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Abstract. We develop a method for learning index rules for multi-
armed bandits, restless bandits, and dynamic resource allocation where
the underlying transition probabilities and reward structure of the sys-
tem is not known. Our approach builds on an understanding of both
stochastic optimisation (specifically, the Whittle index) and reinforce-
ment learning (specifically, Q-learning). We propose a novel implemen-
tation of Q-learning, which exploits the structure of the problem con-
sidered, in which the algorithm maintains two sets of Q-values for each
project: one for reward and one for resource consumption. Based on these
ideas we design a learning algorithm and illustrate its performance by
comparing it to the state-of-the-art Q-learning algorithm for the Whittle
index by Avrachenkov and Borkar. Both algorithms rely on Q-learning
to estimate the Whittle index policy, however the nature in which Q-
learning is used in each algorithm is dramatically different. Our approach
seems to be able to deliver similar or better performance and is poten-
tially applicable to a much broader and more general set of problems.

Keywords: Multi-Armed Bandits - Restless Bandits - Reinforcement
Learning - Q-learning - Markov Decision Processes

1 Introduction

Problems of dynamic resource allocation are ubiquitous in fields such as pub-
lic health, business, communications, engineering, and agriculture as they focus
on making an efficient dynamic use of limited amounts of resources. Examples
include: allocation of patients to treatments in a clinical trial in order to learn
about their effectiveness as quickly as possible; allocation of physicians (or beds)
to patients in a hospital in order to improve their health; allocation of produc-
tion lines (or manpower) in a business in order to satisfy demand of customers;
allocation of shelf space to products in order to maximise revenue; allocation of
online advertisements to users in order to maximise the click-through rate; allo-
cation of webpage designs with different cognitive styles to customers in order
to improve their understanding; allocation of agents’ time to process intelligence
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information in order to minimise damage caused by attacks; allocation of fre-
quency spectrum to users in wireless networks in order to achieve a desirable
quality of service; allocation of computer power/memory to simulation tasks
in order to improve an existing solution. Indeed in almost every technological,
societal, or logistical setting one can think of many scenarios where dynamic
resource allocation plays a key role.

1.1 Problem Formulation

We consider the following formulation of the problem of dynamic resource al-
location. We present it as a Markov decision process (MDP) framework, which
is sufficiently versatile to allow for a variety of observability settings. A set of
K heterogeneous alternative projects compete for a resource with the expected
one-period capacity of M units. Each resource can be allocated to at most one
project, but each project requires to be attended by a certain number of resource
units. At the beginning of every time period t € T := {0,1,...,T — 1} (where
T, possibly infinite, is the problem horizon), a decision-maker can choose which
projects will be allocated to the resource units during the period. Let us denote
by A := {0,1} the action space of each project, where action 1 means being
allocated to the resource, while action 0 means the opposite.

Each project k € K := {1,2,..., K} is formulated as a work-reward MDP
given by a tuple (Mg, (W) aca, (R} )aca, (PE)aca), where Ny is the state space;

k= (WE,)nen,, where W is the expected one-period capacity consump-
tion, or work required by the project at state n if action a is chosen; Ry :=
(R} . )nen, where R is the expected one-period reward earned from the
project at state n if action a is chosen; Py := (pf ,, ,,)n,men; is the one-period
transition probability matriz, where p§ . is the probability for project k evolv-
ing from state n to state m if action a is chosen. The dynamics of project k are
captured by state process ni(-) and action process ay(-), which correspond to
state ng(t) and action ay(t) at the beginning of every time period t.

