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Clinical Trials

• Two treatments: control (existing one) and

novel (not approved yet)

• Is the novel treatment better than the control?

. clinically relevant treatment effect difference

. if not, it will not be approved!

• One sets up a clinical trial of n patients

• A (clinical trial) design is an allocation policy that

specifies which treatment the ith patient will receive
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Clinical Trials

• The gold standard design: randomised controlled trial

. 50% vs 50% fixed equal randomisation

. avoids all types of biases

. in use since 1948 (advocated since Hill 1937)

• Its main goal is to learn about treatment effectiveness

with a view to prioritising future outside patients

. maximises power of a treatment effect difference

. if approved, future patients are, say, 80% confident

that the novel treatment is better than the control

• A half of trial patients gets the inferior treatment
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Clinical Trials

• Problems with randomised controlled trial

. cost: 20% error of not approving a better treatment

− development and approval processes: $ billions

. faith: once approved, no (simple) way to retract the

treatment

− worse treatment approved by 5% chance

− unforeseen long-term secondary effects

. feasibility: requires hundreds of patients for a trial

. stationarity: approval process takes years

− inappropriate for new diseases and epidemics

. ethics: patients join a trial expecting to get a

possibly better (unapproved yet) treatment
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Multi-Armed Bandit Problem
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Multi-armed Bandit Approach

• Maximise healing of patients in the trial

. optimally solving exploration/exploitation trade-off

. learning takes place during the trial

• The multi-armed bandit motivated by clinical trials

. Thompson (Biometrika 1933), Robbins (1952), etc.

• Bandit models are a type of response-adaptive design

• Appropriate model: finite horizon

. the celebrated Gittins’ theorem does not apply!
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Bayesian Bernoulli Bandit Model

• Finite horizon: n sequentially arriving patients

• Two-armed: treatment A or B for each patient

• Binary endpoints: success (1) or failure (0)

• Let Xi and Yi denote patient i’s response from

treatment A and B respectively (for i = 1, ..., n).

Then,

Xi ∼ Bernoulli(1, θA) and Yi ∼ Bernoulli(1, θB),

where θA and θB are the unknown success probabilities

of treatments A and B respectively
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Bayesian Approach

• Beliefs θ̂A and θ̂B to be updated over the trial

• Prior Distribution: θ̂A ∼ Beta(a, b), θ̂B ∼ Beta(c, d)

where we take a = b = c = d = 1 (uninformative)

• Posterior Distribution: After observing i (j) successes

(failures) on treatment A, and k (l) successes (failures)

on treatment B, the posterior distribution is

represented by another Beta distribution (by

conjugacy)

θ̂A ∼ Beta(a+ i, b+ j), θ̂B ∼ Beta(c+ k, d+ l)
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Optimal Design using DP

• We use dynamic programming (DP) to obtain an

optimal adaptive treatment allocation sequence

• Optimal in the sense of maximising the expected total

number of successes in the trial

• Specifically, we use backward induction algorithm

• Let Fm(i, j, k, l) be the expected total number of

successes under an optimal policy after m patients

• If m = n, there is nothing to do: Fn(i, j, k, l) = 0

∀i, j, k, l
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Backward Induction

• If m = n− 1 (one patient left):

1. If treatment A, we compute the expectation

FA
n−1(i, j, k, l) =

i

i+ j
· 1 + j

i+ j
· 0

2. If treatment B, we compute the expectation

FB
n−1(i, j, k, l) =

k

k + l
· 1 + l

k + l
· 0

• We wish to choose the optimal allocation such that

Fn−1(i, j, k, l) = max{FA
n−1(i, j, k, l), FB

n−1(i, j, k, l)}
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Optimal Design

• Problem? This design is not suitable to implement in

practice because it is completely deterministic

• As a result, there is a risk of introducing bias into the

trial through the intentional selection of patients

(selection bias)

• Therefore, we modify the optimal DP design by forcing

actions to be randomised

. see also Cheng & Berry (Biometrika, 2007)

• Helps to maintain blinding and reduce the risk of bias
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Forcing Randomised Actions

• Action 1: treatment A is allocated with probability p

• Action 2: treatment B is allocated with probability p

• The expected total number of successes under Action 1

V1
m(i, j, k, l) = p · FA

m(i, j, k, l) + (1− p) · FB
m(i, j, k, l)

• The objective function becomes

Vm(i, j, k, l) = max
{
V1
m(i, j, k, l), V2

m(i, j, k, l)
}

• Lower selection bias, but lower controllability
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Randomised Variant

• Problems? After running simulations, we found:

. this design is very underpowered for high p

. in some of the runs (only a few out of 10,000), all

patients were allocated to only one of the treatments

• This means we cannot be confident about the results

• ...we cannot calculate important performance measures

• Therefore, we lower-limit the number of observations

on each treatment
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Constrained Variant

• We modify the optimal randomised DP policy by

adding a constraint to ensure that we obtain ≥ `
observations from each treatment

• To do this, we assign a large penalty to every terminal

state that has < ` observations on a treatment arm

• The undesirable states will now be avoided (as much

as possible) by the optimal policy

• We tried a range of values for `, i.e. 0.05n, 0.10n,

0.15n, 0.20n and 0.25n. (Note that 0.50n corresponds

to equal, fixed randomisation)
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Simulation Study

