user pairing in NOMA systems over small-scale fading, with fixed power allocation and cognitive radio inspired power allocation, has been investigated in [8]. For the addressed single-antenna downlink NOMA scenario, superposition coding and dirty paper coding yield the same performance, and both achieve the capacity of the broadcasting channel [9]. As shown in [10], the use of NOMA can further improve the spectral efficiency of MIMO systems, e.g., users in one cell are divided into multiple groups, where MIMO technologies can be used to cancel inter-group interference and NOMA can be implemented among the users within one group. Furthermore, in [11], the outage probability and the average sum rate of the downlink single-cell NOMA systems have been studied, by assuming that randomly deployed users are independently and identically distributed (i.i.d.) inside a disk, i.e., the distribution of users follows a general binomial point process (BPP) [12]. Note that such an assumption it is true in real-world wireless networks [13], [14]. Recently, optimal power allocation based on average CSI has been considered in [15], by using the outage probability as the criterion, whereas the ergodic capacity of MIMO-NOMA systems with second order statistical (SOS) CSI at the transmitter has been studied in [16]. However, the existing works in [15] and [16] focused on the case that user locations are fixed, i.e., distances and path loss are deterministic. Therefore, most of the existing works in the open literature about NOMA require the perfect knowledge of CSI. In practice, the assumption of perfect CSI at transmitters might not be valid, since in order to obtain
perfect CSI a significant system overhead will be consumed, especially in a wireless network with a large number of users. Furthermore, towards 5G, there will be a growing demand for mobile services, such as serving users in high-speed trains, where due to the rapidly changing channel, perfect CSI at the transmitter is challenging to be achieved. Motivated by these practical constraints, we focus on the use of partial CSI, which is important to reduce the system complexity and improve the spectral efficiency of NOMA. Furthermore, we compare the results of NOMA with partial CSI to the case with perfect CSI, which provides a precise guidance for realizing the performance gains of NOMA in practice.

In this paper, we consider a downlink single-cell NOMA network, where the users are uniformly distributed in a disk and the BS is located at the center. The impact of two types of partial CSI, named imperfect CSI and SOS, on the performance of NOMA systems is investigated. In particular, the two different types of partial CSI are defined as follow.

- **Imperfect CSI**: We assume the channel estimation error model presented in [17], [18], where the BS and the users have an estimate of the channel and a priori knowledge of the variance of the estimation error.
- **SOS**: Only the distances between the BS and the users are known. In a single-tier network, the distance varies much slower than small scale fading. Therefore, it is more realistic to assume the knowledge of the SOS of the wireless channels.

B. Contribution

The contribution of this paper is three-fold:

1) We investigate the impact of imperfect CSI on the performance of the NOMA network. More specifically, we focus on the minimum mean square error (MMSE) channel estimation error model. In such a scenario, a simple closed-form approximation for the outage probability is derived. Also, exact closed-form expressions for the outage probability are provided for the cases where the path loss exponent is two, as well for the NOMA systems based on perfect CSI with arbitrary path loss exponent. In addition, we study the high signal-to-noise ratio (SNR) outage behaviour and show that all users have a diversity order of zero, since the channel estimation error acts as a source of interference in the addressed system. However, for the special case with perfect CSI, the k-th best user achieves a diversity gain of $M−k+1$, where M is the number of users, which is superior to traditional OMA. Furthermore, an approximation of the average sum rate is also derived, and we use these analytical results to compare with the traditional OMA, which demonstrates that the average sum rate of NOMA systems can always outperform conventional OMA.

2) We derive an exact expression for outage probability in the case that the SOS of the channels is known. Since the channels are sorted accordingly by distances, order statistics of the distance is applied to yield closed-form expressions for the outage probability [19]. In addition, we find that all users in this scheme achieve a diversity gain one, which is the same as in conventional OMA when CSI is also unknown. However, the former’s outage performance is much better than the latter one for all users, even when the channels of OMA are also ordered by SOS. Moreover, an approximation for the average sum rate in the two users case is also obtained by using the Gauss-Chebyshev integration technique [20]. With the sum rate as the criterion, the SOS based NOMA is still superior to conventional OMA, which is consistent to the comparison based on the outage performance.

3) We also carried out some comparison between the two different NOMA schemes based on imperfect CSI and SOS, respectively. The presented analytical and numerical results demonstrate that the SOS based NOMA systems always achieve better performance than the case with imperfect CSI. Furthermore, the performance of the SOS based NOMA systems can achieve similar performance to that with perfect CSI at low SNR. This can be explained because large scale path loss is dominant for many wireless communication scenarios.

C. Structure

The rest of the paper is organized as follows. Section II describes the system model. Section III studies the outage performance and the average sum rate of NOMA with imperfect CSI, while Section IV investigates the performance of NOMA systems based on SOS. In Section V, numerical results are presented and Monte Carlo simulations are applied to verify the accuracy of the proposed analysis. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider a single-cell downlink wireless network in which the locations of M users are uniformly distributed in a disc with radius D, denoted by D, and the BS is located at the center of the disc. It is assumed that all users are served by the same orthogonal channel use, which can be a time slot, a spreading code or a frequency channel. Furthermore, assume that all the users and the BS are equipped with a single antenna. The channel between the user U_i and the BS is denoted by $r_i = h_i/d_i^\alpha$, where $h_i \sim \mathcal{CN}(0,1)$, d_i is the distance between the BS and the user U_i, and α is the path loss exponent. It is well known that the optimal system performance can be achieved with perfect CSI. However, to obtain instantaneous perfect CSI, the backhaul signalling overhead increases significantly, which, consequently, will then increase the system complexity. Based on this fact, in this paper we consider two types of practical channel models: imperfect CSI and SOS. The two different NOMA systems based on these models are described as follow.

A. NOMA based on Imperfect CSI

In this paper, we assumed that the feedback to the transmitter is instantaneous and error free, which means that this CSI is also achievable at transmitter whatever CSI the receiver has. Note that this assumption has been commonly used in the literature [17], [18], [21]–[23]. Let the estimate for the channel r_k be \hat{r}_k. By assuming MMSE estimation error, the following holds [21]–[23]

$$r_k = \hat{r}_k + \epsilon,$$ \hspace{1cm} (1)
where ϵ is the channel estimation error, which follows a complex Gaussian distribution denoted by $\epsilon \sim CN(0, \sigma_\epsilon^2)$. The channel estimate \hat{r}_k is thus zero-mean complex Gaussian with variance $\sigma_\epsilon^2 = d_k^{-\alpha}$ [21]–[23]. Note that the parameter σ_ϵ^2 indicates the quality of channel estimation.

Without loss of generality, assume that the estimated channel gain in the cell are sorted as $|\hat{r}_1|^2 \geq |\hat{r}_2|^2 \geq \cdots \geq |\hat{r}_M|^2$, and denote the corresponding users as U_1, \ldots, U_M. According to NOMA scheme, the signal s_l ($l=1, 2, \cdots, M$), which sent by the BS to the user U_l ($l=1, 2, \cdots, M$) is superimposed as

$$x = \sum_{i=1}^{M} \sqrt{\alpha_l} P s_l,$$

where w_k is zero-mean additive white Gaussian noise (AWGN) with variance σ^2.

Based on (2), SIC can be employed at U_k. In other words, U_k needs to detect the message s_l to the user U_l ($M \geq l \geq k+1$) firstly, before decoding its own signal. For example, the data rate for U_k to decode the message to the user U_M is $R_{M\rightarrow k} = \log_2 \left(1 + \frac{\alpha_M |\hat{r}_M|^2}{|\hat{r}_K|^2 \sum_{j=1}^{l-1} \alpha_j + \sigma_\epsilon^2 + \frac{1}{\rho}} \right)$. If U_k can decode the signal to U_M successfully, i.e., $R_{M\rightarrow k} \geq R^*_M$, where R^*_M denotes the targeted rate of user U_M, the signal s_M can be removed at U_k. After that, U_k can detect the signal from U_l ($M > l \geq k+1$), step by step, until U_k can correctly decode the signal s_{k+1}, which is for the user U_{k+1}. The general rate expression for U_k to detect the signal U_l, $M \geq l \geq k+1$ is given by

$$R_{l\rightarrow k} = \log_2 \left(1 + \frac{\alpha_l |\hat{r}_l|^2}{|\hat{r}_K|^2 \sum_{j=1}^{l-1} \alpha_j + \sigma_\epsilon^2 + \frac{1}{\rho}} \right).$$

Now, assuming that the user U_k decodes always correctly the message of the user U_l, $k+1 \leq l \leq M$, the rate of the user U_k can be expressed as

$$R_k = \log_2 \left(1 + \frac{\alpha_k |\hat{r}_k|^2}{|\hat{r}_K|^2 a_{k-1} + \sigma_\epsilon^2 + \frac{1}{\rho}} \right), \quad k = M, \cdots, 3, 2,$$

where $a_{k-1} = \sum_{l=1}^{k-1} \alpha_l$, $\rho = \frac{P}{\sigma^2}$ is the transmit SNR, and $R_1 = \log_2 \left(1 + \frac{\alpha_1 |\hat{r}_1|^2}{\sigma_\epsilon^2 + \frac{1}{\rho}} \right)$.

