A Bayesian adaptive design for clinical trials in rare diseases

S. Faye Williamson¹, Peter Jacko¹, Sofía S. Villar², Thomas Jaki¹

¹STOR-i CDT, Lancaster University, ²MRC Biostatistics Unit, University of Cambridge

EPSRC

Introduction & Motivation

STOR-i

- ► Consider a two-arm clinical trial with binary endpoints and *n* patients.
- Suppose each treatment, A and B, has an unknown success probability, θ_A and θ_B , respectively, and each patient's response is immediately available.
- ► The null and alternative hypotheses are formulated as

$$H_0: \theta_A = \theta_B$$
 versus $H_1: \theta_A \neq \theta_B$,

and we assume θ_A , $\theta_B \sim \text{Beta}(1, 1)$ a priori.

Objective: To design a clinical trial which identifies the superior treatment (learning) whilst effectively treating the trial participants (earning). This will be particularly useful for rare diseases in which a substantial proportion of patients exhibiting the disease are included in the trial, and therefore the priority is to treat these patients as effectively as possible.

- ► This is a natural application area for bandit models which seek to balance the learning versus earning trade-off to obtain an optimal allocation policy.
- ► Bandit models are a type of response-adaptive design.
- Learning takes place during the trial (rather than just at the end as in the traditional randomised controlled trial).

Constrained RDP (CRDP) Design

- ► We propose a constrained variant of the RDP design which tries to ensure that we always obtain at least ℓ observations from each treatment arm.
- ▶ Therefore, we penalise having no observations on a treatment arm.
- ► To do this, we assign a large negative penalty to every terminal state that has less than ℓ observations on a treatment arm.
- ► This causes the undesirable states to now be avoided.
- We tried several values for ℓ and suggest setting $\ell = 0.15n$.

Simulation Study

We evaluate the CRDP design in several scenarios by simulating 10,000 replications and focusing on the following performance measures:

- Power; type I error rate; average bias of the treatment effect estimator; mean squared error (MSE) and the percentage of patients allocated to the superior treatment (% on sup).
- ...and we compare our proposed CRDP design to the following designs:
- Traditional fixed randomisation; randomised play-the-winner (RPW); Whittle index policy (WI), DP and RDP.
- ► The optimality property, in terms of maximising the expected number of patient successes, is the primary motivation behind implementing bandit-based designs in clinical practice.

Dynamic Programming (DP) Design

- ► We use DP to obtain the optimal adaptive treatment allocation sequence.
- ► The idea behind DP is a recurrence equation (the Bellman equation), which relates the expected total reward at a given decision time to the distribution of its possible values at the next decision time.
- ► We implement a backward induction algorithm in which we start with patient *n* and proceed iteratively towards the first patient.

Limitations for Trial Design

- ► This design is completely deterministic.
- ► This design suffers from very low power.

We focus on modifications to the DP design which aim at overcoming these limitations without having a significant impact on the patient benefit criterion.

Randomised Dynamic Programming (RDP) Design

- ► A natural first step is to modify the DP design by including randomisation.
- This helps to maintain blinding and reduce the risk of bias.

