Geostatistical modelling of the relationship between microfilariae and antigenaemia prevalence of lymphatic filariasis infection

Emanuele Giorgi¹, Jorge Cano², Rachel Pullan²

 1 Lancaster Medical School, Lancaster University, Lancaster, UK 2 London School of Hygiene and Tropical Medicine, London, UK

RSS 2016 International Conference, 5-8 September, University of Manchester

- Lymphatic filariasis: what is it? What diagnostics?
- Bivariate geostatistical modelling of prevalence from two different diagnostics.
 - A semi-mechanistic model for lymphatic filariasis microfilariae and antigenaemia prevalence.
 - 2 An empirical model for prevalence from any two diagnostics.
- Application to lymphatic filariasis prevalence data from West Africa.
- Discussion.

Lymphatic filariasis: the disease

Figure 1: Microfilaria of Wuchereria.

Figure 2: Microfilaria of Brugia malayi.

Figure 3: Patient with lymphedema.

Emanuele Giorgi

Lymphatic filariasis: the disease

Figure 4: Endemic areas for LF in red.

Emanuele Giorgi

Lymphatic filariasis: the vector

Figure 5: Anopheles.

Figure 6: Culex.

Figure 7: Aedes.

Lymphatic filariasis: the life cycle

Figure 8: Life Cycle of Wuchereria bancroffi.

Emanuele Giorgi

Lymphatic filariasis: diagnosis

Figure 9: Counting microfilariae at night.

Figure 10: ICT card for LF antigens detection.

Research question

• The data

$$\mathcal{D}_{MF} = \{ (x_{i,1}, n_{i,1}, y_{i,1}) : x_{i,1} \in A \}, \\ \mathcal{D}_{ICT} = \{ (x_{i,2}, n_{i,2}, y_{i,2}) : x_{i,2} \in A \}.$$

Research question

• The data

$$\mathcal{D}_{MF} = \{ (x_{i,1}, n_{i,1}, y_{i,1}) : x_{i,1} \in A \}, \\ \mathcal{D}_{ICT} = \{ (x_{i,2}, n_{i,2}, y_{i,2}) : x_{i,2} \in A \}.$$

• A model for the data

$$Y_{i,j}|S_j(x_{i,j}), U_{i,j} \sim \text{Binomial}(n_{i,j}, p_j(x_{i,j})), i = 1, \dots, n_j, j = 1, 2.$$

Research question

The data

$$\mathcal{D}_{MF} = \{ (x_{i,1}, n_{i,1}, y_{i,1}) : x_{i,1} \in A \}, \\ \mathcal{D}_{ICT} = \{ (x_{i,2}, n_{i,2}, y_{i,2}) : x_{i,2} \in A \}.$$

A model for the data

$$Y_{i,j}|S_j(x_{i,j}), U_{i,j} \sim \text{Binomial}(n_{i,j}, p_j(x_{i,j})), i = 1, \dots, n_j, j = 1, 2.$$

Objective

How should we build a bivariate geostatistical model for $p_1(x)$ and $p_2(x)$?

• W = ``number of worms in a sampled individual''.

- W = ``number of worms in a sampled individual''.
- M = ``MF counts''.

- W = ``number of worms in a sampled individual''.
- M = ``MF counts''.
- Assumptions. $W \sim \text{Poisson}(\lambda)$, $M|W = w \sim \text{Poisson}(rw)$.

- W = ``number of worms in a sampled individual''.
- M = ``MF counts''.
- Assumptions. $W \sim \text{Poisson}(\lambda)$, $M|W = w \sim \text{Poisson}(rw)$.
- ICT: $p_1 = P(W > 0) = \phi(1 exp\{-\lambda\})$. ($\phi = 0.97$)

