A Bayesian Adaptive Design for Clinical Trials in Rare Diseases

Peter Jacko*

joint work with Faye Williamson, Thomas Jaki and Sofia S. Villar

13th Workshop on Stochastic Models, Statistics and Their Applications

Berlin, February 20-24, 2017

^{*}Dept. of Management Science, Lancaster University, UK

Clinical Trials

- Two treatments: control (existing one) and novel (not approved yet)
- Is the novel treatment better than the control?
 - clinically relevant treatment effect difference
 - ▶ if not, it will not be approved!
- ullet One sets up a clinical trial of n patients
- A (clinical trial) design is an allocation policy that specifies which treatment the ith patient will receive

Clinical Trials

- The gold standard design: randomised controlled trial
 - > 50% vs 50% fixed equal randomisation
 - avoids all types of biases
 - ▶ in use since 1948 (advocated since Hill 1937)
- Its main goal is to learn about treatment effectiveness with a view to prioritising future outside patients
 - maximises power of a treatment effect difference
 - \triangleright if approved, future patients are, say, 80% confident that the novel treatment is better than the control
- A half of trial patients gets the inferior treatment

Clinical Trials

- Problems with randomised controlled trial
 - \triangleright cost: 20% error of not approving a better treatment
 - development and approval processes: \$ billions
 - faith: once approved, no (simple) way to retract the treatment
 - worse treatment approved by 5% chance
 - unforeseen long-term secondary effects
 - feasibility: requires hundreds of patients for a trial
 - stationarity: approval process takes years
 - inappropriate for new diseases and epidemics
 - ethics: patients join a trial expecting to get a possibly better (unapproved yet) treatment

Multi-Armed Bandit Problem

Multi-armed Bandit Approach

- Maximise healing of patients in the trial
 - optimally solving exploration/exploitation trade-off
 - learning takes place during the trial
- The multi-armed bandit motivated by clinical trials
 - ▶ Thompson (Biometrika 1933), Robbins (1952), etc.
- Bandit models are a type of response-adaptive design
- Appropriate model: finite horizon
 - the celebrated Gittins' theorem does not apply!

Bayesian Bernoulli Bandit Model

- ullet Finite horizon: n sequentially arriving patients
- ullet Two-armed: treatment A or B for each patient
- Binary endpoints: success (1) or failure (0)
- Let X_i and Y_i denote patient i's response from treatment A and B respectively (for i=1,...,n). Then,

 $X_i \sim \mathsf{Bernoulli}(1, \; \theta_A) \; \; \mathsf{and} \; \; Y_i \sim \mathsf{Bernoulli}(1, \; \theta_B),$

where θ_A and θ_B are the unknown success probabilities of treatments A and B respectively

Bayesian Approach

- ullet Beliefs $\widehat{ heta}_A$ and $\widehat{ heta}_B$ to be updated over the trial
- Prior Distribution: $\widehat{\theta}_A \sim \text{Beta}(a, b)$, $\widehat{\theta}_B \sim \text{Beta}(c, d)$ where we take a = b = c = d = 1 (uninformative)
- Posterior Distribution: After observing i (j) successes (failures) on treatment A, and k (l) successes (failures) on treatment B, the posterior distribution is represented by another Beta distribution (by conjugacy)

$$\widehat{ heta}_A \sim \mathrm{Beta}(a+i,b+j)$$
, $\widehat{ heta}_B \sim \mathrm{Beta}(c+k,d+l)$

Optimal Design using DP

- We use dynamic programming (DP) to obtain an optimal adaptive treatment allocation sequence
- Optimal in the sense of maximising the expected total number of successes in the trial
- Specifically, we use backward induction algorithm
- Let $\mathcal{F}_m(i,j,k,l)$ be the expected total number of successes under an optimal policy after m patients
- If m=n, there is nothing to do: $\mathcal{F}_n(i,j,k,l)=0$ $\forall i,j,k,l$