• We evaluate the performance of proposed designs by

. Bias of the treatment effect estimator

. ...and its mean squared error (MSE)

. Statistical power

. Expected proportion of successes (EPS)

. Patients allocated to the superior arm (On sup)

• For each configuration, we replicate 10,000 trials
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Simulation Results: Randomised Variant

Example. n = 75, θA = 0.2, θB = 0.8

p Bias MSE Power EPS On sup

50% 0.001 0.004 1.000 50.0% 50.0%

60% 0.001 0.005 1.000 55.7% 59.6%

70% 0.001 0.007 0.999 61.5% 69.2%

80% 0.004 0.010 0.995 67.2% 78.8%

90% 0.009 0.019 0.937 73.0% 88.3%

100% 0.100 0.043 0.118 78.6% 97.6%

• The Power (almost) does not change if p increased

from 50% to 60% or 70%. Room for increasing EPS!
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Simulation Results: Randomised Variant

Example. n = 75, θA = 0.2, θB = 0.6

p Bias MSE Power EPS On sup

50% 0.001 0.004 0.938 40.0% 50.0%

60% 0.002 0.005 0.935 43.7% 59.1%

70% 0.002 0.007 0.910 47.3% 68.2%

80% 0.005 0.009 0.830 50.9% 77.3%

90% 0.015 0.015 0.636 54.4% 86.0%

100% 0.089 0.030 0.070 57.7% 94.2%

• The Power (almost) does not change if p increased

from 50% to 60% or 70%. Room for increasing EPS!
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Simulation Results: Constrained Variant

Example. n = 75, θA = 0.2, θB = 0.8

` Power EPS On sup

0.05n 0.442 78.0% 96.6%

0.10n 0.884 75.2% 91.9%

0.15n 0.964 72.1% 86.7%

0.20n 0.985 69.7% 82.7%

0.25n 0.997 66.5% 77.3%

0.50n 1.000 51.2% 52.0%

• As ` increases, the power of the design increases

hyperbolically, but the EPS and % allocated to the

superior arm decreases linearly
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Simulation Results: Constrained Variant
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Simulation Results: Constrained
Randomised Variant

Example. n = 75, ` = 0.15n, θA = 0.2, θB = 0.8

p Bias MSE Power EPS On sup

60% 0.001 0.005 1.000 55.7% 59.6%

70% 0.001 0.007 0.999 61.5% 69.2%

80% 0.003 0.010 0.996 67.2% 78.7%

90% 0.003 0.014 0.977 71.3% 85.5%

• The Power is quite high even if p increased to 80% or

90%. Also bias diminishes!
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Simulation Results: Constrained
Randomised Variant

Example. n = 75, ` = 0.15n, θA = 0.2, θB = 0.6

p Bias MSE Power EPS On sup

60% 0.002 0.005 0.935 43.7% 59.1%

70% 0.002 0.007 0.910 47.3% 68.2%

80% 0.005 0.009 0.834 50.9% 77.2%

90% 0.008 0.013 0.724 53.6% 84.0%

• The Power is quite high even if p increased to 80% or

90%. Also bias diminishes!



21

Simulation Study

• We compare our proposed constrained randomised

variant of DP (CRDP) design to the following designs:

. Fixed randomisation (the gold standard)

. Randomised play-the-winner rule (RPW)

. Optimal dynamic programming policy (DP)

. Whittle index policy (WI)

. Randomised variant of the DP policy (RDP)

• We suggest to set p = 90%, ` = 0.15n in CRDP
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Simulation Results: Designs Comparison



23

Simulation Results: Designs Comparison

Example. n = 75, θA = 0.2, θB = 0.8

Design Bias Power EPS On sup

Fixed 0.000 1.000 50.0% 50.0%

RPW 0.008 0.998 66.2% 76.9%

WI 0.098 0.108 78.6% 97.6%

DP 0.100 0.118 78.6% 97.5%

RDP 0.009 0.937 73.0% 88.3%

CRDP 0.003 0.977 71.3% 85.5%
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Simulation Results: Designs Comparison

Example. n = 75, θA = 0.2, θB = 0.6

Design Bias Power EPS On sup

Fixed 0.000 0.935 40.0% 50.0%

RPW 0.002 0.928 46.2% 65.4%

WI 0.092 0.066 57.8% 94.4%

DP 0.088 0.074 57.7% 94.1%

RDP 0.015 0.636 54.4% 86.0%

CRDP 0.008 0.724 53.6% 84.0%
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Simulation Results: Designs Comparison

• In our suggested CRDP design

. the % expected proportion of successes is much

higher than in the traditional fixed and RPW designs

. the % allocated to the superior arm is much higher

than in the traditional fixed and RPW designs

. the power is largely improved upon relative to the

other bandit designs

. the bias is negligible, opposed to large bias of other

bandit designs
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Conclusion

• We address some of the key issues preventing bandit

models from being implemented in clinical trial practice

. lack of randomisation

. insufficient statistical power

. biased estimates of the treatment effect

• We need to talk to statisticians and clinicians about

bandit models

. give me randomisation probability and desired power

. I tell how to randomise treatments to heal patients
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Thank you for your attention
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...and see you in Lancaster

• The 7th meeting of the EURO WG on Stochastic

Modelling

• 13–15 June 2018, Lancaster University

• Become member at www.stochmod.eu — it’s free!

www.stochmod.eu