At each time period ¢, the choice of action ay(t) for project k in state ny(t)

entails the consumption of allocated capacity (work) we® the gain of re-

k,nk(t)’
ward Rzkéz)(t), and the evolution of the state to ng(t + 1). A policy’s outcome
is a mapping ¢t — a(t) for all ¢, where a(t) := (ax(t))rex is the vector of

project actions. We are interested in the characterisation of policies with de-
sired properties (detailed below) from the set of admissible policies IT, which are
randomized, history-dependent, non-anticipative, and which satisfy the sample-
path resource constraint ), W:”jl(:zt) = M at every time period t. Notice
that considering the resource constraint as an equality is without loss of gen-
erality, because the problem with an inequality (< M) can always be reformu-
lated by adding a sufficient number of single-state projects, labelled, say, ¢, with
Ne = {+},W¢, == a, R}, := 0,pf,, = 1, to be virtually attended by the
unallocated resource units.

When all the parameters of the model are known (fully observable setting)
or are assumed using an observational, e.g. Bayesian model (partially observ-
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able setting), the typical objective in the field of stochastic optimisation is to
find /characterise a policy 7°T4 maximising the expected time-average (ETA)
reward rate,

RETA(T) := max lim E]
nell =T

1 T—1
-2 RZ%?@)] ) (1)
t=0 kek

where Ej denotes the expectation over state processes ny(-) and action processes
ax(+) for all k conditioned on initial states ny(0) for all k¥ and on policy w. Tech-
nical assumptions are required for the maximum and the limit to exist, however
for simplicity we use notation as above. Variants of (1), e.g. total discounted
reward, are also of interest.

When parameters are not known or it is not desirable to assume any obser-
vational model (limited or non-observable/non-parametric setting) and when an
analytic solution to a problem is not available, the typical objective in the field of
reinforcement learning is to find/characterise a policy minimising the expected
cumulative regret (ECR) of the reward which captures the lost reward due to the
limited knowledge of parameters or observations with respect to the expected
time-average reward obtainable in the fully observable setting over an infinite
horizon. Several variants of this problem can be considered, depending on the
assumptions made about which parameters are known by the decision-maker
and what is being observed at each period.

By allowing for a more general set of resources and more general dynamics,
the above problem formulation covers the classic multi-armed bandit problem, a
popular model in the field of design of sequential experiments, which is one of the
fundamental topics in statistics and machine learning. The classic multi-armed
bandit problem can be obtained by setting M :=1, Wi :=aq, ng,n := 0 for all
k,n,a, and taking Pz as an identity operator/matrix (i.e. unattended projects
do not change state). When unattended projects are allowed to change state
(i.e., Pg is not necessarily an identity operator) and the resource capacity M is
allowed to be any integer between 1 and K — 1, this more general problem is
known as the restless multi-armed bandit.

On the other hand, our problem formulation belongs to a broader, multi-
disciplinary field of decision making under uncertainty (or, recently suggested
to be called sequential decision analytics). The problem as formulated above
thus covers an intermediate family of problems: rich enough to cover a range
of important real-world problems, while the explicit structure of these problems
allows to develop tractable and effective solution methods. The development of
methods, algorithms, and the design of low-complexity policies with provable
performance guarantees for automatically solving such problems is an important
research challenge.

1.2 Related Work

Stochastic optimisation focusses on solving a problem by finding an exact or
approximate solution of a well specified optimisation model, which captures the
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essential features of the problem. The objective is typically maximisation of the
expected time-average or total discounted reward over a time horizon, which
can be finite or infinite. Probabilistic assumptions must be made about the
nature of uncertainty, which may lead to misspecified models. Nevertheless, so-
lutions to such models are often good enough for practical purposes. Classical
solution approaches based on direct use of dynamic programming occasionally
allow for characterising the structure of the optimal policy. However, exact al-
gorithms quickly become intractable because of the curse of dimensionality. A
much more viable theoretical approach is therefore to develop and study methods
that convert a problem into a simpler, tractable one, either by decomposition
or by considering it in an asymptotic regime. A plethora of general methods
and algorithms is available, e.g. dynamic programming, Lagrangian relaxation
and decomposition, approximate dynamic programming, asymptotically optimal
policies, look-ahead approximations, myopic policies, etc.