- W = ``number of worms in a sampled individual''.
- M = ``MF counts''.
- Assumptions. $W \sim \text{Poisson}(\lambda)$, $M|W = w \sim \text{Poisson}(rw)$.
- ICT: $p_1 = P(W > 0) = \phi(1 exp\{-\lambda\})$. ($\phi = 0.97$)
- MF:

$$p_2 = P(M > 0) = 1 - P(M = 0)$$

- W = ``number of worms in a sampled individual''.
- M = ``MF counts''.
- Assumptions. $W \sim \text{Poisson}(\lambda)$, $M|W = w \sim \text{Poisson}(rw)$.
- ICT: $p_1 = P(W > 0) = \phi(1 exp\{-\lambda\})$. ($\phi = 0.97$) • MF:

$$p_2 = P(M > 0) = 1 - P(M = 0)$$

= $1 - \sum_{w=0}^{+\infty} P(M = m | W = w) P(W = w)$

- W = ``number of worms in a sampled individual''.
- M = ``MF counts''.
- Assumptions. $W \sim \text{Poisson}(\lambda)$, $M|W = w \sim \text{Poisson}(rw)$.
- ICT: $p_1 = P(W > 0) = \phi(1 exp\{-\lambda\})$. ($\phi = 0.97$) • MF:

$$p_{2} = P(M > 0) = 1 - P(M = 0)$$

= $1 - \sum_{w=0}^{+\infty} P(M = m | W = w) P(W = w)$
= $1 - \exp[-r(1 - \exp\{-\lambda\})]$

- W = ``number of worms in a sampled individual''.
- M = ``MF counts''.
- Assumptions. $W \sim \text{Poisson}(\lambda)$, $M|W = w \sim \text{Poisson}(rw)$.
- ICT: $p_1 = P(W > 0) = \phi(1 exp\{-\lambda\})$. ($\phi = 0.97$) • MF:

$$p_{2} = P(M > 0) = 1 - P(M = 0)$$

= $1 - \sum_{w=0}^{+\infty} P(M = m | W = w) P(W = w)$
= $1 - \exp[-r(1 - \exp\{-\lambda\})]$
= $1 - \exp[-r\phi^{-1}p_{1}]$

• What varies spatially?

- What varies spatially?
- Density-independence: $\lambda(x)$ and $r(x) = \alpha > 0$ for all x.

- What varies spatially?
- Density-independence: $\lambda(x)$ and $r(x) = \alpha > 0$ for all x.
- Density-dependence: $\lambda(x)$ and $r(x) = \alpha \lambda(x)^{\gamma}$, $\gamma \in \mathbb{R}.$

- What varies spatially?
- Density-independence: $\lambda(x)$ and $r(x) = \alpha > 0$ for all x.
- Density-dependence: $\lambda(x)$ and $r(x) = \alpha \lambda(x)^{\gamma}$, $\gamma \in \mathbb{R}.$
- $\log{\{\lambda(x)\}} = d(x)^\top \beta + S(x) + Z(x).$

- What varies spatially?
- Density-independence: $\lambda(x)$ and $r(x) = \alpha > 0$ for all x.
- Density-dependence: $\lambda(x)$ and $r(x) = \alpha \lambda(x)^{\gamma}$, $\gamma \in \mathbb{R}$.
- $\log{\{\lambda(x)\}} = d(x)^\top \beta + S(x) + Z(x).$
- $S(x) \sim \operatorname{GP}(0, \sigma^2, \rho(\cdot; \phi)).$

- What varies spatially?
- Density-independence: $\lambda(x)$ and $r(x) = \alpha > 0$ for all x.
- Density-dependence: $\lambda(x)$ and $r(x) = \alpha \lambda(x)^{\gamma}$, $\gamma \in \mathbb{R}$.
- $\log{\{\lambda(x)\}} = d(x)^\top \beta + S(x) + Z(x).$
- $S(x) \sim \operatorname{GP}(0, \sigma^2, \rho(\cdot; \phi)).$
- $Z(x) \sim N(0, \tau^2)$ i.i.d.

- What varies spatially?
- Density-independence: $\lambda(x)$ and $r(x) = \alpha > 0$ for all x.
- Density-dependence: $\lambda(x)$ and $r(x) = \alpha \lambda(x)^{\gamma}$, $\gamma \in \mathbb{R}$.
- $\log{\{\lambda(x)\}} = d(x)^{\top}\beta + S(x) + Z(x).$
- $S(x) \sim \operatorname{GP}(0, \sigma^2, \rho(\cdot; \phi)).$
- $Z(x) \sim N(0, \tau^2)$ i.i.d.