B. NOMA based on SOS

Let the k-th nearest user to the BS be indexed as U_k ($k = 1, 2, \cdots, M$), and the corresponding distance is denoted as d_k. Here we assume that the BS is known, and the distances are sorted as follows: $d_1 \leq d_2 \leq \cdots \leq d_M$. A composite channel model is used in this paper, modelled by small-scale Rayleigh fading and large-scale path loss. Note that the channel gain is $

$$|r_k|^2 = |b_k|^2 d_k^{-\alpha},$$

where $X = d_k^{-\alpha}$ is a heavy tail random variable such that

$$\Pr\{X > x\} = x^{\alpha - 2} / X^2,$$

since the users are uniformly distributed in the disk. Suppose that a heavy tail random variable is multiplied by a random variable $Y = |h_k|^2$ with finite moments, i.e., $E\{Y^{\frac{\alpha}{2}}\} < \infty$. Then

$$\Pr\{XY > z\} = E\{Y^{\frac{\alpha}{2}}\} \frac{z^{-\alpha/2}}{\mathcal{R}^2} (1 + o(1)), \quad z \to \infty,$$

which means the small-scale fading weekly changes its distribution [24]. This is the motivation why we order the users based on their distances.

It is important to point out that the composite channel gains, r_k, are not necessarily ordered, i.e., r_j might be larger than r_k for $j > k$. Based on NOMA protocols, the received signal at user U_k in the cell \mathcal{D} is given as

$$y_k = r_k \sum_{l=1}^{M} \sqrt{\alpha_l} P s_l + w_k.$$

Similar to NOMA with imperfect CSI, denote $R'_{l\rightarrow k}$ as the rate of the k-th nearest user U_k to detect the message from the l-th nearest user U_l. Assume that the BS can decode the signal from U_l for $k < l$ successfully, i.e., $R_{l\rightarrow k} = R^*_l = 1$, where

$$R'_{l\rightarrow k} = \log_2 \left(1 + \frac{\alpha_l |r_k|^2}{|r_k|^2 \sum_{j=1}^{l-1} \alpha_j + \frac{1}{\rho}} \right).$$

If $R_{l\rightarrow k} \geq R^*_l$ holds for all $k < l$, the rate of the k-th nearest user U_k can be expressed as

$$R_k = \log_2 \left(1 + \frac{\alpha_k |r_k|^2}{|r_k|^2 a_{k-1} + \frac{1}{\rho}} \right), \quad k = M, \cdots, 3, 2,$$

and $R_1 = \log_2 \left(1 + \rho \alpha_1 |r_1|^2 \right)$.

In this mode, the transmitter sends information at a fixed rate and the throughput is determined by evaluating the outage probability.

III. PERFORMANCE OF IMPERFECT CSI IN NOMA SYSTEMS

In this section, we study the outage performance and the average sum rate of NOMA systems with imperfect CSI. Recall that the outage probability is to measure the event that the data rate supported by instantaneous channel realizations is less than a targeted user rate. Therefore, the outage probability is an important performance metric to demonstrate how the predefined quality of service (QoS) is met in delay-sensitive communication systems, where the information is sent by the transmitter at a fixed rate, and the network throughput is defined as the coverage probability times the fixed rate. Recall that detection error events can be categorized into two cases: One is for the event where there is an error detection when outage does not occur, and the other is for the event that there is an error detection when outage occurs. By using optimal coding with infinite length, the probability
of the former approaches zero, and the latter is dominant [25]. This is another motivation to use the Gauss-Chebyshev integration, where the average sum capacity, we assume that the average data rate can be used for the case in which the transmitted data rates are determined adaptively according to the users’ channel conditions. This case corresponds to delay tolerant communications. Note that to obtain the outage performance and the average sum capacity, we assume that optimal channel coding and modulation schemes are used. The design of practical coding and modulation is a promising future direction, but is beyond the scope of this paper.

A. Outage Probability

The following Theorem provides an approximated expression for the outage probability for the whole range of SNR and arbitrary path loss factor of NOMA systems with channel estimation error.

Theorem 1: The outage probability of the \(k \)-th user achieved by the NOMA scheme, which is based on imperfect CSI, can be approximated as

\[
P_{\text{out},k}^{k,t} \approx k(k_M) \sum_{r=0}^{k-1} \frac{(-1)^r}{r + M - k + 1} \left(1 - \frac{1}{nD} \sum_{i=1}^{n} x_i \right) x_i^{\alpha - \sigma_e^2}
\]

where \(x_i = \frac{D}{2} (1 + \cos \frac{2\pi n}{2^{n} - \pi}) \) and \(n \) is an approximation parameter due to the use of the Gauss-Chebyshev integration. With the use of imperfection in the channel estimation, the NOMA system is interference limited, i.e., the achievable data rates for some users will be quite small, which is applicable to many applications related to the Internet of Things. For example, some of the users, such as healthcare sensors or smart meters, only need to be served with low data rates. In this case, the NOMA scheme can be applied to serve these users at the same time, which significantly improves the spectral efficiency. Note that if the users’ power allocation coefficients are optimized according to instantaneous channel conditions, the performance can be further enhanced [15], which is beyond the scope of this paper.

In addition, the outage performance achieved by NOMA with imperfect CSI can be evaluated through Theorem 1 without carrying out Monte Carlo simulations, although (8) is consisting of elementary function, this analytical result can not be used to investigate the diversity gain. Motivated by this, the high SNR approximation of the outage probability in (8) is provided in the following Proposition.

Proposition 1: In the high SNR region, i.e., \(\rho \to \infty \), then \(\eta \to 0 \), the outage probability achieved by NOMA with imperfect CSI, i.e., \(\sigma_e^2 \neq 0 \), can be approximated as follows:

\[
P_{\text{out},k}^{k,t} \approx k(k_M) \sum_{r=0}^{k-1} \frac{(-1)^r}{r + M - k + 1} \left(1 - \frac{1}{nD} \sum_{i=1}^{n} x_i \right) x_i^{\alpha - \sigma_e^2}
\]

where \(\tilde{c} = \max_{k+1 \leq k \leq M} \left(\frac{\varepsilon_i}{x_i} \right) \).

Proof: When \(\eta \to 0 \) and \(\sigma_e^2 \neq 0 \), the term \(\exp \left(\frac{\eta(\rho e^{2} + 1)}{x_i^{\alpha - \sigma_e^2}} \right) \) in (8) can be rewritten as:

\[
\exp \left(\frac{\eta(\rho e^{2} + 1)}{x_i^{\alpha - \sigma_e^2}} \right) \approx \exp \left(\frac{\tilde{c} \rho e^{2} + 1}{x_i^{\alpha - \sigma_e^2}} \right).
\]

Substituting (10) into (8), (9) is derived.

Proposition 1 demonstrates that with imperfect CSI, the users in NOMA systems achieve no diversity gain, which is due to the fact that the channel estimation error acts an interference source and significantly affects the outage performance.

For the special case, with the path loss exponent, \(\alpha = 2 \), we can obtain the closed-form expression for the outage probability as follow.