Using stochastic optimisation approaches, structural results have been ob-
tained for certain families of resource allocation problems. In his celebrated
result, Gittins established [16, 13] that a particular type of single-resource al-
location problem (known as the classic multi-armed bandit problem, described
above, with geometrically discounted rewards, and an infinite horizon) can be
optimally solved by decomposing it into a collection of single-project parametric
optimal-stopping problems, which in turn can be solved by assigning certain dy-
namic (state-dependent) quantities, now called the Gittins index values. These
indices define an optimal policy, the Gittins index rule, which prescribes to al-
locate the resource at every period to the project with currently highest index
value. This classic problem in Bayesian setting, under finite horizon, and with
non-geometric discounting was thoroughly studied in Berry and Fristedt [6]; see
also Russo and van Roy [33], Kaufmann [27].

Index rules and their generalisations became an important concept in ad-
dressing sequential resource allocation problems, which are PSPACE-hard in
general [32], for their simplicity to implement, economic interpretation, and
asymptotic (or near-) optimality. See, e.g. Whittle [40], Gittins [14], Weber and
Weiss [39], Nino-Mora [30], Glazebrook et al. [20], Archibald et al. [2], Glaze-
brook et al. [21], Hauser et al. [23], Jacko [25], Ayesta et al. [4], Gittins et al.
[15], Ayesta et al. [5], Villar et al. [36, 37], Verloop [35], Larraniaga et al. [28] for
a palette of models restricted to Wy, := a for all k,n,a. The key observation
allowing to derive index rules in such more general models was made by Whit-
tle [40], where he proposed a more general Whittle index definition. Subsequent
work established asymptotic optimality, index characterisation, algorithms, and
performance evaluation of the Whittle index rule. Further index generalisations
for problems with unrestricted resource requirements Wy, were introduced in
Glazebrook and Minty [17], Glazebrook et al. [18], Jacko [26], Graczova and
Jacko [22], Glazebrook et al. [19], Hodge and Glazebrook [24]. It is important to
note that the decomposition technique leading to index rules is not applicable
when the projects are not mutually independent.



Q-Learning of Index Rules 5

Reinforcement learning provides an alternative approach to tackling dynamic
problems under uncertainty. It has gained popularity due to not requiring an
observational model. Reinforcement learning focusses on solving a problem by
starting from very limited or no assumptions with the intention to learn ef-
ficiently about the nature of the problem by interacting with a system to be
controlled. Information may be limited either because of decision-maker’s lack
of historical knowledge of observations or conscious lack of model assumptions.
Various methods and algorithms are available to improve decisions over time
through interaction with the system, e.g., temporal-difference methods, Monte
Carlo simulation, gradient-based methods, randomised greedy algorithms, etc.
Some reinforcement learning methods work with an ETA objective while others
work with ECR objective.

One of the earliest learning approaches is Q-learning [38, 34], which has be-
come very popular as a powerful tool useful in a variety of real-life problems.
Q-learning is model-free and is suited for learning an optimal policy in general
MDPs with the ETA objective where the states, rewards and transition proba-
bilities are unknown. Q-learning estimates the optimal solution by maintaining
estimates of the conditional expected total reward given the current history and
assuming that (what is currently estimated as) optimal actions are chosen in
all future periods, known as Q-values (Q stands for ‘Quantity’ or more recently
‘Quality’). Improvements and extensions of Q-learning are currently a very ac-
tive research area, with recent advances such as deep Q-learning, which was suc-
cessfully implemented in software to play games at superhuman level, including
AlphaGo where a computer beat the world’s best players of Go. Other tech-
niques for learning general MDPs have been developed as well, e.g. Ortner et al.
[31] proposed a general algorithm for learning certain structured MDPs, while
Burnetas and Katehakis [8] developed a technique to learn an optimal policy for
general MDPs where the rewards and transition probabilities are unknown.