• ICT: $\log \{p_1(x)/[1-p_1(x)]\} = d_1(x)^\top \beta_1 + S_1(x) + Z_1(x).$

• ICT: $\log \{p_1(x)/[1-p_1(x)]\} = d_1(x)^\top \beta_1 + S_1(x) + Z_1(x).$ • MF:

$$\log \{ p_2(x) / [1 - p_2(x)] \} = d_2(x)^\top \beta_2 + S_2(x) + Z_2(x) + \gamma f(p_1(x))$$

where $f:[0,1] \to I \subseteq \mathbb{R}$ continuous non-decreasing.

• ICT: $\log \{p_1(x)/[1-p_1(x)]\} = d_1(x)^\top \beta_1 + S_1(x) + Z_1(x).$ • ME:

$$\log \{ p_2(x) / [1 - p_2(x)] \} = d_2(x)^\top \beta_2 + S_2(x) + Z_2(x) + \gamma f(p_1(x))$$

where $f:[0,1] \rightarrow I \subseteq \mathbb{R}$ continuous non-decreasing.

• Separate models if $\gamma = 0$.

• ICT: $\log \{ p_1(x) / [1 - p_1(x)] \} = d_1(x)^\top \beta_1 + S_1(x) + Z_1(x).$ • ME:

 $\log \{ p_2(x) / [1 - p_2(x)] \} = d_2(x)^\top \beta_2 + S_2(x) + Z_2(x) + \gamma f(p_1(x))$

where $f:[0,1] \to I \subseteq \mathbb{R}$ continuous non-decreasing.

- Separate models if $\gamma = 0$.
- If $S_2(x) = 0$, for all x, and $f(p_1(x)) = \log\{p_1(x)/[1 p_1(x)]\}$, we recover Crainiceanu, Diggle and Rowlingson (2008).

• ICT: $\log \{ p_1(x) / [1 - p_1(x)] \} = d_1(x)^\top \beta_1 + S_1(x) + Z_1(x).$ • ME:

 $\log \{ p_2(x) / [1 - p_2(x)] \} = d_2(x)^\top \beta_2 + S_2(x) + Z_2(x) + \gamma f(p_1(x))$

where $f:[0,1] \rightarrow I \subseteq \mathbb{R}$ continuous non-decreasing.

- Separate models if $\gamma = 0$.
- If $S_2(x) = 0$, for all x, and $f(p_1(x)) = \log\{p_1(x)/[1 p_1(x)]\}$, we recover Crainiceanu, Diggle and Rowlingson (2008).
- If $\gamma = 1$ and $f(p_1(x)) = \log\{p_1(x)/[1-p_1(x)]\} d_1(x)^\top \beta_1 Z_1(x)$, we recover Giorgi, Sesay, Terlouw and Diggle (2015).

Application: LF mapping in West Africa

Application: LF mapping in West Africa

• MF and ICT surveys conducted from 1997 to 2003.

Application: LF mapping in West Africa

- MF and ICT surveys conducted from 1997 to 2003.
- 479 ICT surveys; on average 61 individuals sampled per village.
- 90 MF surveys; on average 245 individuals sampled per village.

Emanuele Giorgi

Empirical relationship

Semi-mechanistic model with density-dependence

• $\log\{\lambda(x)\} = \mu + S(x) + Z(x)$, $r(x) = \alpha \lambda(x)^{\gamma}$ for all x.

Semi-mechanistic model with density-dependence

•
$$\log\{\lambda(x)\} = \mu + S(x) + Z(x), r(x) = \alpha \lambda(x)^{\gamma}$$
 for all x .
• $\operatorname{cov}\{S(x), S(x+h)\} = \sigma^2 \exp(-\|h\|/\phi),$
 $\operatorname{var}\{Z(x)\} = \nu^2 \sigma^2.$

Semi-mechanistic model with density-dependence

•
$$\log{\{\lambda(x)\}} = \mu + S(x) + Z(x), r(x) = \alpha \lambda(x)^{\gamma}$$
 for all x .
• $\operatorname{cov}{\{S(x), S(x+h)\}} = \sigma^2 \exp(-\|h\|/\phi),$
 $\operatorname{var}{\{Z(x)\}} = \nu^2 \sigma^2.$