Corollary 1: When \(\alpha = 2 \), the outage probability of the \(k \)-th user in the NOMA protocol, is given by

\[
P_{\text{out}}^{k,t} = k(k_M) \sum_{r=0}^{k-1} \frac{(-1)^r}{r + M - k + 1} \left[1 + \frac{\exp \left(\frac{\eta(\rho e^{2} + 1)}{x_i^{\alpha - \sigma_e^2}} \right)}{D^2 \sigma_e^2} \right]
\]

\[
\times \left(\exp \left(\frac{\eta(\rho e^{2} + 1)}{\sigma_e^2} \right) - \exp \left(\frac{\tilde{c} \rho e^{2} + 1}{\sigma_e^2} \right) \right) \left(1 - \sigma_e^2 D^2 \right) + \frac{\eta(\rho e^{2} + 1)}{\sigma_e^2} \left(\frac{1}{\sigma_e^2} - 1 \right) \right)
\]

where \(\eta(\rho e^{2} + 1) \) is an approximation parameter due to the use of the Gauss-Chebyshev integration, the NOMA system is interference limited, i.e., the achievable data rates for some users will be quite small, which is applicable to many applications related to the Internet of Things. For example, some of the users, such as healthcare sensors or smart meters, only need to be served with low data rates. In this case, the NOMA scheme can be applied to serve these users at the same time, which significantly improves the spectral efficiency. Note that if the users’ power allocation coefficients are optimized according to instantaneous channel conditions, the performance can be further enhanced [15], which is beyond the scope of this paper.

In addition, the outage performance achieved by NOMA with imperfect CSI can be evaluated through Theorem 1 without carrying out Monte Carlo simulations, although (8) is consisting of elementary function, this analytical result can not be used to investigate the diversity gain. Motivated by this, the high SNR approximation of the outage probability in (8) is provided in the following Proposition.

Proposition 1: In the high SNR region, i.e., \(\rho \to \infty \), then \(\eta \to 0 \), the outage probability achieved by NOMA with imperfect CSI, i.e., \(\sigma_e^2 \neq 0 \), can be approximated as follows:

\[
P_{\text{out},k}^{k,t} \approx k(k_M) \sum_{r=0}^{k-1} \frac{(-1)^r}{r + M - k + 1} \left(1 - \frac{1}{nD} \sum_{i=1}^{n} x_i \right) x_i^{\alpha - \sigma_e^2}
\]

where \(\tilde{c} = \max_{k+1 \leq k \leq M} \left(\frac{\varepsilon_i}{x_i} \right) \).

Proof: When \(\eta \to 0 \) and \(\sigma_e^2 \neq 0 \), the term \(\exp \left(\frac{\eta(\rho e^{2} + 1)}{x_i^{\alpha - \sigma_e^2}} \right) \) in (8) can be rewritten as:

\[
\exp \left(\frac{\eta(\rho e^{2} + 1)}{x_i^{\alpha - \sigma_e^2}} \right) \approx \exp \left(\frac{\tilde{c} \rho e^{2} + 1}{x_i^{\alpha - \sigma_e^2}} \right).
\]

Substituting (10) into (8), (9) is derived.

Proposition 1 demonstrates that with imperfect CSI, the users in NOMA systems achieve no diversity gain, which is due to the fact that the channel estimation error acts an interference source and significantly affects the outage performance.

For the special case, with the path loss exponent, \(\alpha = 2 \), we can obtain the closed-form expression for the outage probability as follow.

Corollary 1: When \(\alpha = 2 \), the outage probability of the \(k \)-th user in the NOMA protocol, is given by

\[
P_{\text{out}}^{k,t} = k(k_M) \sum_{r=0}^{k-1} \frac{(-1)^r}{r + M - k + 1} \left[1 + \frac{\exp \left(\frac{\eta(\rho e^{2} + 1)}{x_i^{\alpha - \sigma_e^2}} \right)}{D^2 \sigma_e^2} \right]
\]

\[
\times \left(\exp \left(\frac{\eta(\rho e^{2} + 1)}{\sigma_e^2} \right) - \exp \left(\frac{\tilde{c} \rho e^{2} + 1}{\sigma_e^2} \right) \right) \left(1 - \sigma_e^2 D^2 \right) + \frac{\eta(\rho e^{2} + 1)}{\sigma_e^2} \left(\frac{1}{\sigma_e^2} - 1 \right) \right)
\]
Substituting (12), (13) and (31) into (29), the proof is completed.

Note that the case with perfect CSI is also worth studying since it provides a performance upper bound for that with partial CSI, where the loss due to imperfect CSI can be clearly demonstrated. If perfect CSI is available, a closed-form expression for the outage probability can be derived in the following Corollary.

Corollary 2: When \(\sigma_2^2 = 0 \), i.e., with perfect CSI, the outage probability of the \(k \)-th best user in NOMA systems is given by

\[
P_{out, I}^{k, \sigma_2^2 = 0} = \sum_{r=0}^{k-1} \binom{M}{r} \frac{(-1)^r}{r + M - k + 1} \times \left(1 - \frac{2}{\alpha} \right) \frac{\gamma(\frac{2}{\alpha}, \bar{\eta}D^\alpha)}{D} r^{r + M - k + 1},
\]

where \(\gamma(a, b) \) is a lower incomplete gamma function.

Proof: When \(\sigma_2^2 = 0 \), the \(F_{\bar{\eta}^2 | z}(z) \) in (31) can be rewritten as

\[
F_{\bar{\eta}^2 | z}(z) = 1 - \frac{2}{\alpha D^2 z^\alpha} \gamma\left(\frac{2}{\alpha}, zD^\alpha\right).
\]

Substituting (15) into (29), the proof is completed.

Note that the outage performance of NOMA with perfect CSI has been already studied in [11], where an exact closed-form analytical result was presented, based on high SNR approximation. Compared to this result, the expression in (15) is more accurate for the whole range of SNR. This is because we use the exact expression for the cumulative distribution function (CDF) of the unordered composite channel gain, instead of its approximation, which is used in [11].

Proposition 2: In the high SNR region, i.e., \(\rho \rightarrow \infty \), which means \(\bar{\eta} \rightarrow 0 \), the outage probability achieved by NOMA with perfect CSI, i.e., \(\sigma_2^2 = 0 \), can be approximated as

\[
P_{out, I}^{k, \sigma_2^2 = 0} \approx k \binom{M}{k} \sum_{r=0}^{k-1} \frac{(-1)^r}{r + M - k + 1} \frac{2D^\alpha \bar{\eta}^r}{(\alpha + 2)^r + M - k + 1}.
\]

Proof: When \(\bar{\eta} \rightarrow 0 \) and \(\sigma_2^2 = 0 \), the second term in the bracket of (14) can be rewritten as [26]

\[
\frac{2}{\alpha D^2 z^\alpha} \gamma\left(\frac{2}{\alpha}, \bar{\eta}D^\alpha\right) = 1 + \sum_{q=1}^{\infty} \frac{(-1)^q \bar{\eta}^q D^\alpha}{q!(\alpha + q)}.
\]

Substituting (17) into (14), the proof of (16) is completed.

Proposition 2 can be used to study the diversity gain, since (16) can be rewritten as

\[
P_{out, I}^{k, \sigma_2^2 = 0} \approx A \rho^{-(M - k + 1)},
\]

where \(A \) is a constant and the \(k \)-th best user achieves a diversity gain of \(M - k + 1 \). Note that the users in NOMA systems achieve better diversity gain than those in traditional opportunistic OMA, with diversity order of one. This is because the bandwidth resources in NOMA systems are shared by all users at the same time slot, which enhances the spectral efficient and users fairness.

B. Average Sum Rate

In this subsection, we turn our attention to the average sum rate of NOMA systems with imperfect CSI. The Gauss-Chebyshev integration technique is applied to achieve a high level of accuracy for the whole range of SNR and arbitrary path loss factor.

Theorem 2: An approximation to the average sum rate of the NOMA protocols with imperfect CSI, is given by (18) in the top of the next page, where the summation is taken over all sequences of nonnegative integer indices \(t_1 \) through \(t_n \), such that the sum of all \(t_i \) is \(j \), \(h(z) = \exp\left(\frac{1}{\rho z^2} \sum_{i=1}^{n} \frac{t_i}{x_i - \sigma_i^2}\right) \).

\[
\sum_{\sigma} = \sum_{\sigma} \frac{(-1)^j}{\alpha} \frac{1}{\rho z^2} \frac{2^{j+1}}{\alpha} \gamma\left(\frac{2}{\alpha}, \bar{\eta}D^\alpha\right).
\]

Proof: See Appendix B.

Compared to Monte Carlo simulations, the approximation for the average sum rate provided in Theorem 2 can offer a simpler way to evaluate the NOMA systems average sum rate. For the special case with perfect CSI, the results have been considered in [11], but the closed-form expression from this existing work is only accurate at high SNR. The reason is that the Gauss-Chebyshev integration was applied to approximate the probability distribution function (PDF) of the unordered channel gain firstly, and then the average sum rate at high SNR was obtained in [11]. On the other hand, the results in (18) are accurate even in low and moderate SNR. This is because we obtain the exact expression for the PDF of the unordered channel gain, and then the Gaussian-Chebyshev integration is used to approximate the average sum rate, which yields much more accurate results.