In this context, the ECR minimization problem has been heavily studied
in the literature in the i.i.d. version of the classic multi-armed bandit prob-
lem, i.e. with single resource (M = 1), independent and single-state projects
(N = {+}, W, == a,p{,, = 1), zero-reward unattended projects (R} , = 0),
unknown expected one-period rewards R}f’*, and where observed rewards are
only samples from distributions with these unknown means Rj, . For the non-
parametric problem setting see e.g. Burnetas and Katehakis [7], Cowan and
Katehakis [10]; for parametric Gaussian problem setting see e.g. Cowan et al. [9]
and the references therein. Note that problem (1) is trivial in this i.i.d. case.

Combining optimisation and learning. Although the two fields have common
roots, they have evolved into separate theoretical research fields with an ex-
tremely limited interaction. For problems of dynamic resource allocation, there
are only a few works, and typically only very special cases. The Q-learning
method for the Gittins index was proposed in Duff [11]. Near-optimal regret
guarantees for the finite-horizon Gittins index rule in the Gaussian problem set-
ting are proven in Lattimore [29]. The ECR objective was studied and a learning
algorithm was proposed for the setting of Whittle [40] in Ortner et al. [31].
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While it is immediate that a policy for optimizing ECR is suboptimal if
implemented in a fully observable setting, (1), methods for learning the policy
7ETA in the limited or non-observable setting are not well understood yet. For
general MDPs, the Q-learning algorithm maintains Q(n, a) for each state-action
combination of the MDP, which is an estimate of the expected time-average (or
total discounted) reward if action a is chosen in state n in the current period and
the optimal policy is followed thereafter. For the problems of dynamic resource
allocation, direct implementation of Q-learning would suffer from the curse of
dimensionality in the same way as standard stochastic optimisation approaches.

1.3 Learning the Whittle index rule

Most related to our paper are works that aim at using Q-learning for learning of
index rules rather than of general optimal policies for bandit problems. Specifi-
cally, we look at techniques that estimate the Whittle index policy, whereby unit
values of work are assigned to the M projects with the highest estimated Whittle
indices. The usual relaxation approach [40] results in the problem decomposition
allowing to consider each project independently with a wage A € R for assigning
every unit of work, thus resulting in a profit objective calculated as the reward
less the work wage paid. Then, the quality of an action in a particular state of
the kth project satisfies the dynamic programming equation

Br(y, N+ Qi(v, A mya) = Ry =AW, 7 Dl m max Qu(, Ao ), (2)
me./\fk

where ~y is the discount factor and Q (7, A, n,a) is the profit quantity relative
to Br(,A) which is the optimal expected time-average profit. Under regularity
conditions, the system of equations (2) for fixed v,\ and k implies that the
solution Qg (v, A, n,a) is unique up to an additive constant [1]. Note that when
v <1, Be(y,A) =0 and Qr(7y, A, n,a) is the expected total discounted quantity,
while when v = 1, Qx (7, A\, n, a) is the expected relative time-average quantity.
The policy for control on an individual project maps the set of states available
to that project to either a passive (0) or active (1) action ¢ : N, — A. An
optimal policy (for an individual project) is one such mapping that chooses the
action which maximises Qg (v, A\, n,a) for all n € Nj. Optimal policies depend
on \. For example, choosing a sufficiently high wage will ensure that the passive
policy, whereby the passive action is always chosen, becomes optimal. Conversely,
choosing a sufficiently negative wage will ensure that the active policy, whereby
the active action is always chosen, becomes optimal. In each extreme there exists
bounds where the wage dominates the rewards and the optimal policy is fixed as
either passive or active for all A outside the bounds. Between these bounds the
optimal policy can change. If the optimal policy transitions at specific values of
A, such that the optimal policy at each state transitions exactly once, then the
project is indexable and wage values at each point of transition are the Whittle
index values for their corresponding state. Under this formulation, the Whittle
index for an indexable project k in state n (Ag,) can be defined as the wage on
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the active action required to make both actions equally desirable. Namely,

Qk(77>\k,n7n7 ]-) - Qk(’)/a)‘k,n,nvo) =0. (3)

Although indexability (meaning that the project instance satisfies the law of
diminishing marginal returns) in theory restricts the applicability of index rules,
in practice it is rare to have non-indexable problems [30].