Term	Estimate	95% CI
μ	-2.562	(-3.991, -1.132)
α	0.722	(0.636, 0.820)
γ	0.106	(0.010, 0.203)
σ^2	2.974	(1.392, 6.355)
ϕ	275.995	(117.374, 648.980)
$ u^2$	0.201	(0.091, 0.445)

Estimation (2)

Empirical model

• $\log\{p_1(x)/[1-p_1(x)]\} = \mu_1 + S_1(x) + Z_1(x),$ $\log\{p_2(x)/[1-p_2(x)]\} = \mu_2 + S_2(x) + Z_2(x) + \gamma \sqrt{p_1(x)}$

Estimation (2)

Empirical model

•
$$\log\{p_1(x)/[1-p_1(x)]\} = \mu_1 + S_1(x) + Z_1(x),$$

 $\log\{p_2(x)/[1-p_2(x)]\} = \mu_2 + S_2(x) + Z_2(x) + \gamma \sqrt{p_1(x)}$
• $\operatorname{cov}\{S_i(x), S_i(x+h)\} = \sigma_i^2 \exp(-\|h\|/\phi_i),$
 $\operatorname{var}\{Z_i(x)\} = \nu_i^2 \sigma_i^2, i=1,2.$

Estimation (2)

Empirical model

•
$$\log\{p_1(x)/[1-p_1(x)]\} = \mu_1 + S_1(x) + Z_1(x),$$

 $\log\{p_2(x)/[1-p_2(x)]\} = \mu_2 + S_2(x) + Z_2(x) + \gamma \sqrt{p_1(x)}$
• $\operatorname{cov}\{S_i(x), S_i(x+h)\} = \sigma_i^2 \exp(-\|h\|/\phi_i),$
 $\operatorname{var}\{Z_i(x)\} = \nu_i^2 \sigma_i^2, i=1,2.$

Term	Estimate	95% CI
μ_1	-2.244	(-4.201, -0.287)
μ_2	-3.055	(-3.763, -2.348)
γ	0.476	(0.200, 0.752)
σ_1^2	4.205	(1.667, 10.608)
ϕ_1	354.055	(126.608, 990.106)
$ u_1^2 $	0.172	(0.066, 0.449)
σ_2^2	1.796	(0.909, 3.550)
ϕ_2	82.555	(34.412, 198.052)
ν_2^2	0.228	(0.069, 0.760)

Model diagnostic (1)

Semi-mechanistic model with density-dependence

Model diagnostic (2)

Empirical model

Exceeding 1% MF prevalence

Exceeding 1% MF prevalence

Empirical model

Discussion

• Which model is the best with respect to the scientific knowledge?

Discussion

- Which model is the best with respect to the scientific knowledge?
- Simulation study: empirical model provides robust inferences against the misspecification of f.
- **Simulation study:** misspecification of the model may still yield accurate point predictions but actual coverage of CI may be very different from the nominal.

- Which model is the best with respect to the scientific knowledge?
- Simulation study: empirical model provides robust inferences against the misspecification of f.
- **Simulation study:** misspecification of the model may still yield accurate point predictions but actual coverage of CI may be very different from the nominal.

Thank you for your attention!

Bibliography

- M. A. Irvine, S. M. Njenga, S. Gunawardena, C. N. Wamae, J. Cano, S. J. Brooker, and T. D. Hollingsworth. Understanding the relationship between prevalence of microfilariae and antigenaemia using a model of lymphatic filariasis infection. Trans R Soc Trop Med Hyg (2016) 110(5): 317 doi:10.1093/trstmh/trw024
- C. Crainiceanu, P.J. Diggle, and B.S. Rowlingson. Bivariate modelling and prediction of spatial variation in Loa loa prevalence in tropical Africa (with Discussion). (2008) Journal of the American Statistical Association, 103, 21-43.
- 8 E. Giorgi, S.S. Sesay, D.J. Terlouw and P.J., Diggle. Combining data from multiple spatially referenced prevalence surveys using generalized linear geostatistical models. (2015) Journal of the Royal Statistical Society A 178, 445-464.