For the special case of NOMA with perfect CSI, i.e., \(\sigma_2^2 = 0 \), and path loss exponent, \(\alpha = 2 \), the closed-form expression for the average sum rate can be obtained as in the following Corollary.

Corollary 3: A closed-form expression for the average sum rate of NOMA with perfect CSI and path loss factor \(\alpha = 2 \) is given by (19) in the top of the next page, where \(C \) is the Euler’s constant, \(g(x) = \sum_{p=1}^j \frac{(1)^p}{x^{p+1}} e^{\frac{1}{(p-1)x}} E_1\left(\frac{2D^2}{px}\right) + \frac{\sum_{q=1}^{j} \frac{(1)^{p+q}}{q!(p+q)}}{\sum_{q=1}^{j}} \right) - \frac{\sum_{j=1}^{p} \frac{(1)^{p+q}}{q!(p+q)}}{\sum_{q=1}^{j}} \ln\left(\frac{2D^2}{px}\right), x = a_k, a_{k-1}.

Proof: See Appendix C.

IV. PERFORMANCE OF SOS IN NOMA SYSTEMS

In this section, the outage probability and the average sum rate of the NOMA systems with only SOS are investigated as follow.

A. Outage Probability

A closed-form expression for the outage performance for different users in NOMA systems, is presented in the following Theorem.

Theorem 3: The outage probability of the \(k \)-th nearest user in NOMA protocols based on SOS is given by

\[
P_{out, II}^k = 1 - 2k \binom{M}{k} \sum_{j=0}^{M-k} \frac{(-1)^j}{D^{2(k+j)}} \frac{2^{k+(k+j)}}{\alpha} \gamma\left(\frac{2}{\alpha}, \bar{\eta}D^\alpha\right).
\]

\[
\sum_{\sigma} = \sum_{\sigma} \frac{(-1)^j}{\alpha} \frac{1}{\rho z^2} \frac{2^{j+1}}{\alpha} \gamma\left(\frac{2}{\alpha}, \bar{\eta}D^\alpha\right).
\]
\[R_{\text{ave},i} \approx - \sum_{k=1}^{M} \frac{k(M)}{k} \sum_{r=0}^{k-1} \frac{(k-1)^r}{r+k} \sum_{j=1}^{r+M-k+1} \left(\frac{M-k+1}{j} \right) \frac{\left(\frac{-\pi}{nD} \right)^j}{\sin \left(\frac{2i-1}{2n} \pi |x_i| \right)} t_i h(a_k) + \sum_{k=2}^{M} \frac{k(M)}{k} \sum_{r=0}^{k-1} \frac{(k-1)^r}{r+k} \sum_{j=1}^{r+M-k+1} \left(\frac{M-k+1}{j} \right) \frac{\left(\frac{-\pi}{nD} \right)^j}{\sin \left(\frac{2i-1}{2n} \pi |x_i| \right)} t_i h(a_k-1). \] (18)

\[R_{\text{ave},i}^2 = \sum_{k=1}^{M} \rho_{ak} \sum_{r=0}^{k-1} \frac{\left(\frac{-\pi}{nD} \right)^j}{\sin \left(\frac{2i-1}{2n} \pi |x_i| \right)} t_i h(a_k) + \sum_{k=2}^{M} \rho_{ak-1} \sum_{r=0}^{k-1} \frac{\left(\frac{-\pi}{nD} \right)^j}{\sin \left(\frac{2i-1}{2n} \pi |x_i| \right)} t_i h(a_k-1). \] (19)

Proof: See Appendix D.

The diversity order of the users in NOMA systems based on SOS is given in the following Proposition.

Proposition 3: The diversity gain of the \(k \)-th nearest user in NOMA systems based on SOS is given by

\[d = - \lim_{\rho \to \infty} \frac{\log P_{\text{out},i}}{\log \rho} = 1. \] (21)

Proof: In the high SNR region, i.e., \(\rho \to \infty \), then \(\eta \to 0 \), the lower incomplete gamma function in (20) can be written as [26]

\[\gamma\left(k+j, \eta D^\alpha \right) = \sum_{q=0}^{\infty} \frac{(-1)^q (\eta D^\alpha)^{2(k+j)+q}}{q!(2k+j+q)}. \] (22)

From the proposition of \(F_{a_k} (x) \) in (48), we have

\[\lim_{x \to D} F_{a_k} (x) = k(M) \sum_{j=0}^{M-k} \frac{(-1)^j}{k+j} = 1. \] (23)

Substituting (22) and (23) into (20), the proof is completed.

Note that all users in the above NOMA scheme can experience a diversity gain of one, since small-scale fading will severely deteriorate the outage performance. Similar asymptotic results have been recently obtained in [27] in the context of uplink cloud radio access networks.

B. Average Sum Rate

Note that the joint effect of small-scale fading and large-scale propagation loss are assumed in the channel model. However, in this subsection, the NOMA systems are based on SOS, which means the channels are ordered by the distance. In this case, we can not always guarantee that the joint channel gain are dominated by distance [19]. For example, there are two users \(U_1 \) and \(U_2 \) in the cell, and the distance \(d_1 \leq d_2 \).

The order of the joint channel gain \(|r_1|^2 \) and \(|r_2|^2 \) has two possibility: one is \(|r_1|^2 \geq |r_2|^2 \), the other is \(|r_1|^2 < |r_2|^2 \).

It is well known that the SIC depends on the order of the joint channel gain, therefore the NOMA based on SOS can not assure that a user can remove the signals from the users whose distance are larger than himself with probability one.

In general, it seems that it is difficult to obtain the closed-form expression for the average sum rate of NOMA systems with the number of users larger than two. Therefore, we only focus on the case, where the number of users is \(M = 2 \). The following approximation of the average sum rate for the whole range of SNR is established.

Theorem 4: The approximated average sum rate achieved by the NOMA systems is given by (24) in the top of the next page, where \(\tau_i = \left(1 + \cos \left(\frac{2i-1}{2} \pi \right) \right) \), \(x_i = \frac{D}{\tau_i} \), \(x_j = \frac{D}{\tau_j} \), and \(n \) is an approximation parameter of the Gauss-Chebychev integration, \(g_1(y) = \frac{\rho \sigma_y}{1 + \left(\frac{\rho \sigma_y}{\sigma_y} \right)^n} \), \(g_2(y) = \frac{\rho \sigma_y^2}{\rho \sigma_y^2} \exp \left(\frac{x^2 (1 + \left(\frac{\rho \sigma_y}{\sigma_y} \right)^n) \left(1 + \left(\frac{\rho \sigma_y}{\sigma_y} \right)^n \right)^2 \right) \), \(y = \frac{x}{\sigma_x} \), \(\alpha = \frac{1}{\alpha_1, \alpha_2} \).

Proof: See Appendix E.

Note that if we do not use the Gauss-Chebychev integration to evaluate the average sum rate in Appendix E, the final results of (24) contain double integrals, which will significantly increase the computational complexity. When the Gauss-Chebychev technique is applied, the approximated average sum rate in (24) only depends on the special function exponential integral and the finite-sum of the Gauss-Chebychev integration term. As it can be seen from Section V, a small number of Gauss-Chebychev integration approximation terms \(n \) is used in (24) can match quite well with the Monte Carlo simulation results.