Learning the Whittle index values involves learning both Q (v, A\, n,a) and
Ak such that (3) is satisfied. Fu et al. [12] accomplish this by storing separate
tables of estimated @ values across a fixed search grid of A values. All @) values
are updated each time step using standard Q-learning updates based on a vari-
ant of equation (2). The Whittle indices are estimated to be the A grid values
that minimise |Qg (v, A, n, 1) — Qx (7, A, n,0)| in each state. A key issue with this
approach is that the true Whittle index values are generally excluded from the
fixed A search grid, and the computational requirements scale with the size of
the search space.

Avrachenkov and Borkar [3] resolve this issue by using a dynamic search
space of Ay, values, which represent estimates of the Whittle index of each
state. At each time step after updating the @ values, the Whittle index es-
timates are also updated at a slower rate, such that the current estimates of
Qr(Y; Aknsm,y 1) — Qi (Y, Ak n, 1, 0) move closer to 0. In this way, estimated Whit-
tle index values slowly converge to the true Whittle index values (under certain
conditions) without increasing the search space size.

We present an alternative approach which is fundamentally different from the
approaches in Fu et al. [12] and Avrachenkov and Borkar [3]. These approaches
aim at iteratively learning the index values, which results in continuous mod-
ification of the index value estimates. On the contrary, our approach aims at
iteratively learning the index-induced policies.

We develop a method for problems of dynamic resource allocation built on an
understanding of both stochastic optimisation (specifically, the Whittle index)
and reinforcement learning (specifically, Q-learning). We propose a novel imple-
mentation of Q-learning, which exploits the structure of the problem considered,
in which the algorithm maintains two sets of QQ-values for each project: one for
reward and one for work.

2 A New Q-Learning Method for the Whittle Index

We now present a new scheme for Q-learning the Whittle index rule that ex-
ploits the policy structure of indexable bandits to remove A from the Q-learning
updates, and significantly constrain the policy space. Our approach can be in-
terpreted as iteratively learning the policy induced by the Whittle index values,
instead of iteratively learning the Whittle index values directly which was fo-
cus of the previous literature. We believe that in certain cases, this can reduce
the error introduced by incorrect estimates of the Whittle index values, thereby
improving the convergence rate.
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In the rest of the paper, we consider the case v = 1, focusing on the time-
average criterion, and drop the dependency on ~ to simplify the notation. How-
ever, an analogous approach for the discounted case can also be formulated.
Consider a policy evaluation version of the Bellman equation (2),

QPnia) = RE, — AW+ 3 o mQOm, é(m) — Qr(N).  (4)
mGNk

There are three key differences between (2) and (4). Firstly, this is a “learning”
version of (2), in which the @ values should be interpreted as estimates of the
true @ values that satisfy (2). Secondly, the @ values are computed under policy
¢, which, unlike in (2), might not be optimal. Thirdly, following Avrachenkov

and Borkar [3], the @Z(x\) term, where

1

TN =gy 2 QRO m D+ QL0 m,0)] (5)

mGNk

is the time-average relative profit quantity across all states and actions for the
given policy ¢ and wage A, is included instead of S;(\) to ensure that (4) has a
unique solution in the case v =1 [1]. A key observation is that for a fixed policy
¢, (4) forms a linear system. Therefore, the profit )-value Qﬁ()\,n, a) depends
linearly on A and can be decomposed into two parts

Qf()\,n,a) = Qf(n, a) — )\H,f(n,a), (6)

where Qﬁ(n,a) = Qz(O,n, a) represents the profit Q-value when wage A = 0,
i.e. can be interpreted as the reward Q-value, and H ,‘f (n,a) can be interpreted
as the work @-value, both under policy ¢. Policy evaluation equations for both
Qf(n,a) and H,‘f(n,a) can be derived by substituting (6) into (4) and (5) and
applying separation of variables

