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1 Introduction
The main goal of the current gold standard design for clinical trials, the fixed
randomised, is to learn about treatment effectiveness with a view to treat future
patients outside of the trial. Its drawbacks for trials involving rare diseases mo-
tivate the use of response-adaptive designs in which the accruing data on patient
responses are used to skew the allocation towards the superior treatments, with an
alternative goal of treating the patients within the trial as effectively as possible.
The problem of designing a trial which aims to identify the superior treatment
(exploration/learning) whilst treating the trial participants as effectively as pos-
sible (exploitation/earning) is a natural application area for bandit models, which
seek to balance this trade-off in order to obtain an optimal allocation policy which
maximises the expected number of patient successes during the given time hori-
zon. We use a bandit model set in the framework of finite-horizon Markov decision
processes, where dynamic programming (DP) can be used to develop a Bayesian
response-adaptive design. Although the use of bandit models to optimally de-
sign a trial is often referred to as the primary motivation for their study, they
have never been implemented in real clinical practice for reasons including lack of
randomisation, low power, and biased treatment effect estimates [1].
We propose a novel bandit-based design which addresses these key issues in a
very appealing way. We incorporate randomisation and add a constraint which
penalises if a minimum number of patients are not recruited to each treatment
arm. Simulation results for the proposed design show that: (i) the percentage
of patients allocated to the superior arm is much higher than in the traditional
fixed randomised design; (ii) relative to the optimal (non-rndomised and non-
constrained) DP design, the power is largely improved upon and (iii) it exhibits
only a very small bias and mean squared error of the treatment effect estimator.

2 The method
We consider a two-armed trial with binary endpoints, immediate responses and
a finite number of patients. Patients enter sequentially over time, one-by-one,
and each patient is allocated to either treatment A or B. Let X and Y denote
the patient’s response (either a success 1 or failure 0) from treatments A and B
respectively, which we model as independent Bernoulli random variables,

X ∼ Bernoulli(1, θA) and Y ∼ Bernoulli(1, θB), for 0 ≤ θA, θB ≤ 1,
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where θA (θB) is the unknown success probability of treatment A (B).
In Section 2.3 of [2] we develop the optimal design using Constrained Randomised
Dynamic Programming (CRDP). We force actions to be randomised by assigning
a probability so that each treatment has a probability of at least 1 − p of being
allocated, where 0.5 ≤ p ≤ 1, and will be referred to as the degree of randomi-
sation. Note that p = 0.5 corresponds to fixed equal randomisation design. We
further add a constraint to ensure that we always obtain at least ` observations
from each treatment arm, where ` is a fixed predefined value and will be referred
to as the degree of constraining. For details of how this design was implemented
in R, refer to the online supplementary material of [2].

3 Overall Performance
Through extensive simulation studies we compare our proposed CRDP design with
other designs, including Fixed (equal randomisation), RPW (randomised play-
the-winner), DP (non-randomised and non-constrained), WI (the Whittle index
approximation of DP) and RDP (randomised but non-constrained). Figure 1
summarises the key features of each design showing that our proposed CRDP
design performs well with respect to all of the performance measures.
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Figure 1: Star plot showing the performance of each design with respect to power,
patient benefit, absolute average bias of the treatment effect estimator and MSE
in a trial with 75 patients when θA = 0.5 and θB = 0.2. The best achieved values
for each performance measure are depicted at the outer edge.
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