C. Outage Probability and Average Sum Rate in OMA Systems

In this subsection, we focus on the outage performance and the average sum rate achieved by the OMA systems with partial CSI. The opportunistic transmission scheme is also considered in the OMA systems, where the rate of \(U_k \) with imperfect channel estimation is given by

\[R_{k} = \frac{1}{M} \log_2 \left(1 + \frac{|r_k|^2}{\sigma_x^2 + 1} \right), \quad k = 1, 2, \ldots, M, \] (25)

and the rate of the \(k \)-th nearest user \(U_k \) with SOS is given by

\[R_{k} = \frac{1}{M} \log_2 \left(1 + \rho |r_k|^2 \right), \quad k = 1, 2, \ldots, M. \] (26)
\[R_{\text{ave},\text{II}} \approx \frac{\pi^2}{n^2 D^3} \sum_{i=1}^{n} \tau_i \sin \left(\frac{(2i-1)\pi}{2n} \right) \sum_{j=1}^{n} x_j \sin \left(\frac{(2j-1)\pi}{2n} \right) \left(g_1(\alpha_1) + g_1(\alpha_2) - g_1(1) + g_2(1) - g_2(\alpha_1) - g_2(\alpha_2) \right) + \frac{(D^2 - x_j^2) \rho \alpha_j x_j^{-\alpha}}{\ln 2} \exp \left(\frac{x_j^\alpha}{\rho \alpha} \right) E_1 \left(\frac{x_j^\alpha}{\rho} \right) + \frac{2\pi}{nD^3 \ln 2} \sum_{i=1}^{n} \sin \left(\frac{(2i-1)\pi}{2n} \right) x_i^3 \left(\exp \left(\frac{x_i^\alpha}{\rho} \right) E_1 \left(\frac{x_i^\alpha}{\rho} \right) \right) \]

Note that we can use (25) and (26) to obtain the outage probability and the average sum rate achieved by OMA, then these results can be used as the benchmark as shown in comparison with the NOMA systems in the simulation Section.

The main difference between OMA and NOMA is that for OMA, \(M \) time slots are required to serve \(M \) users in the cell, whereas all \(M \) users are served simultaneously in NOMA systems. Therefore, with NOMA, the average sum capacity can be increased significantly, and it is important to point out that NOMA also maintains user fairness, since users with poorer channel conditions are allocated with more power.

V. Numerical Results and Simulations

In this section, numerical and Monte Carlo simulation results are provided in order to validate the analytical results obtained in this paper. Particularly, the parameters used in the simulations are set as follows. The disk radius is \(D = 10 \) m with the path loss factor \(\alpha = 2, 3, 4, \) and the small scale fading gain is Rayleigh distributed, i.e., \(h_i \sim \mathcal{CN}(0, 1) \). The channel estimation error variance \(\sigma_\epsilon^2 \) is assumed to take values of 0.005 in Fig. 2, and \(\sigma_\epsilon^2 = 0.0001, 0.0005, 0.0008 \) in Fig. 3 and Fig. 6, respectively. The power allocation factors are \(\alpha_k = \frac{2^k - 1}{\sum_{i=1}^{2^k-1}(2i-1)}, \) \(1 \leq k \leq M \), and the number of Gauss-Chebyshev integral approximation terms is \(n = 10 \). The Monte Carlo simulation results are averaged over \(10^5 \) independent trials.

![Fig. 1. Outage performance of NOMA based on imperfect CSI with \(SNR = 30 \) dB, \(\alpha = 3 \), and \(M = 2 \).](image1)

In Fig. 1, the analytical results in (8) for the outage performance with imperfect CSI in NOMA systems are shown as a function of the channel estimation error variance \(\sigma_\epsilon^2 \). As it can be observed from Fig. 1, the outage performance deteriorates, when increasing the error variance \(\sigma_\epsilon^2 \), since higher channel estimation error brings stronger interference. Furthermore, it is worth pointing out that the approximated analytical results in (8) match perfectly with Monte Carlo simulations. In addition, it can be observed from Fig. 1 that when choosing \(\alpha_i \) and \(R_i^* \) incorrectly, the outage probability will be always 1, since such a choice of the parameters cannot satisfy the condition \(\alpha_i > \epsilon_i \sum_{l=1}^{i} \alpha_l \) in Theorem 1.

![Fig. 2. Impact of \(\sigma_\epsilon^2 \) on outage probability, \(M = 2 \), the targeted rate \(R_1^* = R_2^* = 0.5 \) bits/s/Hz, \(\alpha = 2 \).](image2)

Fig. 2 illustrates the impact of channel estimation error \(\sigma_\epsilon^2 \) on the outage probability in NOMA systems. As observed from Fig. 2, with imperfect CSI, the outage probability floor appears, and NOMA achieves no diversity gain. This is because the channel estimation error \(\epsilon \) acts as a source of interference. While the NOMA with perfect CSI achieves a diversity order of \(M - 1 \), which is better than the traditional OMA that the diversity gain is always one. In addition, we also compare the analytical results of the NOMA with perfect CSI to the ones obtained in [11]. As it can be seen from Fig. 2, the approximated results from [11] are accurate only at high SNR while the analytical results in this paper are close to the Monte Carlo simulations for the whole range of the SNR.

![Fig. 3. Outage performance for different channel estimation error variances with \(SNR = 30 \) dB, \(\alpha = 3 \), and \(M = 2 \).](image3)

Fig. 3 shows the developed analytical results for the averaged sum rate by comparing them to Monte Carlo simulations, which is also to show the effect of the channel estimation error variance to the system average sum rate. Fig. 3 demonstrates a perfect match between Monte Carlo simulations and the approximated results for different channel estimation error variances.
variance σ^2_i and SNR, while the results in [11] only match with Monte Carlo simulations at high SNR in the case of NOMA with perfect CSI. Furthermore, the average sum rate of the NOMA protocols based on perfect CSI is superior to OMA scheme, since all the users share the bandwidth resources in the NOMA systems at the same time slot. In addition, the worse the channel estimation error is, the poor the average sum rate we can have.

In Fig. 4, we show the approximated analytical results for the outage performance of the SOS based NOMA protocol by comparing them to the Monte Carlo simulations. It can be observed from Fig. 4 (a) that both the NOMA protocol and the conventional OMA systems in which the channels are ordered based on SOS achieve the same diversity gain, but the former achieves better outage probability than the latter. Once again, the closed-form analytical results in Theorem 3 match quite well with Monte Carlo simulations. Fig. 4 (b) demonstrates that if the parameters R_i^* and α_i are not correctly selected, the users are always failing to detect their own signals.

In Fig. 5, a comparison between the approximate analytical results for the average sum rate in (24) and Monte Carlo

--

Fig. 3. Averaged sum rate of NOMA based on imperfect CSI with $\alpha = 3$.

Fig. 4. Outage performance of NOMA based on SOS with two users.

Fig. 5. Average sum rate analytical results vs Monte Carlo simulations.
simulations is shown. It can be seen from Fig. 5 that the average sum rate of the NOMA systems is higher than the traditional OMA scheme when both of the channels are ordered based on SOS. Furthermore, the average sum rate decreases when increasing the path loss factor α. The reason is that a larger path loss factor can deteriorate the receive SNR, which in turn decreases the average rate. In addition, it is worth pointing out that the approximated analytical results are close to the Monte Carlo simulations.

In this paper, we have studied the outage probability and the average sum rate for two NOMA schemes, where the users are randomly deployed in a disk. The analytical derivations of NOMA protocols with SOS are close to NOMA based on perfect CSI at low SNR, and NOMA with SOS always outperforms NOMA with imperfect CSI. In addition, the analytical expressions demonstrated that the two NOMA protocols can achieve better performance than traditional OMA.

VI. CONCLUSIONS

APPENDIX A

PROOF OF THEOREM 1

Note that the k-th user needs to detect all of the users, whose the estimation channel of their gains are worse than its own. The event that the k-th user successfully decodes the i-th user’s message is given by

$$\tilde{E}_{k,i} = \left\{ \frac{\alpha_i |\tilde{r}_k|^2}{|\tilde{r}_k|^2 \sum_{l=1}^{i-1} \alpha_l + \sigma^2 + \frac{1}{\rho}} > \varepsilon_i \right\}$$

$$= \left\{ \rho (\alpha_i - \varepsilon_i \sum_{l=1}^{i-1} \alpha_l) |\tilde{r}_k|^2 > \varepsilon_i (\rho \sigma^2 + 1) \right\}$$

$$= \left\{ |\tilde{r}_k|^2 > \frac{\varepsilon_i (\rho \sigma^2 + 1)}{\rho (\alpha_i - \varepsilon_i \sum_{l=1}^{i-1} \alpha_l)} \right\},$$

where $\varepsilon_i = 2R_i^c - 1$. R_i^c denotes the targeted data rate of the user U_i. The equation (27) is conditioned on $\alpha_i > \varepsilon_i \sum_{l=1}^{i-1} \alpha_l$.

Therefore the outage probability of the k-th user can be expressed as

$$P_{\text{out},k} = 1 - \Pr \left\{ \bigcup_{i=k+1}^{M} \left(|\tilde{r}_k|^2 > \eta_i (\rho \sigma^2 + 1) \right) \right\}$$

$$= 1 - \Pr \left\{ |\tilde{r}_k|^2 > \tilde{\eta} (\rho \sigma^2 + 1) \right\}$$

$$= F_{|\tilde{r}_k|^2} (\tilde{\eta} (\rho \sigma^2 + 1)),$$

where $\tilde{\eta} = \max_{k+1 \leq i \leq M} \eta_i$.