Qi) =Rip+ > Pl m@Qf(m, ¢(m)) — Qf, (7)
mGNk
HY(n,a) = Wi+ > phmHY (m, ¢(m)) — Hy, 8)
meNy
T o o
mGNk
— 1
= o) o [HEGm 1)+ H{(m,0)]. (10)
meENy

With this representation, direct dependence on A is eliminated, and replaced by
dependence on ¢. Solving these new policy evaluation equations and combing
the results with (6), yields an evaluation of the policy for all A, even when the
policy is not optimal.
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Qk()V n, a‘)

k3 Akl Ak,2

Fig.1: A 3-state indexable bandit exemplifying the structure of Qg (A, n,a).
Qr (A, n,a) is a piecewise linear function of A with corners occurring at the Whit-
tle indices. The optimal policies are independent of A within each interval of each
line segment, but change at the corners where the policy transitions and A equals
a Whittle index of the state that transitions. For example, the optimal policy
changes between (1,1,1) and (1,1,0) on the left, so the Whittle index of the
third state equals the wage at the interception point.

If the policy ¢ is optimal, then the Whittle index value for each project k in
state n can be computed by combining (3) and (6)

H?(n,1) — H?(n,0)

Notice that during the learning process (in which policy ¢ may not be optimal),
the right-hand side of (11) can be interpreted as the current estimate of the
marginal productivity rate, which is the same interpretation as the Whittle index
has [30]. One can therefore expect that (11) converges to the Whittle index value
when ¢ is optimal, and thus might be a pragmatic choice for learning the Whittle
index values and employing such an index rule in the multi-project problem.
This is despite the fact that the Whittle index exists only under indexability
conditions [30], and the Whittle index rule is asymptotically optimal only under
certain technical assumptions [39, 35].

2.1 Algorithmic Learning Approach

Noting that Qf()\,n, a) is a linear function of A\, and in cases where the space
of possible policies ¢ is finite, the optimal quantity, Qx (X, n,a), must be a con-
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tinuous piecewise linear function of A. If the project is indexable with a unique
Whittle index for each state, then the optimal policy is fixed within each piece.
Furthermore, the set of states that the optimal policies activate in indexable
projects decreases monotonically with A, so the set of optimal policies can be
represented by an ordering of the states. Figure 1 illustrates an example of this
structure.

Algorithm 1: Learning Whittle index control policy via policy iteration
for k € K do

for 1€ {0,1...,|Nx|} do
‘ Initialise Q% and Hj}, tables;

end

Initialise optimal policy and Whittle index estimates;
end
for t € {1,2,...,T} do

Randomly decide to explore based on an exploration schedule;
if Ezploring then
‘ Activate M projects randomly with equal probability;
else
Activate M projects with highest estimated Whittle indices (breaking
ties randomly);
end
for k € K do
for l € {0,1...,|N%|} do
Update Q% and H}, for observed project transition and reward via
equations (12) and (13);

end
Update policy and Whittle index estimates via algorithm 2;
end
end

In practice, our method stores |V |+1 tables for Q and H and for each project
type. These correspond to the optimal policies that exist between the Whittle
indices of an indexable project which occur at the policy transitions where A
is a Whittle index. We denote these policies as ¢; and the @Q and H values
as QL(n,a) = Qfl(n, a) and H!(n,a) := H;f’(n, a), where | € {0,1,...,|Ng|}
indicates the size of the set of states that the policy activates.

Our method of learning works by iteratively estimating the optimal policies
¢; from the Q! (n,a) and H(n,a) estimates, and updating these estimates using
the following @ updates for all [ and for all observed transitions and rewards at
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each time step ¢

Qf i (n, ) = QF y(n,a) + o (BE, + QP (5, 6(5) = QL — @F,(n,a))

(12)
HY ., \(n,a) = HY (n,a) + (W,g,n + H? (s, 6(s') — Hy, — HE (n, a)) ,
(13)
where,
%= 5 3 [otmn+atomo]. (14
o= 55 3 [Atumn+ g mo)] (15)

where a € (0,1) is a Q-learning learning rate. Algorithm 1 outlines these steps
in more detail.