Backward Induction

- If m = n 1 (one patient left):
 - 1. If treatment A, we compute the expectation

$$\mathcal{F}_{n-1}^{A}(i,j,k,l) = \frac{i}{i+j} \cdot 1 + \frac{j}{i+j} \cdot 0$$

2. If treatment B, we compute the expectation

$$\mathcal{F}_{n-1}^{B}(i,j,k,l) = \frac{k}{k+l} \cdot 1 + \frac{l}{k+l} \cdot 0$$

We wish to choose the optimal allocation such that

$$\mathcal{F}_{n-1}(i,j,k,l) = \max\{\mathcal{F}_{n-1}^{A}(i,j,k,l), \mathcal{F}_{n-1}^{B}(i,j,k,l)\}$$

Optimal Design

- Problem? This design is not suitable to implement in practice because it is completely deterministic
- As a result, there is a risk of introducing bias into the trial through the intentional selection of patients (selection bias)
- Therefore, we modify the optimal DP design by forcing actions to be randomised
 - ▶ see also Cheng & Berry (Biometrika, 2007)
- Helps to maintain blinding and reduce the risk of bias

Forcing Randomised Actions

- Action 1: treatment A is allocated with probability p
- ullet Action 2: treatment B is allocated with probability p
- The expected total number of successes under Action 1

$$\mathcal{V}_m^1(i,j,k,l) = p \cdot \mathcal{F}_m^A(i,j,k,l) + (1-p) \cdot \mathcal{F}_m^B(i,j,k,l)$$

The objective function becomes

$$\mathcal{V}_m(i,j,k,l) = \max\left\{\mathcal{V}_m^1(i,j,k,l),\; \mathcal{V}_m^2(i,j,k,l)
ight\}$$

Lower selection bias, but lower controllability

Randomised Variant

- Problems? After running simulations, we found:
 - $ilde{
 hd}$ this design is very underpowered for high p
 - ▶ in some of the runs (only a few out of 10,000), all patients were allocated to only one of the treatments
- This means we cannot be confident about the results
- ...we cannot calculate important performance measures
- Therefore, we lower-limit the number of observations on each treatment

Constrained Variant

- We modify the optimal randomised DP policy by adding a constraint to ensure that we obtain $\geq \ell$ observations from each treatment
- To do this, we assign a large penalty to every terminal state that has $<\ell$ observations on a treatment arm
- The undesirable states will now be avoided (as much as possible) by the optimal policy
- We tried a range of values for ℓ , i.e. 0.05n, 0.10n, 0.15n, 0.20n and 0.25n. (Note that 0.50n corresponds to equal, fixed randomisation)

Simulation Study

- We evaluate the performance of proposed designs by
 - Bias of the treatment effect estimator
 - ...and its mean squared error (MSE)
 - Statistical power
 - Expected proportion of successes (EPS)
 - Patients allocated to the superior arm (On sup)
- For each configuration, we replicate 10,000 trials

Simulation Results: Randomised Variant

Example. $n = 75, \theta_A = 0.2, \theta_B = 0.8$

p	Bias	MSE	Power	EPS	On sup
50%	0.001	0.004	1.000	50.0%	50.0%
60%	0.001	0.005	1.000	55.7%	59.6%
70%	0.001	0.007	0.999	61.5%	69.2%
80%	0.004	0.010	0.995	67.2%	78.8%
90%	0.009	0.019	0.937	73.0%	88.3%
100%	0.100	0.043	0.118	78.6%	97.6%

• The Power (almost) does not change if p increased from 50% to 60% or 70%. Room for increasing EPS!

Simulation Results: Randomised Variant

Example. $n = 75, \theta_A = 0.2, \theta_B = 0.6$

p	Bias	MSE	Power	EPS	On sup
50%	0.001	0.004	0.938	40.0%	50.0%
60%	0.002	0.005	0.935	43.7%	59.1%
70%	0.002	0.007	0.910	47.3%	68.2%
80%	0.005	0.009	0.830	50.9%	77.3%
90%	0.015	0.015	0.636	54.4%	86.0%
100%	0.089	0.030	0.070	57.7%	94.2%

• The Power (almost) does not change if p increased from 50% to 60% or 70%. Room for increasing EPS!