Using order statistics [19], the CDF of the k-th estimation channel gain $|\tilde{r}_k|^2$ can be found as follows:

$$F_{|\tilde{r}_k|^2} (x) = k(M)^{-1} \int_0^x F_{|r_k|^2} (t) t^{M-k-1} dt$$

$$= k(M)^{-1} \sum_{r=0}^{k-1} k^{-1} r^{-1} \int_0^{\frac{t_r^c}{k + 1}} F_{|r_k|^2} (t) t^{r+M-k-1} dt$$

$$= k(M)^{-1} \sum_{r=0}^{k-1} k^{-1} r^{-1} \left(F_{|r_k|^2} (\frac{t_r^c}{k + 1}) \frac{r+M-k+1}{r + M - k + 1} \right),$$

where $F_{|r_k|^2} (x)$ is the CDF of the unordered estimation channel gain which can be evaluated as follows: since the unordered estimate of the channel $r_k = \tilde{r}_k + \epsilon$, and $\tilde{r}_k \sim \mathcal{CN}(0, d_k^{-\alpha} - \sigma^2)$. Therefore the conditional CDF $F_{|\tilde{r}_k|^2 \mid d_k} (x \mid d_k)$ is given by

$$F_{|\tilde{r}_k|^2 \mid d_k} (z \mid d_k) = 1 - \exp \left(- \frac{z}{d_k^{-\alpha} - \sigma^2} \right),$$
Then the \(F_{|\hat{r}_k|^2}(z) \) can be re-written as
\[
F_{|\hat{r}_k|^2}(z) = \int_0^D F_{|\hat{r}_k|^2} \left(\frac{x}{\sigma_k^2} \right) f_{\hat{r}_k}(x) \, dx = 1 - \frac{2}{D^2} \int_0^D \frac{x}{\sigma_k^2} \exp \left(\frac{-z}{x - \alpha - \sigma_k^2} \right) \, dx. \tag{31}
\]

It is difficult to solve the above integral \(I \), but we can use Gauss-Chebyshev integration \[20\] to approximate it as
\[
I \approx \frac{\pi D}{2n} \sum_{i=1}^n \sin \left(\frac{2i - 1}{2n} \pi x_i \right) \exp \left(\frac{-z}{x_i - \alpha - \sigma_k^2} \right), \tag{32}
\]
where \(x_i = \frac{D}{2} \left(1 + \cos \frac{2i - 1}{2n} \pi \right) \), and \(n \) is the number of terms included in the summation.

Recall that the outage probability of the \(k \)-th user is \(P_{\text{out}}^k = F_{|\hat{r}_k|^2} (\eta \sigma_k^2 + 1) \). Therefore substituting (32) and (31) into (29), the proof is completed.

APPENDIX B

PROOF OF THEOREM 2

When \(R_i^* = R_i \), and based on (4), the average sum rate of NOMA with imperfect CSI can be expressed as
\[
R_{\text{ave},1} = E \left[\sum_{k=2}^M \log_2 \left(1 + \frac{\alpha_k |\hat{r}_k|^2}{\sigma_k^2 + r + \rho \sigma_k^2} \right) \right] \\
+ E \left[\log_2 \left(1 + \frac{\alpha_1 |\hat{r}_1|^2}{\sigma_1^2 + r + \rho \sigma_1^2} \right) \right] \\
= \sum_{k=1}^M \log_2 \left(1 + \frac{\rho \alpha_k |\hat{r}_k|^2}{1 + \rho \sigma_k^2} \right) + \frac{\rho \alpha_1 |\hat{r}_1|^2}{1 + \rho \sigma_1^2}, \tag{33}
\]
where the average rate of \(X \) is defined as \(E(X) = \int_{-\infty}^{+\infty} \log_2(1 + x) f_X(x) \, dx \).

From the \(F_{|\hat{r}_k|^2}(z) \) in (29), we have
\[
\lim_{z \to \infty} F_{|\hat{r}_k|^2}(z) = k^{M_k} \sum_{r=0}^{k-1} \frac{(k-1)^r}{r + M - k + 1} = 1. \tag{34}
\]
The \(F_{|\hat{r}_k|^2}(z) \) in (29) can be re-written as
\[
F_{|\hat{r}_k|^2}(z) \approx 1 + k^{M_k} \sum_{r=0}^{k-1} \frac{(k-1)^r}{r + M - k + 1} \sum_{j=1}^{r+M-k+1} \left(\frac{-z}{x_i - \alpha - \sigma_k^2} \right)^j \\
\times \left(\frac{-\pi}{nD} \right)^j \left(\sum_{i=1}^n \sin \left(\frac{2i - 1}{2n} \pi x_i \right) \exp \left(\frac{-z}{x_i - \alpha - \sigma_k^2} \right) \right)^j. \tag{35}
\]

By using the multinomial Theorem, \(Q_{1,n} \) can be further expand as
\[
Q_{1,n} = \sum_{t_1+t_2+\cdots+t_n=1} \frac{j!}{t_1!t_2! \cdots t_n!} \times \prod_{i=1}^n \left(\sin \left(\frac{2i - 1}{2n} \pi x_i \right) \right)^{t_i} \times \exp \left(-z \sum_{i=1}^n \frac{t_i}{x_i - \alpha - \sigma_k^2} \right). \tag{36}
\]
The expectation \(\hat{Q}_k \) in (33) can be evaluated as
\[
\hat{Q}_k = \frac{\rho \alpha_k}{\ln 2} \int_0^\infty \frac{1 - F_{|\hat{r}_k|^2}(z)}{1 + \rho \sigma_k^2 + z \rho \alpha_k} \, dz = \frac{\rho \alpha_k}{\ln 2} \int_0^\infty \frac{1 - F_{|\hat{r}_k|^2}(z)}{1 + \rho \sigma_k^2 + z \rho \alpha_k} \, dz \\
= \frac{\rho \alpha_k}{\ln 2} \int_0^\infty \frac{1 - F_{|\hat{r}_k|^2}(z)}{1 + \rho \sigma_k^2 + z \rho \alpha_k} \, dz \\
= \frac{\rho \alpha_k}{\ln 2} \int_0^\infty \frac{1 - F_{|\hat{r}_k|^2}(z)}{1 + \rho \sigma_k^2 + z \rho \alpha_k} \, dz.
\]

Let \(t = 1 + \frac{z \rho \alpha_k}{1 + \rho \sigma_k} \), the integral \(\hat{Q}_k \) in (37) can be evaluated as
\[
\hat{Q}_k = \frac{\rho \alpha_k}{\rho \alpha_k} \int_0^\infty \frac{\exp(-tc_i)}{t} \, dt = \frac{\rho \alpha_k}{\rho \alpha_k} E_1(c_i), \tag{38}
\]
where \(c_i = \frac{1}{\rho \alpha_k} \sum_{i=1}^n \frac{1}{x_i - \alpha - \sigma_k^2} \), and \(E_1(z) = \int_1^{+\infty} e^{-z} \frac{dz}{t} \) is exponential integral.

Substituting (38) into (37), the proof \(\hat{Q}_k \) is completed. Similarly, we can obtain \(V_k \). Substituting the results of \(Q_k \) and \(V_k \) into (33), the proof is completed.