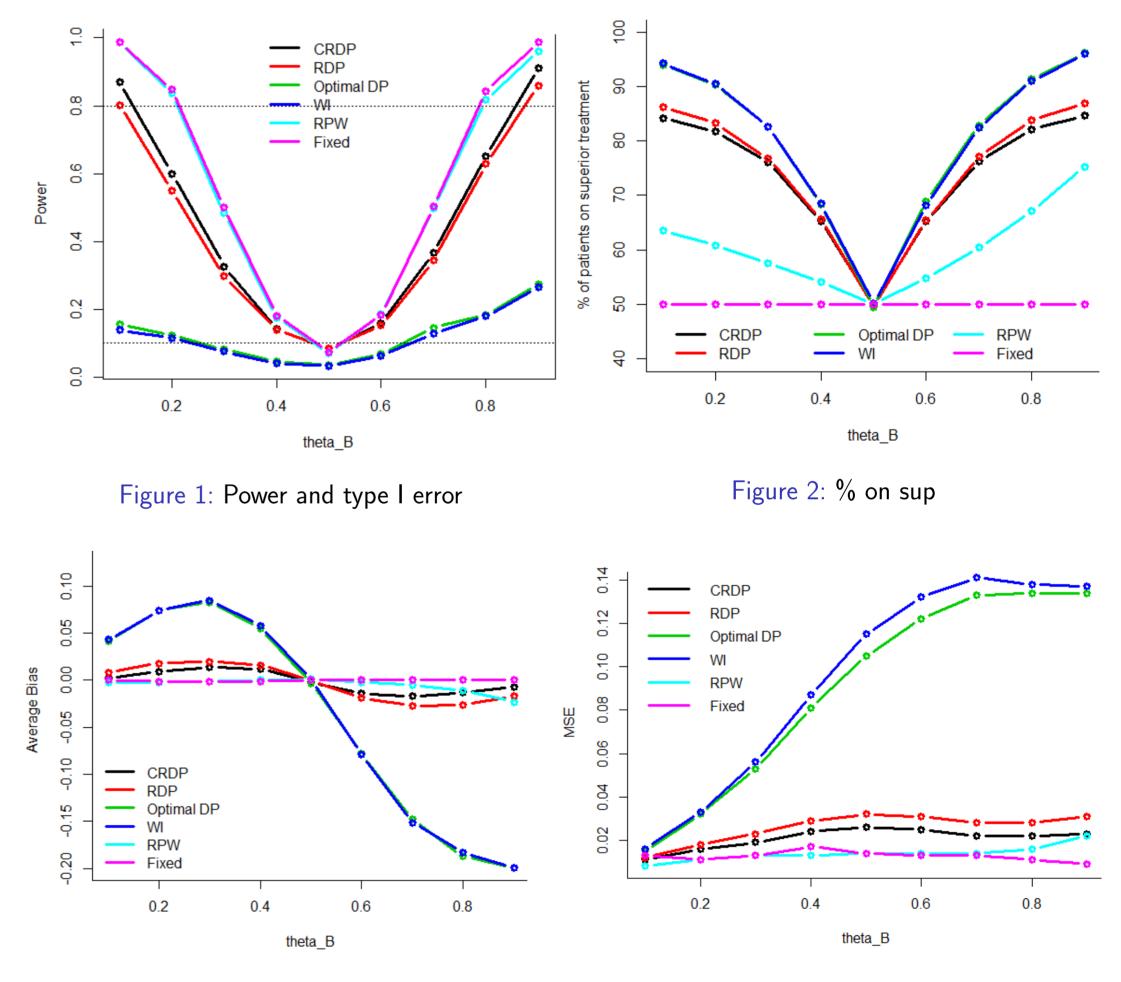


Figure 3: Average bias

Figure 4: MSE

- ▶ We define the following actions so that each treatment has a probability of at least 1 - p of being allocated to each patient, where $0.5 \le p \le 1$.
- 1. Action 1: A patient receives treatment A with probability p (and treatment B with probability 1 - p).
- 2. Action 2: A patient receives treatment B with probability p (and treatment A with probability 1 - p).
- We tried a range of values for p and suggest setting p = 0.90.
- ► This design markedly improves power and trades a small reduction in optimality for randomisation.

Limitations for Trial Design

There is a possibility that all patients may be allocated to only one treatment.

Conclusions

Our proposed CRDP design produces very promising results:

- 1. The power is greatly improved upon relative to other DP designs (Figure 1).
- 2. The % of patients allocated to the superior treatment is much higher than in the traditional fixed and RPW designs (Figure 2).
- 3. The bias and MSE of the treatment effect estimator is greatly reduced compared to the other bandit designs (Figures 3 and 4).

Reference

Williamson, S. F., Jacko, P., Villar, S. S., and Jaki, T. (2016): A Bayesian adaptive design for clinical trials in rare diseases, Computational Statistics & Data Analysis, Available online 28 September 2016, DOI: 10.1016/j.csda.2016.09.006.