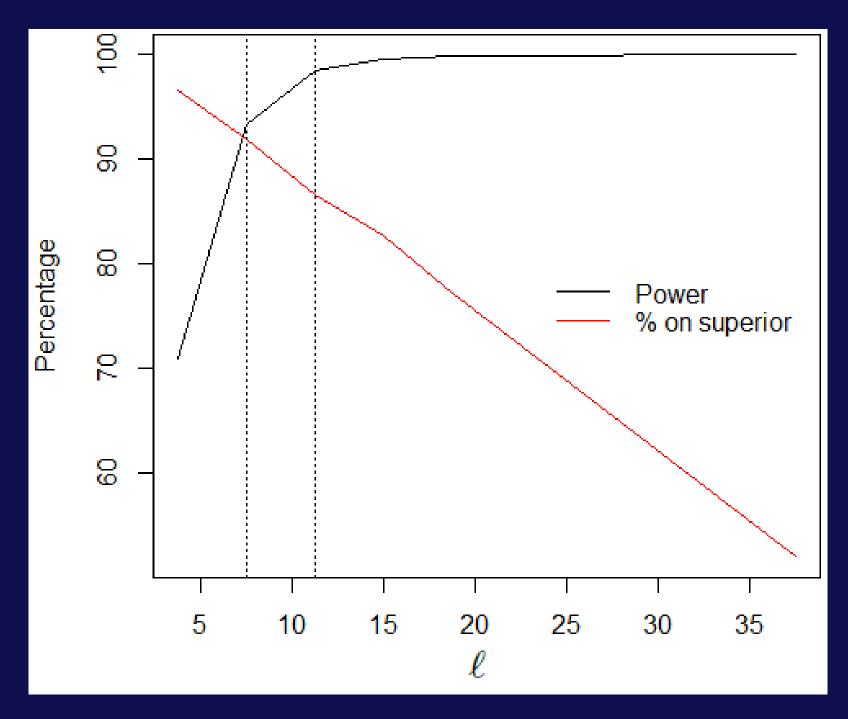
Simulation Results: Constrained Variant

Example. $n=75, \overline{\theta_A=0.2, \theta_B=0.8}$

ℓ	Power	EPS	On sup
0.05n	0.442	78.0%	96.6%
$\mid 0.10n \mid$	0.884	75.2%	91.9%
$\mid 0.15n \mid$	0.964	72.1%	86.7%
0.20n	0.985	69.7%	82.7%
0.25n	0.997	66.5%	77.3%
0.50n	1.000	51.2%	52.0%

• As ℓ increases, the power of the design increases hyperbolically, but the EPS and % allocated to the superior arm decreases linearly

Simulation Results: Constrained Variant



Simulation Results: Constrained Randomised Variant

Example. $n = 75, \ell = 0.15n, \theta_A = 0.2, \theta_B = 0.8$

p	Bias	MSE	Power	EPS	On sup
60%	0.001	0.005	1.000	55.7%	59.6%
70%	0.001	0.007	0.999	61.5%	69.2%
80%	0.003	0.010	0.996	67.2%	78.7%
90%	0.003	0.014	0.977	71.3%	85.5%

• The Power is quite high even if p increased to 80% or 90%. Also bias diminishes!