APPENDIX C

PROOF OF COROLLARY 3

When \(\alpha = 2 \), by using the proposition of CDF in (34), \(F_{|\hat{r}_k|^2}(z) \) in (14) can be re-written as
\[
F_{|\hat{r}_k|^2}(z) = 1 + \sum_{r=0}^{k-1} \frac{k^{M_k} (k-1)^r}{r + M - k + 1} \times \sum_{j=1}^{r+M-k+1} \left(\frac{-z}{x_i - \alpha - \sigma_k^2} \right)^j \times \prod_{i=1}^n \left(\sin \left(\frac{2i - 1}{2n} \pi x_i \right) \right)^{t_i} \\
\times \exp \left(-z \sum_{i=1}^n \frac{t_i}{x_i - \alpha - \sigma_k^2} \right). \tag{39}
\]
Similar to (37), \(\hat{Q}_k \) in (33) can be calculated as

\[
\hat{Q}_k = \frac{\rho a_k}{\ln 2} \left[\frac{1}{1 + z + z^j} \int_0^\infty \frac{1 - F_{|x|^2}(z)}{1 + \frac{z}{\rho a_k}} dz \right]
\]

\[
= \frac{\rho a_k}{\ln 2} \sum_{r=0}^{k-1} \frac{k(M_k)}{r} \left(\frac{1}{r + M - k + 1} \right) \sum_{j=1}^{r + M - k + 1} (-1)^j (r + M - k + 1)
\]

\[
	imes \left(\frac{-1)^j (\rho a_k)}{D^2} \right) \int_0^\infty \frac{1 - \exp\left(-z D^2 \frac{\rho a_k}{\rho a_k}^j \right)}{z^j (1 + z)} dz .
\]

By using the partial fractions decomposition and binomial Theorem, \(Q_j \) can be rewritten as

\[
Q_j = \int_0^\infty \left(\frac{-1)^j}{1 + z} + \sum_{q=2}^j \frac{(1)^j}{z^q} \right) dz
\]

\[
+ \sum_{p=1}^j \int_0^\infty \frac{e^{-z \frac{D^2}{\rho a_k}}}{1 + z} dz \]

\[
+ \sum_{q=1}^j \sum_{p=1}^j \frac{(1)^j}{z^q} \int_0^\infty \frac{e^{-z \frac{D^2}{\rho a_k}}}{z^q} dz .
\]

The above three integrals can be evaluated as

\[
Q_{j1} = -\lim_{z \to 0} \left((-1)^j \ln z + \frac{1}{1 - q} \sum_{q=1}^j \frac{(1)^j}{z^q} \right),
\]

\[
\int_0^\infty \frac{e^{-z \frac{D^2}{\rho a_k}}}{1 + z} dz = \frac{\rho a_k}{\epsilon} \frac{D^2}{\rho a_k} E_1\left(\frac{D^2}{\rho a_k} \right),
\]

\[
Q_{j2} = \lim_{z \to 0} \frac{1}{1 - q} \sum_{q=1}^j \frac{(1)^j}{z^q} \sum_{v=0}^{q-1} \frac{(-1)^{q-1} D^2 v^{-1} e^{-p D^2 z}}{(q - 1)! z^{q-1}}
\]

\[
+ \lim_{z \to 0} \frac{(-\frac{D^2}{\rho a_k})}{(q - 1)!} E_1\left(\frac{D^2}{\rho a_k} \right),
\]

where (43) and (44) follow from [26, (8.211.1)] and [26, (2.324.2)], respectively.

Substituting (42), (43), and (44) into (40), and also using the Taylor series of exponential integral [26]

\[
E_1\left(\frac{D^2}{\rho a_k} \right) = -C \ln z - \ln \left(\frac{D^2}{\rho a_k} \right) - \sum_{k=1}^\infty \frac{(z D^2)^k}{k!},
\]

the proof of \(\hat{Q}_k \) is completed. Similarly, we can prove \(\hat{V}_k \) in (33). Substituting the results of \(\hat{Q}_k \) and \(\hat{V}_k \) into (33), the result of (19) is obtained.

Appendix D

Proof of Theorem 3

Since SIC is used in the NOMA protocol, the \(k \)-th nearest user can detect successfully its own signal only if the \(k \)-th nearest user successfully decodes the \(i \)-th \((k + 1 \leq i \leq M) \) user’s signal, where the distance \(d_i \) is larger than \(d_k \). After the \(k \)-th nearest user can remove these interference signals. The event that the \(k \)-th nearest user successfully decodes the \(i \)-th nearest user’s message is defined as

\[
E_{k,i} = \left\{ \frac{\alpha_i |r_k|^2}{|r_k|^2 \sum_{l=1}^{i-1} \alpha_l + \frac{1}{\rho}} \right\} \left\{ |r_k|^2 > \frac{\varepsilon_i}{\rho (\alpha_i - \varepsilon_i) \sum_{l=1}^{i-1} \alpha_l} \right\},
\]

where the equation (45) is conditioned on \(\alpha_i > \varepsilon_i \sum_{l=1}^{i-1} \alpha_l \).

Therefore, the outage probability of the \(k \)-th nearest user can be expressed as

\[
P_{out,\text{II}} = 1 - \Pr \left\{ \bigcap_{i=k+1}^M \left\{ |r_k|^2 > \eta_i \right\} \right\} = 1 - \Pr \left\{ |r_k|^2 > \eta \right\} = F_{|r_k|^2}(\eta),
\]

where \(\eta = \frac{\varepsilon_i}{\rho (\alpha_i - \varepsilon_i) \sum_{l=1}^{i-1} \alpha_l} \), and \(\eta = \max_{k+1 \leq i \leq M} \eta_i \).

The CDF of \(|r_k|^2 \) will be evaluated in the following. Since the locations of the users are uniformly distributed within the disc \(D \), the distance \(d \) from an arbitrary user to the BS has the probability distribution function (PDF) and CDF as follows:

\[
f_d(x) = \frac{2x}{D^2}, \quad F_d(x) = \frac{x^2}{D^2}, \quad 0 < x \leq D.
\]

Since \(d_1 \leq d_2 \leq \cdots \leq d_M \), by applying order statistics [19], the PDF of the Euclidean distance \(d_k \) from the origin to its \(k \)-th nearest user as follows:

\[
f_{d_k}(x) = k(M_k) F_d(x)^{k-1} (1 - F_d(x))^{M-k} f_d(x)
\]

\[
= 2k(M_k) x^{2k-1} \left(1 - \frac{x^2}{D^2} \right)^{M-k}
\]

\[
= 2k(M_k) \sum_{j=0}^{M-k} \frac{(M-k)!}{j!} (j+1)! \frac{x^{2(k+j-1)}}{D^{2(k+j)}},
\]

where the binomial coefficient \(\binom{N}{j} = \frac{N!}{j!(N-j)!} \).

Since the small scale Rayleigh fading and large scale path loss are independent, the CDF of the channel gain \(|r_k|^2 \) can be evaluated as

\[
F_{|r_k|^2}(z) = \Pr \left\{ \frac{|h_k|^2}{d_k^\alpha} \leq z \right\} = \int_0^D \left(1 - e^{-x^{\alpha}} \right) f_{d_k}(x) dx
\]

\[
= 1 - 2k(M_k) \sum_{j=0}^{M-k} \frac{(M-k)!}{j!} \left(\frac{-1}{D^{2(k+j)}} \right)
\]

\[
\times \int_0^D e^{-x^{\alpha}} x^{2(k+j)-1} dx
\]

\[
= 1 - 2k(M_k) \sum_{j=0}^{M-k} \frac{(M-k)!}{j!} \left(\frac{-1}{D^{2(k+j)}} \right)
\]

\[
\times z^{2(k+j)} \left(\frac{2(k+j)}{\alpha} \right),
\]

where \(\gamma(a, b) = \int_0^b t^{a-1} e^{-t} dt \) is a lower incomplete gamma function.

Substituting \(\eta \) into (49), the proof is completed.
APPENDIX E
PROOF OF THEOREM 4

When $R^*_i = R_i$, and there are only two users in the disk. The rate of U_1 and U_2 in (7) can be rewritten as

$$R_2 = \log_2 \left(1 + \frac{\alpha_2 |r_2|^2}{|r_2^2| \alpha_1 + \frac{1}{\rho}} \right)$$

(50)

and

$$R_1 = \begin{cases} \log_2 \left(1 + \alpha_1 \rho |r_1|^2 \right), & \text{if } |r_1|^2 \geq |r_2|^2 \; \text{;} \\ \log_2 \left(1 + \alpha_2 |r_1^2| \frac{1}{\rho} \right), & \text{otherwise}. \end{cases}$$

(51)

Then the average sum rate of the NOMA systems can be expressed as

$$R_{\text{ave}, i1} = E \left[\log_2 \left(1 + \alpha_1 \rho |h_1|^2 d_1^{-\alpha} \right) \left| \frac{|h_2|^2}{d_2^2} \geq \frac{|h_2|^2}{d_2^2} \right. \right]$$

$$= \int_{y=x}^{D} \frac{\alpha y}{\rho \pi} \frac{d\gamma d\eta}{D^2} \quad \text{for } \gamma < \eta < D$$

(52)

Since the joint PDF of d_1 and d_2 is $f_{d_1, d_2}(x, y) = \frac{8xy}{D^3}, 0 < x < y < D$ [19], the expectation Q_1 can be evaluated as

$$Q_1 = \int_0^{D/2} \frac{\alpha y}{\rho \pi} \frac{d\gamma d\eta}{D^2} \quad \text{for } \gamma < \eta < D$$