The policies ¢;, and Whittle index values are estimated using algorithm 2. It
works by beginning at [ = 0 where ¢y is the passive policy and is known to be
optimal for all A above the maximum Whittle index, and then choosing the state
which maximises the marginal productivity rate computed by equation (11). The
Whittle index of this state is estimated to be the marginal productivity rate and
the next policy at [ = 1 is estimated to be the same as the previous with the
exception of this state. This process is repeated where the marginal productivity
rate is maximised from the set of states available, and the subsequent optimal
policy estimate ¢; follows

bri1(n) = {1 = #iln), n=n (16)

o1(n), otherwise.

Here n’ is the available state that maximises the marginal productivity rate.
Notice that estimating the optimal policies in this way constrains the space of
available policy options to those of indexable projects. In doing so, we anticipate
convergence to the true optimal policies could be accelerated.

The algorithm could be equivalently formulated in the reverse direction start-
ing from [ = |Nj| where the optimal policy ®|n,.| 1s known to be the active policy,
and then choosing states that minimise the marginal productivity rate. Actually,
each step of the algorithm can proceed from either the “top” or the “bottom”,
and we alternate between these in practice.

3 Illustrative Numerical Comparison

A comprehensive empirical comparison between control algorithms would involve
controlling a broad range of restless multiarmed bandits of different sizes and
types, and comparing a range of performance metrics. However, in this paper,
we begin with a single test case to demonstrate that the algorithm can work in
practice.
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Algorithm 2: Whittle indices and policies from @) and H estimates

input : QL(n,a), Hi(n,a) VI€{0,1,...,|Nx|},Vn € Ni,Va € A
output: Estimated Whittle index ordering and values

1 QL (n,1)—Q} (n,0)
Ag(n) < HL (n,1)—H/ (n,0)’

(ltop, lbottom) — (07 |Nk|)7

(Atop, Abottom) — (+00, — 0);

remaining < {1,...,|Nx|};

forward order < empty tuple;

backward order <— empty tuple;

while |remaining| > 0 do

decide to iterate from the top or bottom remaining index;
if iterate from top then

lto
A" (n);
// clamp index between previous values
. leo
Atop ¢ max {)\bottom, min {/1,6t P (n'), /\top}};
append n’ to end of forward order;
Ak,n’ — Atop;

ltop — ltop + 17
remaining ¢ remaining \{n'};

’
n < arg maXnErcmaining

else

’ : Ibottom .
n < arg mlnnErcmaining Ak (n)7

// clamp index between previous values

. 1 /
Abottom — min {/\topa max {Akbm:tom (n )7 Abottom } };

append n’ to beginning of backward order;
Ak,n’ <~ Abottom;

lbottom — lbottom - 17

remaining < remaining \{n'};

end

end
ordering <+ forward order concatenated with backward order;

3.1 A Birth and Death Test Case

Our restless multi-armed bandit is adapted from the Mentoring Instructions
example presented by Fu et al. [12] and consists of K = 100 students (projects)
and M = 10 mentors which can each mentor a student at each time step. Each
student’s state sits in one of 5 ordered study levels N}, = {1,2,3,4,5}, and can
increase or decrease randomly each time step according to the following birth
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and death transition probabilities

07030 0 0 03070 0 0

0.7 0 030 0 030070 0
P)=10070030], P,=10030070]|, (17

0 007003 0 003007

0 0 00703 0 0 00307

where the active action corresponds to the student receiving mentorship. Stu-
dents in higher study levels give higher rewards each time step following Ry, =
\/% . With these transition probablilities and expected rewards the Whittle in-
dices can be computed to be

(Mem)nen, = (0.3166...,0.5032...,0.5510...,0.5512...,0.1037...).  (18)

The Whittle index policy for controlling this system is to prioritise allocating
mentors to students in the 4th study level, then 3rd, 2nd, 1st and then leaving
students in the 5th study level with the lowest priority.