Simulation Results: Constrained Randomised Variant

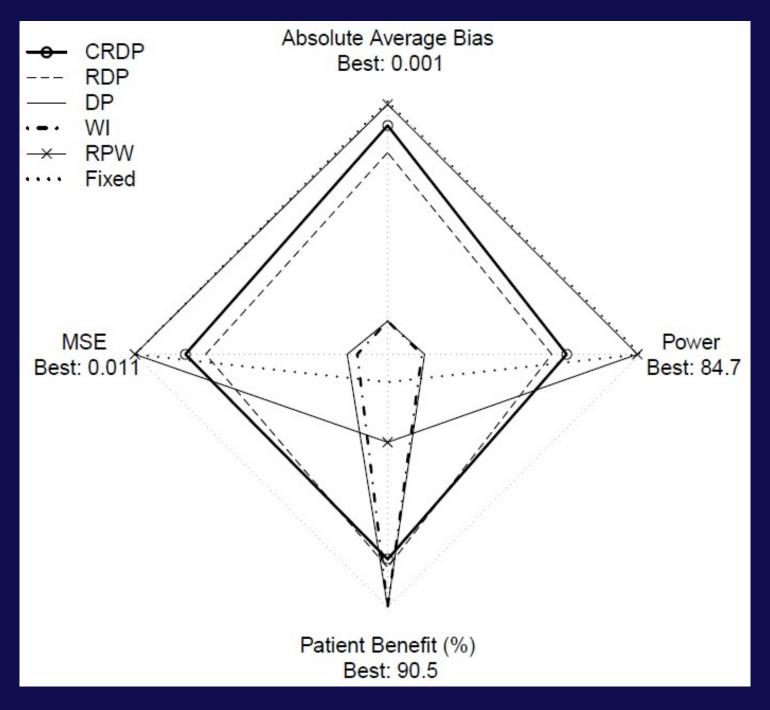
Example. $n = 75, \ell = 0.15n, \theta_A = 0.2, \theta_B = 0.6$

p	Bias	MSE	Power	EPS	On sup
60%	0.002	0.005	0.935	43.7%	59.1%
70%	0.002	0.007	0.910	47.3%	68.2%
80%	0.005	0.009	0.834	50.9%	77.2%
90%	0.008	0.013	0.724	53.6%	84.0%

• The Power is quite high even if p increased to 80% or 90%. Also bias diminishes!

Simulation Study

- We compare our proposed constrained randomised variant of DP (CRDP) design to the following designs:
 - Fixed randomisation (the gold standard)
 - Randomised play-the-winner rule (RPW)
 - Optimal dynamic programming policy (DP)
 - ▶ Whittle index policy (WI)
 - Randomised variant of the DP policy (RDP)
- We suggest to set $p=90\%, \ell=0.15n$ in CRDP



Example. $n = 75, \theta_A = 0.2, \theta_B = 0.8$

Design	Bias	Power	EPS	On sup
Fixed	0.000	1.000	50.0%	50.0%
RPW	0.008	0.998	66.2%	76.9%
WI	0.098	0.108	78.6%	97.6%
DP	0.100	0.118	78.6%	97.5%
RDP	0.009	0.937	73.0%	88.3%
CRDP	0.003	0.977	71.3%	85.5%

Example. $n = 75, \theta_A = 0.2, \theta_B = 0.6$

Design	Bias	Power	EPS	On sup
Fixed	0.000	0.935	40.0%	50.0%
RPW	0.002	0.928	46.2%	65.4%
WI	0.092	0.066	57.8%	94.4%
DP	0.088	0.074	57.7%	94.1%
RDP	0.015	0.636	54.4%	86.0%
CRDP	0.008	0.724	53.6%	84.0%

- In our suggested CRDP design
 - ▶ the % expected proportion of successes is much higher than in the traditional fixed and RPW designs
 - the % allocated to the superior arm is much higher
 than in the traditional fixed and RPW designs
 - the power is largely improved upon relative to the other bandit designs
 - the bias is negligible, opposed to large bias of other bandit designs

Conclusion

- We address some of the key issues preventing bandit models from being implemented in clinical trial practice
 - lack of randomisation
 - insufficient statistical power
 - biased estimates of the treatment effect
- We need to talk to statisticians and clinicians about bandit models
 - give me randomisation probability and desired power
 - I tell how to randomise treatments to heal patients

Thank you for your attention