(53)

The double integral Q_{11} in (53) can be calculated as

$$Q_{11} = \int_0^{D} y \left(1 - e^{-\frac{\alpha y}{\rho \pi}} \right) dy$$

(54)

$$= \frac{\alpha y}{\rho \pi} \left[x^2 - 2 - \frac{x^2}{\alpha \rho \pi} \gamma \left(\frac{1}{\alpha}, \frac{2}{x^2} \right) + \frac{x^2}{\alpha \rho \pi} \gamma \left(\frac{1}{\alpha}, x^2 \right) \right]$$

Substituting (54) into (53), one can observe that the final result of Q_1 contains a double integral, since Q_{11} consists of a lower incomplete gamma function. In order to obtain more insights to Q_1, the Gaussian-Chebyshev integration can be used to approximate the result of Q_{11} in (53) as

$$Q_{11} = \int_0^{D} y \left(1 - e^{-\frac{\alpha y}{\rho \pi}} \right) dy \approx \frac{\alpha y}{\rho \pi} \int_0^{\infty} \sin \left(\frac{2(1-1)}{2n} \right)$$

$$\times \tau_1 \left(D^2 - x^2 + x^2 e^{-\frac{\alpha y}{\rho \pi}} - D^2 e^{-u \left(\frac{\alpha y}{\rho \pi} \right)^2} \right) e^{-u} du dx$$

(55)

where $\tau_1 = 1 + \cos \left(\frac{2(1-1)}{2n} \right)$, and (a) follows from Gaussian-Chebyshev integration [20].

Substituting (55) into (53), Q_1 can be rewritten as

$$Q_1 = \frac{2\pi}{nD^4} \sum_{i=1}^{n} \tau_1 \int_0^{\infty} \log_2 \left(1 + \frac{\alpha_1 \rho y}{\alpha_1 \rho y + \frac{1}{\rho}} \right)$$

$$\times \left(D^2 - x^2 + x^2 e^{-\frac{\alpha y}{\rho \pi}} - D^2 e^{-u \left(\frac{\alpha y}{\rho \pi} \right)^2} \right) e^{-u} du dx dx$$

(56)

Denote the interior integral of Q_1 is Q_{12}, which can be evaluated as

$$Q_{12} = \int_0^{\infty} \log_2 \left(1 + \frac{\alpha_1 \rho y}{\alpha_1 \rho y + \frac{1}{\rho}} \right) \left(D^2 - x^2 + x^2 e^{-\frac{\alpha y}{\rho \pi}} - D^2 e^{-u \left(\frac{\alpha y}{\rho \pi} \right)^2} \right) e^{-u} du$$

$$= \frac{(D^2 - x^2) \rho_{\alpha_1} x^{-\alpha}}{2} \int_0^{\infty} \frac{\rho_{\alpha_1} x^{-\alpha} e^{-u}}{1 + \rho_{\alpha_1} x^{-\alpha} u} du$$

$$+ \frac{\rho_{\alpha_1} x^{-\alpha + 2}}{2 \rho_{\alpha_1} x^{-\alpha}} \int_0^{\infty} \frac{e^{-u \left(\frac{\alpha y}{\rho \pi} \right)^2}}{1 + \rho_{\alpha_1} x^{-\alpha} u} du$$

$$- \frac{(D^2 - x^2) \rho_{\alpha_1} x^{-\alpha}}{2} \int_0^{\infty} \frac{\rho_{\alpha_1} x^{-\alpha} e^{-u}}{1 + \rho_{\alpha_1} x^{-\alpha} u} du$$

$$= \frac{(D^2 - x^2) \rho_{\alpha_1} x^{-\alpha}}{2} \int_0^{\infty} \frac{e^{-u \left(\frac{\alpha y}{\rho \pi} \right)^2}}{1 + \rho_{\alpha_1} x^{-\alpha} u} du$$

(57)

where $\rho_{\alpha_1} = 1 + \left(\frac{\alpha y}{\rho \pi} \right)^2$, $d_i(x) = 1 + \left(\frac{\alpha y}{\rho \pi} \right)^2$.

Substituting (57) into (56), and using Gauss-Chebyshev integration [20] again, we can obtain the final result of Q_1 as follows:

$$Q_1 \approx \frac{\pi^2}{n^2 D^3} \sum_{i=1}^{\frac{n}{2}} \tau_i \left| \frac{2(1-1)}{2n} \right|$$

$$\times \int_0^{\infty} \frac{\alpha y}{\rho \pi} \frac{d\gamma d\eta}{D^2} \quad \text{for } \gamma < \eta < D$$

(58)

Similar to Q_1, we can obtain Q_2 as follows:

$$Q_2 \approx \frac{\pi^2}{n^2 D^3} \sum_{i=1}^{\frac{n}{2}} \tau_i \left| \frac{2(1-1)}{2n} \right|$$

$$\times \int_0^{\infty} \frac{\alpha y}{\rho \pi} \frac{d\gamma d\eta}{D^2} \quad \text{for } \gamma < \eta < D$$

(59)

The expectation Q_3 in (52) will be evaluated as follows. Let $Z = \frac{\alpha_2 |r_2|^2}{\alpha_1 |r_2|^2 + \frac{1}{\rho}}$, the CDF of Z can be obtained as

$$F_Z(z) = \text{Pr} \left\{ \frac{\alpha_2 |r_2|^2}{\alpha_1 |r_2|^2 + \frac{1}{\rho}} < z \right\}$$

$$= \text{Pr} \left\{ |r_2|^2 < \rho \left(\alpha_2 - \alpha_1 z \right) \right\}$$

$$= 1 - \frac{4}{D^4} \int_0^{D} x^3 e^{-\frac{\rho \alpha_2 - \alpha_1 x^2}{\rho \alpha_2 - \alpha_1 x^2}} dx$$

(60)

where $0 < z < \frac{\alpha_2}{\alpha_1}$, and (a) follows from (49). If the closed-form expression of $F_Z(z)$ in (60) is used to evaluate the average rate of Q_3 directly, the final result will contain integral expressions. Since the average rate of Q_3 is evaluated as $Q_3 = \int_0^{\frac{\alpha_2}{\alpha_1}} \frac{4\pi^3}{\alpha_2 D^4} \left(\frac{\alpha_2 - \alpha_1 z}{\alpha_2 - \alpha_1} \right)^\frac{1}{2} \gamma \left(\frac{4}{\alpha_2}, \frac{\alpha_2 - \alpha_1 z}{\alpha_2 - \alpha_1} \right) dz$, it
is difficult to solve the integral Q_3 which contains a lower incomplete gamma function. In order to obtain Q_3 in closed-from approximation, we apply Gauss-Chebyshev integration [20] to approximate the $F_Z(z)$ as follows:

$$F_Z(z) \approx 1 - \frac{2\pi}{nD^3} \sum_{i=1}^{n} \sin \left(\frac{(2i-1)\pi}{2n}\right) x_i^2 e^{\frac{-x_i^2}{nD^3 - (2i-1)^2 - 1}}.$$ \hspace{1cm} (61)

Now, the expectation Q_3 is evaluated as

$$Q_3 = \int_0^{\infty} |x_1^2 e^{\frac{-x_1^2}{nD^3}}| \frac{1}{1+z} \sum_{i=1}^{n} \sin \left(\frac{(2i-1)\pi}{2n}\right) x_i^2 e^{\frac{-x_i^2}{nD^3 - (2i-1)^2 - 1}} dx_i.$$ \hspace{1cm} (62)

Let $t = \frac{zx_1^2}{nD^3 - (2i-1)^2 - 1}$, the above integral Q_{31} can be calculated as

$$Q_{31} = \int_0^{\infty} \frac{\rho t}{\rho t + x_1^2} e^{-t} dt = \int_0^{\infty} \frac{\rho t}{\rho t + x_1^2} dt - \int_0^{\infty} \frac{\rho t}{\rho t + x_1^2} e^{-t} dt = \exp \left(\frac{x_1^2}{\rho}\right) E_1 \left(\frac{x_1^2}{\rho}\right) - \exp \left(\frac{x_1^2}{\rho}\right) E_1 \left(\frac{x_1^2}{\rho}\right).$$ \hspace{1cm} (63)

Substituting (58), (59), (63) and (62) into (52), the proof is completed.

REFERENCES