We compare our method to Avrachenkov and Borkar’s method (denoted AB)
[3] for controlling this system. In each case we use a fixed exploration rate of
10%. This means at each time step there is a 10% probability of exploring, where
all mentors are allocated randomly to the students with equal probability. As
outlined in algorithm 1, when not exploring the controller assigns the mentors to
the M students with highest estimated Whittle indices. Additionally we fix the
learning rate in both learning algorithms to be the same at @ = 0.01, and the
Whittle index learning rate in AB to 0.001. Note that the AB method requires a
learning rate parameter for the Whittle index which is significantly smaller than
the Q learning rate.

We ran 32 simulations for each controller for 10,000 time steps each using
these parameters. The initial state of each simulation was initialised by first
controlling with the Whittle index policy, including exploration, for at least
5000 time steps.

3.2 Test Case Results

We first compare how the two methods learn the Whittle index values. Figure
2 shows a typical example of how these controllers estimate the index values
at each time step. There are two key differences in how the methods estimate
them. Firstly, the AB method estimates of the Whittle index values vary much
more smoothly than ours. However, our method appears to converge much faster
before fluctuating about the correct values. The size of these fluctuations depends
on the learning rate, and we anticipate that employing a learning rate schedule
that tends towards zero rather than a fixed rate would allow the noise to also
tend towards zero.

Despite the fluctuations, our method learns the Whittle index policy earlier
than AB and consistently employs it at a higher rate. The left part of figure
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Fig. 2: Estimated Whittle index values when using AB (left) and our controller
(right) for a single simulation each. Solid lines represent the estimated indices
for each state at each time step and dashed lines represent the true Whittle
index values. Note that the third (green) and fourth (red) Whittle index values
are very close and appear as a single red dashed line at the top. AB estimates
the indices more smoothly but also learns them more slowly. Our method is
more noisy but could be smoothed by using a learning rate schedule that decays
towards zero.

3 plots the proportion of the 32 simulations in which the controller has learnt
the correct Whittle index policy. Our method fluctuates just below 50%, about
double that of AB. The reason it does not converge to 100% is again due to the
fixed learning rate, and also the very small difference between state 3 and state 4
Whittle indices. Learning the Whittle index policy faster and employing it more
frequently is probably the reason our method achieved lower cumulative regret
on average, plotted on the right part of figure 3.

Examining the rewards and time average rewards, shown in figure 4, shows
that both methods appear to eventually produce rewards consistent with the
Whittle index policy with exploration, and both outperform a random policy.
However, our method again outperforms AB except around ¢ = 150 and after
around t > 3000 where both methods produce similar rewards.

4 Conclusion

We have developed a method controlling problems of dynamic resource allocation
and presented a novel implementation of Q-learning index rules. Unlike previous
Q-learning schemes which include estimates of the indices in the Q updates,
our method updates based on policy estimates which are constrained to those
available in indexable systems. In a single test system our method outperforms
previous methods in learning the Whittle index policy as well as maximising
expected rewards. These results warrant a broader empirical study that compares
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Fig. 3: Proportion of simulations that learnt the correct Whittle index state or-
dering (left) and normalised cumulative regret (right) averaged across 32 simula-
tions. The cumulative regret is normalised so that the expected reward from the
Whittle index policy with exploration is 1. Shaded regions represent standard
errors about the sample mean. The cumulative regret when using our method
is consistently lower than when using AB, probably because our method learns
the Whittle index policy sooner and employs it more frequently.
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Fig.4: Normalised time average reward (left) and normalised rewards (right)
averaged across 32 simulations. Normalised so that 1 is the expected reward
when following the Whittle index policy with the same exploration rate, and 0
is the expected reward following a random policy. The right is smoothed using
a moving average of 100 time steps. Shaded regions represent standard errors
about the sample mean.

methods across a broader range of project types and control parameters, such
as learning rate schedules.
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